首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The plasmalemmal dihydropyridine receptor (DHPR) is the voltage sensor in skeletal muscle excitation-contraction (e-c) coupling. It activates calcium release from the sarcoplasmic reticulum via protein-protein interactions with the ryanodine receptor (RyR). To enable this interaction, DHPRs are arranged in arrays of tetrads opposite RyRs. In the DHPR alpha(1S) subunit, the cytoplasmic loop connecting repeats II and III is a major determinant of skeletal-type e-c coupling. Whether the essential II-III loop sequence (L720-L764) also determines the skeletal-specific arrangement of DHPRs was examined in dysgenic (alpha(1S)-null) myotubes reconstituted with distinct alpha(1) subunit isoforms and II-III loop chimeras. Parallel immunofluorescence and freeze-fracture analysis showed that alpha(1S) and chimeras containing L720-L764, all of which restored skeletal-type e-c coupling, displayed the skeletal arrangement of DHPRs in arrays of tetrads. Conversely, alpha(1C) and those chimeras with a cardiac II-III loop and cardiac e-c coupling properties were targeted into junctional membranes but failed to form tetrads. However, an alpha(1S)-based chimera with the heterologous Musca II-III loop produced tetrads but did not reconstitute skeletal muscle e-c coupling. These findings suggest an inhibitory role in tetrad formation of the cardiac II-III loop and that the organization of DHPRs in tetrads vis-a-vis the RyR is necessary but not sufficient for skeletal-type e-c coupling.  相似文献   

2.
《The Journal of cell biology》1993,123(5):1161-1174
Excitation-contraction (E-C) coupling is thought to involve close interactions between the calcium release channel (ryanodine receptor; RyR) of the sarcoplasmic reticulum (SR) and the dihydropyridine receptor (DHPR) alpha 1 subunit in the T-tubule membrane. Triadin, a 95- kD protein isolated from heavy SR, binds both the RyR and DHPR and may thus participate in E-C coupling or in interactions responsible for the formation of SR/T-tubule junctions. Immunofluorescence labeling of normal mouse myotubes shows that the RyR and triadin co-aggregate with the DHPR in punctate clusters upon formation of functional junctions. Dysgenic myotubes with a deficiency in the alpha 1 subunit of the DHPR show reduced expression and clustering of RyR and triadin; however, both proteins are still capable of forming clusters and attaining mature cross-striated distributions. Thus, the molecular organization of the RyR and triadin in the terminal cisternae of SR as well as its association with the T-tubules are independent of interactions with the DHPR alpha 1 subunit. Analysis of calcium transients in dysgenic myotubes with fluorescent calcium indicators reveals spontaneous and caffeine-induced calcium release from intracellular stores similar to those of normal muscle; however, depolarization-induced calcium release is absent. Thus, characteristic calcium release properties of the RyR do not require interactions with the DHPR; neither do they require the normal organization of the RyR in the terminal SR cisternae. In hybrids of dysgenic myotubes fused with normal cells, both action potential- induced calcium transients and the normal clustered organization of the RyR are restored in regions expressing the DHPR alpha 1 subunit.  相似文献   

3.
Modulatory effects of auxiliary alpha(2)delta(2) and gamma(5) subunits on intramembrane charge movement originating from the expressed Ca(v)3.1 calcium channel were investigated. Inward current was blocked by 1mM La(3+). Voltage dependences of Q(on) and Q(off), kinetics of ON- and OFF-charge movement, and I(max)/Q(max) ratio were measured in the absence and the presence of an auxiliary subunit. The alpha(2)delta(2) subunit accelerated significantly both ON- and OFF-charge movement. I(max)/Q(max) ratio and Q(on)-V, Q(off)-V relations were not affected. Coexpression of the alpha(2)delta(2) subunit may accelerate channel transitions between individual closed states, but not the transition from the last closed channel state into an open state. Coexpression of the gamma(5) subunit accelerated the decay of the ON-charge transient and enhanced I(max)/Q(max) ratio. These effects suggest improvement of the coupling between the charge movement and the channel opening due to facilitation of transitions between individual closed states and the transition between the last closed state and an open state.  相似文献   

4.
Excitation-contraction (e-c) coupling in muscle relies on the interaction between dihydropyridine receptors (DHPRs) and RyRs within Ca(2+) release units (CRUs). In skeletal muscle this interaction is bidirectional: alpha(1S)DHPRs trigger RyR1 (the skeletal form of the ryanodine receptor) to release Ca(2+) in the absence of Ca(2+) permeation through the DHPR, and RyR1s, in turn, affect the open probability of alpha(1S)DHPRs. alpha(1S)DHPR and RyR1 are linked to each other, organizing alpha(1S)-DHPRs into groups of four, or tetrads. In cardiac muscle, however, alpha(1C)DHPR Ca(2+) current is important for activation of RyR2 (the cardiac isoform of the ryanodine receptor) and alpha(1C)-DHPRs are not organized into tetrads. We expressed RyR1, RyR2, and four different RyR1/RyR2 chimeras (R4: Sk1635-3720, R9: Sk2659-3720, R10: Sk1635-2559, R16: Sk1837-2154) in 1B5 dyspedic myotubes to test their ability to restore skeletal-type e-c coupling and DHPR tetrads. The rank-order for restoring skeletal e-c coupling, indicated by Ca(2+) transients in the absence of extracellular Ca(2+), is RyR1 > R4 > R10 > R16 > R9 > RyR2. The rank-order for restoration of DHPR tetrads is RyR1 > R4 = R9 > R10 = R16 > RyR2. Because the skeletal segment in R9 does not overlap with that in either R10 or R16, our results indicate that multiple regions of RyR1 may interact with alpha(1S)DHPRs and that the regions responsible for tetrad formation do not correspond exactly to the ones required for functional coupling.  相似文献   

5.
6.
Differentiated primary myotubes isolated from wild-type mice exhibit ryanodine-sensitive, spontaneous global Ca2+ oscillations as well as spontaneous depolarizations in the plasma membrane. Immunolabeling of these myotubes showed expression of both 1S dihydropyridine receptors (DHPRs) and ryanodine-sensitive Ca2+-release channel 1 (RyR1), the two key proteins in skeletal excitation-contraction (E-C) coupling. Spontaneous global Ca2+ oscillations could be inhibited by addition of 0.1 mM CdCl2/0.5 mM LaCl3 or 5 µM nifedipine to the extracellular bathing solution. After either treatment, Ca2+ oscillations could be restored upon extensive washing. Although exposure to DHPR antagonists completely blocked Ca2+ oscillations, normal orthograde signaling between DHPRs and RyRs, such as that elicited by 80 mM KCl depolarization, was still observed. In addition, we showed that spontaneous Ca2+ oscillations were never present in cultured mdg myotubes, which lack the expression of 1SDHPRs. These results suggest that under physiological conditions in conjunction with the mechanical coupling between the 1SDHPRs and RyR1, the initiation of Ca2+ oscillations in myotubes may be facilitated, in part, by the Ca2+ influx through the 1s-subunit of the DHPR. calcium-induced calcium release; dihydropyridine receptors; excitation-contraction coupling; ryanodine receptors; skeletal muscle  相似文献   

7.
The dihydropyridine receptor (DHPR) in the skeletal muscle plasmalemma functions as both voltage-gated Ca(2+) channel and voltage sensor for excitation-contraction (EC) coupling. As voltage sensor, the DHPR regulates intracellular Ca(2+) release via the skeletal isoform of the ryanodine receptor (RyR-1). Interaction with RyR-1 also feeds back to increase the Ca(2+) current mediated by the DHPR. To identify regions of the DHPR important for receiving this signal from RyR-1, we expressed in dysgenic myotubes a chimera (SkLC) having skeletal (Sk) DHPR sequence except for a cardiac (C) II-III loop (L). Tagging with green fluorescent protein (GFP) enabled identification of expressing myotubes. Dysgenic myotubes expressing GFP-SkLC or SkLC lacked EC coupling and had very small Ca(2+) currents. Introducing a short skeletal segment (alpha(1S) residues 720-765) into the cardiac II-III loop (replacing alpha(1C) residues 851-896) of GFP-SkLC restored both EC coupling and Ca(2+) current densities like those of the wild type skeletal DHPR. This 46-amino acid stretch of skeletal sequence was recently shown to be capable of transferring strong, skeletal-type EC coupling to an otherwise cardiac DHPR (Nakai, J., Tanabe, T., Konno, T., Adams, B., and Beam, K.G. (1998) J. Biol. Chem. 273, 24983-24986). Thus, this segment of the skeletal II-III loop contains a motif required for both skeletal-type EC coupling and RyR-1-mediated enhancement of Ca(2+) current.  相似文献   

8.
Skeletal muscle knockout cells lacking the beta subunit of the dihydropyridine receptor (DHPR) are devoid of slow L-type Ca(2+) current, charge movements, and excitation-contraction coupling, despite having a normal Ca(2+) storage capacity and Ca(2+) spark activity. In this study we identified a specific region of the missing beta1a subunit critical for the recovery of excitation-contraction. Experiments were performed in beta1-null myotubes expressing deletion mutants of the skeletal muscle-specific beta1a, the cardiac/brain-specific beta2a, or beta2a/beta1a chimeras. Immunostaining was used to determine that all beta constructs were expressed in these cells. We examined the Ca(2+) conductance, charge movements, and Ca(2+) transients measured by confocal fluo-3 fluorescence of transfected myotubes under whole-cell voltage-clamp. All constructs recovered an L-type Ca(2+) current with a density, voltage-dependence, and kinetics of activation similar to that recovered by full-length beta1a. In addition, all constructs except beta2a mutants recovered charge movements with a density similar to full-length beta1a. Thus, all beta constructs became integrated into a skeletal-type DHPR and, except for beta2a mutants, all restored functional DHPRs to the cell surface at a high density. The maximum amplitude of the Ca(2+) transient was not affected by separate deletions of the N-terminus of beta1a or the central linker region of beta1a connecting two highly conserved domains. Also, replacement of the N-terminus half of beta1a with that of beta2a had no effect. However, deletion of 35 residues of beta1a at the C-terminus produced a fivefold reduction in the maximum amplitude of the Ca(2+) transients. A similar observation was made by deletion of the C-terminus of a chimera in which the C-terminus half was from beta1a. The identified domain at the C-terminus of beta1a may be responsible for colocalization of DHPRs and ryanodine receptors (RyRs), or may be required for the signal that opens the RyRs during excitation-contraction coupling. This new role of DHPR beta in excitation-contraction coupling represents a cell-specific function that could not be predicted on the basis of functional expression studies in heterologous cells.  相似文献   

9.
The dihydropyridine receptor (DHPR) of skeletal muscle functions as a Ca2+ channel and is required for excitation-contraction (EC) coupling. Here we show that the DHPR beta subunit is involved in the regulation of these two functions. Experiments were performed in skeletal mouse myotubes selectively lacking a functional DHPR beta subunit. These beta-null cells have a low-density L-type current, a low density of charge movements, and lack EC coupling. Transfection of beta-null cells with cDNAs encoding for either the homologous beta1a subunit or the cardiac- and brain-specific beta2a subunit fully restored the L-type Ca2+ current (161 +/- 17 pS/pF and 139 +/- 9 pS/pF, respectively, in 10 mM Ca2+). We compared the Boltzmann parameters of the Ca2+ conductance restored by beta1a and beta2a, the kinetics of activation of the Ca2+ current, and the single channel parameters estimated by ensemble variance analysis and found them to be indistinguishable. In contrast, the maximum density of charge movements in cells expressing beta2a was significantly lower than in cells expressing beta1a (2.7 +/- 0.2 nC/microF and 6.7 +/- 0. 4 nC/microF, respectively). Furthermore, the amplitude of Ca2+ transient measured by confocal line-scans of fluo-3 fluorescence in voltage-clamped cells were 3- to 5-fold lower in myotubes expressing beta2a. In summary, DHPR complexes that included beta2a or beta1a restored L-type Ca2+ channels. However, a DHPR complex with beta1a was required for complete restoration of charge movements and skeletal-type EC coupling. These results suggest that the beta1a subunit participates in key regulatory events required for the EC coupling function of the DHPR.  相似文献   

10.
Molecular determinants essential for skeletal-type excitation-contraction (EC) coupling have been described in the cytosolic loops of the dihydropyridine receptor (DHPR) alpha1S pore subunit and in the carboxyl terminus of the skeletal-specific DHPR beta1a-subunit. It is unknown whether EC coupling domains present in the beta-subunit influence those present in the pore subunit or if they act independent of each other. To address this question, we investigated the EC coupling signal that is generated when the endogenous DHPR pore subunit alpha1S is paired with the heterologous heart/brain DHPR beta2a-subunit. Studies were conducted in primary cultured myotubes from beta1 knockout (KO), ryanodine receptor type 1 (RyR1) KO, ryanodine receptor type 3 (RyR3) KO, and double RyR1/RyR3 KO mice under voltage clamp with simultaneous monitoring of confocal fluo-4 fluorescence. The beta2a-mediated Ca2+ current recovered in beta1 KO myotubes lacking the endogenous DHPR beta1a-subunit verified formation of the alpha1S/beta1a pair. In myotube genotypes which express no or low-density L-type Ca2+ currents, namely beta1 KO and RyR1 KO, beta2a overexpression recovered a wild-type density of nifedipine-sensitive Ca2+ currents with a slow activation kinetics typical of skeletal myotubes. Concurrent with Ca2+ current recovery, there was a drastic reduction of voltage-dependent, skeletal-type EC coupling and emergence of Ca2+ transients triggered by the Ca2+ current. A comparison of beta2a overexpression in RyR3 KO, RyR1 KO, and double RyR1/RyR3 KO myotubes concluded that both RyR1 and RyR3 isoforms participated in Ca2+-dependent Ca2+ release triggered by the beta2a-subunit. In beta1 KO and RyR1 KO myotubes, the Ca2+-dependent EC coupling promoted by beta2a overexpression had the following characteristics: 1), L-type Ca2+ currents had a wild-type density; 2), Ca2+ transients activated much slower than controls overexpressing beta1a, and the rate of fluorescence increase was consistent with the activation kinetics of the Ca2+ current; 3), the voltage dependence of the Ca2+ transient was bell-shaped and the maximum was centered at approximately +30 mV, consistent with the voltage dependence of the Ca2+ current; and 4), Ca2+ currents and Ca2+ transients were fully blocked by nifedipine. The loss in voltage-dependent EC coupling promoted by beta2a was inferred by the drastic reduction in maximal Ca2+ fluorescence at large positive potentials (DeltaF/Fmax) in double dysgenic/beta1 KO myotubes overexpressing the pore mutant alpha1S (E1014K) and beta2a. The data indicate that beta2a, upon interaction with the skeletal pore subunit alpha1S, overrides critical EC coupling determinants present in alpha1S. We propose that the alpha1S/beta pair, and not the alpha1S-subunit alone, controls the EC coupling signal in skeletal muscle.  相似文献   

11.
In skeletal muscle, dihydropyridine receptors (DHPRs) in the plasma membrane interact with the type 1 ryanodine receptor (RyR1) at junctions with the sarcoplasmic reticulum. This interaction organizes junctional DHPRs into groups of four termed tetrads. In addition to the principle alpha1S subunit, the beta1a subunit of the DHPR is also important for the interaction with RyR1. To probe this interaction, we measured fluorescence resonance energy transfer (FRET) of beta1a subunits labeled with cyan fluorescent protein (CFP) and/or yellow fluorescent protein (YFP). Expressed in dysgenic (alpha1S-null) myotubes, YFP-beta1a-CFP and CFP-beta1a-YFP were diffusely distributed in the cytoplasm and highly mobile as indicated by fluorescence recovery after photobleaching. Thus, beta1a does not appear to bind to other cellular proteins in the absence of alpha1S. FRET efficiencies for these cytoplasmic beta1a subunits were approximately 6-7%, consistent with the idea that <10 nm separates the N and C termini. After coexpression with unlabeled alpha1S (in dysgenic or beta1-null myotubes), both constructs produced discrete fluorescent puncta, which correspond to assembled DHPRs in junctions and that did not recover after photobleaching. In beta1-null myotubes, FRET efficiencies of doubly labeled beta1a in puncta were similar to those of the same constructs diffusely distributed in the cytoplasm and appeared to arise intramolecularly, since no FRET was measured when mixtures of singly labeled beta1a (CFP or YFP at the N or C terminus) were expressed in beta1-null myotubes. Thus, DHPRs in tetrads may be arranged such that the N and C termini of adjacent beta1a subunits are located >10 nm from one another.  相似文献   

12.
Computer simulation was used to investigate the calcium levels after sarcolemmal calcium influx through L-type calcium channels (DHPRs) into the narrow diadic space of cardiac muscle. The effect of various cytosolic and membranebound buffers, diad geometry, DHPR properties (open time and current), and surface charge were examined. The simulations showed that phospholipid binding sites on the sarcolemmal membrane are the major buffer affecting free calcium ([Ca2+]) levels in the diad. The inclusion of surface charge effects calculated from Gouy-Chapman theory resulted in a marked decrease in [Ca2+] levels at all times and a faster decay of [Ca2+] after termination of DHPR influx. For a DHPR current of 200 fA, [Ca2+] at the center of the diad reached peak levels of approximately 73 microM. In larger diads (> or = 400 nm diameter), [Ca2+] decayed more slowly than in smaller diads (100-200 nm diameter), although peak [Ca2+] levels reached during typical DHPR open times were similar. For a wide range of DHPR single-channel current magnitudes (Ica = 25-200 fA), [Ca2+] levels in the diad were approximately proportional to ICa. The decrease in calculated [Ca2+] levels due to the effects of surface charge can be interpreted as resulting from an effective "volume expansion" of the diad space. Furthermore, the layer of increased [Ca2+] close to the sarcolemmal membrane can act as a fast buffer.  相似文献   

13.
Muscular dysgenesis (mdg/mdg), a mutation of the skeletal muscle dihydropyridine receptor (DHPR) alpha 1 subunit, has served as a model to study the functions of the DHPR in excitation-contraction coupling and its role in triad formation. We have investigated the question of whether the lack of the DHPR in dysgenic skeletal muscle results in a failure of triad formation, using cell lines (GLT and NLT) derived from dysgenic (mdg/mdg) and normal (+/+) muscle, respectively. The lines were generated by transfection of myoblasts with a plasmid encoding a Large T antigen. Both cell lines express muscle-specific proteins and begin organization of sarcomeres as demonstrated by immunocytochemistry. Similar to primary cultures, dysgenic (GLT) myoblasts show a higher incidence of cell fusion than their normal counterparts (NLT). NLT myotubes develop spontaneous contractile activity, and fluorescent Ca2+ recordings show Ca2+ release in response to depolarization. In contrast, GLTs show neither spontaneous nor depolarization-induced Ca2+ transients, but do release Ca2+ from the sarcoplasmic reticulum (SR) in response to caffeine. Despite normal transverse tubule (T-tubule) formation, GLT myotubes lack the alpha 1 subunit of the skeletal muscle DHPR, and the alpha 2 subunit is mistargeted. Nevertheless, the ryanodine receptor (RyR) frequently develops its normal, clustered organization in the absence of both DHPR alpha subunits in the T-tubules. In EM, these RyR clusters correspond to T-tubule/SR junctions with regularly spaced feet. These findings provide conclusive evidence that interactions between the DHPR and RyR are not involved in the formation of triad junctions or in the normal organization of the RyR in the junctional SR.  相似文献   

14.
The skeletal and cardiac muscle dihydropyridine receptors (DHPRs) differ with respect to their rates of channel activation and in the means by which they control Ca2+ release from the sarcoplasmic reticulum (Adams, B.A., and K.G. Beam. 1990. FASEB J. 4:2809-2816). We have examined the functional properties of skeletal (SkEIIIK) and cardiac (CEIIIK) DHPRs in which a highly conserved glutamate residue in the pore region of repeat III was mutated to a positively charged lysine residue. Using expression in dysgenic myotubes, we have characterized macroscopic ionic currents, intramembrane gating currents, and intracellular Ca2+ transients attributable to these two mutant DHPRs. CEIIIK supported very small inward Ca2+ currents at a few potentials (from -20 to +20 mV) and large outward cesium currents at potentials greater than +20 mV. SkEIIIK failed to support inward Ca2+ flux at any potential. However, large, slowly activating outward cesium currents were observed at all potentials greater than + 20 mV. The difference in skeletal and cardiac Ca2+ channel activation kinetics was conserved for outward currents through CEIIIK and SkEIIIK, even at very depolarized potentials (at +100 mV; SkEIIIK: tau(act) = 30.7 +/- 1.9 ms, n = 11; CEIIIK: tau(act) = 2.9 +/- 0.5 ms, n = 7). Expression of SkEIIIK in dysgenic myotubes restored both evoked contractions and depolarization-dependent intracellular Ca(2+) transients with parameters of voltage dependence (V(0.5) = 6.5 +/- 3.2 mV and k = 9.3 +/- 0.7 mV, n = 5) similar to those for the wild-type DHPR (Garcia, J., T. Tanabe, and K.G. Beam. 1994. J. Gen. Physiol. 103:125-147). However, CEIIIK-expressing myotubes never contracted and failed to exhibit depolarization-dependent intracellular Ca2+ transients at any potential. Thus, high Ca2+ permeation is required for cardiac-type excitation-contraction coupling reconstituted in dysgenic myotubes, but not skeletal-type. The strong rectification of the EIIIK channels made it possible to obtain measurements of gating currents upon repolarization to -50 mV (Qoff) following either brief (20 ms) or long (200 ms) depolarizing pulses to various test potentials. For SkEIIIK, and not CEIIK, Qoff was significantly (P < 0.001) larger after longer depolarizations to +60 mV (121.4 +/- 2.0%, n = 6). The increase in Qoff for long depolarizations exhibited a voltage dependence similar to that of channel activation. Thus, the increase in Q(off) may reflect a voltage sensor movement required for activation of L-type Ca2+ current and suggests that most DHPRs in skeletal muscle undergo this voltage-dependent transition.  相似文献   

15.
The three-dimensional structure of the skeletal muscle voltage-gated L-type calcium channel (Ca(v)1.1; dihydropyridine receptor, DHPR) was determined using electron cryo-microscopy and single-particle averaging. The structure shows a single channel complex with an approximate total molecular mass of 550 kDa, corresponding to the five known subunits of the DHPR, and bound detergent and lipid. Features visible in our structure together with antibody labeling of the beta and alpha(2) subunits allowed us to assign locations for four of the five subunits within the structure. The most striking feature of the structure is the extra-cellular alpha(2) subunit that protrudes from the membrane domain in close proximity to the alpha(1) subunit. The cytosolic beta subunit is located close to the membrane and adjacent to subunits alpha(1), gamma and delta. Our structure correlates well with the functional and biochemical data available for this channel and suggests a three-dimensional model for the excitation-contraction coupling complex consisting of DHPR tetrads and the calcium release channel.  相似文献   

16.
Excitation-contraction coupling in skeletal muscle involves conformational coupling between dihydropyridine receptors (DHPRs) in the plasma membrane and ryanodine receptors (RyRs) in the sarcoplasmic reticulum. However, it remains uncertain what regions, if any, of the two proteins interact with one another. Toward this end, it would be valuable to know the spatial interrelationships of DHPRs and RyRs within plasma membrane/sarcoplasmic reticulum junctions. Here we describe a new approach based on metabolic incorporation of biotin into targeted sites of the DHPR. To accomplish this, cDNAs were constructed with a biotin acceptor domain (BAD) fused to selected sites of the DHPR, with fluorescent protein (XFP) attached at a second site. All of the BAD-tagged constructs properly targeted to junctions (as indicted by small puncta of XFP) and were functional for excitation-contraction coupling. To determine whether the introduced BAD was biotinylated and accessible to avidin (approximately 60 kDa), myotubes were fixed, permeablized, and exposed to fluorescently labeled avidin. Upon expression in beta1-null or dysgenic (alpha1S-null) myotubes, punctate avidin fluorescence co-localized with the XFP puncta for BAD attached to the beta1a N- or C-terminals, or the alpha1S N-terminal or II-III loop. However, BAD fused to the alpha1S C-terminal was inaccessible to avidin in dysgenic myotubes (containing RyR1). In contrast, this site was accessible to avidin when the identical construct was expressed in dyspedic myotubes lacking RyR1. These results indicate that avidin has access to a number of sites of the DHPR within fully assembled (RyR1-containing) junctions, but not to the alpha1S C-terminal, which appears to be occluded by the presence of RyR1.  相似文献   

17.
The origin of Ibetanull, the Ca2+ current of myotubes from mice lacking the skeletal dihydropyridine receptor (DHPR) beta1a subunit, was investigated. The density of Ibetanull was similar to that of Idys, the Ca2+ current of myotubes from dysgenic mice lacking the skeletal DHPR alpha1S subunit (-0.6 +/- 0.1 and -0.7 +/- 0.1 pA/pF, respectively). However, Ibetanull activated at significantly more positive potentials. The midpoints of the GCa-V curves were 16.3 +/- 1.1 mV and 11.7 +/- 1.0 mV for Ibetanull and Idys, respectively. Ibetanull activated significantly more slowly than Idys. At +30 mV, the activation time constant for Ibetanull was 26 +/- 3 ms, and that for Idys was 7 +/- 1 ms. The unitary current of normal L-type and beta1-null Ca2+ channels estimated from the mean variance relationship at +20 mV in 10 mM external Ca2+ was 22 +/- 4 fA and 43 +/- 7 fA, respectively. Both values were significantly smaller than the single-channel current estimated for dysgenic Ca2+ channels, which was 84 +/- 9 fA under the same conditions. Ibetanull and Idys have different gating and permeation characteristics, suggesting that the bulk of the DHPR alpha1 subunits underlying these currents are different. Ibetanull is suggested to originate primarily from Ca2+ channels with a DHPR alpha1S subunit. Dysgenic Ca2+ channels may be a minor component of this current. The expression of DHPR alpha1S in beta1-null myotubes and its absence in dysgenic myotubes was confirmed by immunofluorescence labeling of cells.  相似文献   

18.
Bi-directional signaling between ryanodine receptor type 1 (RyR1) and dihydropyridine receptor (DHPR) in skeletal muscle serves as a prominent example of conformational coupling. Evidence for a physiological mechanism that upon depolarization of myotubes tightly couples three calcium channels, DHPR, RyR1, and a Ca(2+) entry channel with SOCC-like properties, has recently been presented. This form of conformational coupling, termed excitation-coupled calcium entry (ECCE) is triggered by the alpha(1s)-DHPR voltage sensor and is highly dependent on RyR1 conformation. In this report, we substitute RyR1 cysteines 4958 or 4961 within the TXCFICG motif, common to all ER/SR Ca(2+) channels, with serine. When expressed in skeletal myotubes, C4958S- and C4961S-RyR1 properly target and restore L-type current via the DHPR. However, these mutants do not respond to RyR activators and do not support skeletal type EC coupling. Nonetheless, depolarization of cells expressing C4958S- or C4961S-RyR1 triggers calcium entry via ECCE that resembles that for wild-type RyR1, except for substantially slowed inactivation and deactivation kinetics. ECCE in these cells is completely independent of store depletion, displays a cation selectivity of Ca(2+)>Sr(2+) approximately Ba(2+), and is fully inhibited by SKF-96365 or 2-APB. Mutation of other non-CXXC motif cysteines within the RyR1 transmembrane assembly (C3635S, C4876S, and C4882S) did not replicate the phenotype observed with C4958S- and C4961S-RyR1. This study demonstrates the essential role of Cys(4958) and Cys(4961) within an invariant CXXC motif for stabilizing conformations of RyR1 that influence both its function as a release channel and its interaction with ECCE channels.  相似文献   

19.
A peptide corresponding to residues 681-690 of the II-III loop of the skeletal muscle dihydropyridine receptor alpha(1) subunit (DHPR, alpha(1S)) has been reported to activate the skeletal muscle ryanodine receptor (RyR1) in vitro. Within this region of alpha(1S), a cluster of basic residues, Arg(681)-Lys(685), was previously reported to be indispensable for the activation of RyR1 in microsomal preparations and lipid bilayers. We have used an intact alpha(1S) subunit with scrambled sequence in this region of the II-III loop (alpha(1S)-scr) to test the importance of residues 681-690 and the basic motif for skeletal-type excitation-contraction (EC) coupling and retrograde signaling in vivo. When expressed in dysgenic myotubes (which lack endogenous alpha(1S)), alpha(1S)-scr restored calcium currents that were indistinguishable, in current density and voltage dependence, from those restored by wild-type alpha(1S). The scrambled DHPR also rescued skeletal-type EC coupling, as indicated by electrically evoked contractions in the presence of 0.5 mm Cd(2+) and 0.1 mm La(3+). Furthermore, the release of intracellular Ca(2+), as assayed by the indicator dye, Fluo-3, had similar kinetics and voltage dependence for alpha(1S) and alpha(1S)-scr. These data suggest that residues 681-690 of the alpha(1S) II-III loop are not essential in muscle cells for normal functioning of the DHPR, including skeletal-type EC coupling and retrograde signaling.  相似文献   

20.
In this work we tested the hypothesis that skeletal muscle fibers from aging mice exhibit a significant decline in myoplasmic Ca(2+) concentration resulting from a reduction in L-type Ca(2+) channel (dihydropyridine receptor, DHPR) charge movement. Skeletal muscle fibers from the flexor digitorum brevis (FDB) muscle were obtained from 5-7-, 14-18-, or 21-24-month-old FVB mice and voltage-clamped in the whole-cell configuration of the patch-clamp technique according to described procedures (Wang, Z.-M., M. L. Messi, and O. Delbono. 1999. Biophys. J. 77:2709-2716). Total charge movement or the DHPR charge movement was measured simultaneously with intracellular Ca(2+) concentration. The maximum charge movement (Q(max)) recorded (mean +/- SEM, in nC microF(-1)) was 53 +/- 3.2 (n = 47), 51 +/- 3.2 (n = 35) (non-significant, ns), and 33 +/- 1.9 (n = 32) (p < 0.01), for the three age groups, respectively. Q(max) corresponding to the DHPR was 43 +/- 3.3, 38 +/- 4.1 (ns), and 25 +/- 3.4 (p < 0.01) for the three age groups, respectively. The peak intracellular [Ca(2+)] recorded at 40 mV (in microM) was 15.7 +/- 0. 12, 16.7 +/- 0.18 (ns), and 8.2 +/- 0.07 (p < 0.01) for the three age groups, respectively. No significant changes in the voltage distribution or steepness of the Q-V or [Ca(2+)]-V relationship were found. These data support the concept that the reduction in the peak intracellular [Ca(2+)] results from a larger number of ryanodine receptors uncoupled to DHPRs in skeletal muscle fibers from aging mammals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号