首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Acyl carrier protein (ACP) is an essential cofactor of fatty acid synthase. In plants, ACP is synthesized in the cytosol as a larger precursor protein and then is imported into the plastid where it is processed to a smaller mature form. The active form of ACP uses a covalently linked 4[prime]-phosphopantetheine prosthetic group derived from coenzyme A to covalently bind the acyl intermediates during fatty acid synthesis. The prosthetic group is added to ACP by holoACP synthase. This enzyme activity is associated with both the plastidial subcellular fraction and the soluble, or cytoplasmic, fraction. To gain further insight into potential in vivo pathways for the synthesis and maturation of ACP, in this study we examined whether precursor holoACP can be imported by isolated spinach (Spinacia oleracea) chloroplasts. Precursor holoACP containing a [35S]phosphopantetheine prosthetic group was prepared, and the radiolabel was used to demonstrate import of the phosphopantethenylated protein into isolated chloroplasts. In addition, timed chloroplast import assays indicated that in vitro import of the phosphopantethenylated protein is at least as efficient as import of the precursor apoprotein. Evidence was also obtained for a low level turnover of the prosthetic group among endogenous plastidial ACPs when coenzyme A was supplied exogenously.  相似文献   

2.
首先从菠菜叶片中纯化了乙醇酸氧化酶(GO)。通过鉴定反应中氧的消耗以及反应产物H2O2的生成,证实菠菜GO具有氧化光呼吸途径中间代谢物甘油酸的活性。该氧化活性依赖于辅因子FMN和FAD,而不依赖核黄素和光黄素;其最适反应pH值为8.0,Km(甘油酸)值为7.14mmol/L,kcat值为1.04s^-1,活化能为17.29kJ/mol;草酸和丙酮酸对该氧化活性有明显的抑制作用,其中前者为典型的竞争性抑制。进一步通过两底物竞争作图表明:菠菜叶片GO氧化甘油酸反应和氧化乙醇酸反应为同一活性中心所催化。  相似文献   

3.
The intracellular location of nitrate reductase in spinach leaveswas examined by applying an immunocytochemical method. Thinsections were first treated with immunopurified anti-nitratereductase monospecific antibodies, followed by incubation withcolloidal gold-labelled goat anti-rabbit immunoglobulin G asa marker. The nitrate reductase was specifically located inthe chloroplast. When anti-nitrate reductase antibodies wereomitted, or when pre-immune serum was used no label was observed. (Received October 30, 1986; Accepted December 25, 1986)  相似文献   

4.
The Streptomyces glaucescens fabH gene, encoding β-ketoacyl-acyl carrier protein (β-ketoacyl-ACP) synthase (KAS) III (FabH), was overexpressed in Escherichia coli, and the resulting gene product was purified to homogeneity by metal chelate chromatography. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of the purified protein revealed an Mr of 37,000, while gel filtration analysis determined a native Mr of 72,000 ± 3,000 (mean ± standard deviation), indicating that the enzyme is homodimeric. The purified recombinant protein demonstrated both KAS activity and acyl coenzyme A (acyl-CoA):ACP transacylase (ACAT) activity in a 1:0.12 ratio. The KAS and ACAT activities were both sensitive to thiolactomycin inhibition. The KAS activity of the protein demonstrated a Km value of 3.66 μM for the malonyl-ACP substrate and an unusual broad specificity for acyl-CoA substrates, with Km values of 2.4 μM for acetyl-CoA, 0.71 μM for butyryl-CoA, and 0.41 μM for isobutyryl-CoA. These data suggest that the S. glaucescens FabH is responsible for initiating both straight- and branched-chain fatty acid biosynthesis in Streptomyces and that the ratio of the various fatty acids produced by this organism will be dictated by the ratios of the various acyl-CoA substrates that can react with FabH. Results from a series of in vivo directed biosynthetic experiments in which the ratio of these acyl-CoA substrates was varied are consistent with this hypothesis. An additional set of in vivo experiments using thiolactomycin provides support for the role of FabH and further suggests that a FabH-independent pathway for straight-chain fatty acid biosynthesis operates in S. glaucescens.  相似文献   

5.
Cytokinin-active ribonucleosides have been isolated from tRNA of whole spinach (Spinacia oleracea L.) leaves and isolated spinach chloroplasts. The tRNA from spinach leaf blades contained: 6-(4-hydroxy-3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine (cis and trans isomers), 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine, and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (cis and trans isomers). A method for isolation of large amounts of intact chloroplasts was developed and subsequently used for the isolation of chloroplast tRNA. The chloroplast tRNA contained 6-(3-methyl-2-butenylamino)-9-β-d-ribofuranosylpurine and 6-(4-hydroxy-3-methyl-2-butenylamino)-2-methylthio-9-β-d -ribofuranosylpurine (the cis isomer only). The structures of these compounds were assigned on the basis of their chromatographic properties and mass spectra of trimethylsilyl derivatives which were identical with those of the corresponding synthetic compounds. The results of this study indicate that ribosylzeatin was present in spinach leaf tRNA, but absent from the purified chloroplast tRNA preparation.  相似文献   

6.
The low-activity, phosphorylated form of nitrate reductase (NR) became activated during purification from spinach (Spinacia oleracea) leaves harvested in the dark. This activation resulted from its separation from an approximately 110-kd nitrate reductase inhibitor protein (NIP). Readdition of NIP inactivated the purified phosphorylated NR, but not the active dephosphorylated form of NR, indicating that the inactivation of NR requires its interaction with NIP as well as phosphorylation. Consistent with this hypothesis, NR that had been inactivated in vitro in the presence of NR kinase, ATP-Mg, and NIP could be reactivated either by dephosphorylation with protein phosphatase 2A or by dissociation of NIP from NR.  相似文献   

7.
Hydrogen sulfide (H2S), as a potential gaseous messenger molecule, has been suggested to play important roles in a wide range of physiological processes in plants. The aim of present study was to investigate which set of proteins is involved in H2S-regulated metabolism or signaling pathways. Spinacia oleracea seedlings were treated with 100 µM NaHS, a donor of H2S. Changes in protein expression profiles were analyzed by 2-D gel electrophoresis coupled with MALDI-TOF MS. Over 1000 protein spots were reproducibly resolved, of which the abundance of 92 spots was changed by at least 2-fold (sixty-five were up-regulated, whereas 27 were down-regulated). These proteins were functionally divided into 9 groups, including energy production and photosynthesis, cell rescue, development and cell defense, substance metabolism, protein synthesis and folding, cellular signal transduction. Further, we found that these proteins were mainly localized in cell wall, plasma membrane, chloroplast, mitochondria, nucleus, peroxisome and cytosol. Our results demonstrate that H2S is involved in various cellular and physiological activities and has a distinct influence on photosynthesis, cell defense and cellular signal transduction in S. oleracea leaves. These findings provide new insights into proteomic responses in plants under physiological levels of H2S.  相似文献   

8.
9.
Luwe M  Takahama U  Heber U 《Plant physiology》1993,101(3):969-976
Both reduced and oxidized ascorbate (AA and DHA) are present in the aqueous phase of the extracellular space, the apoplast, of spinach (Spinacia oleracea L.) leaves. Fumigation with 0.3 [mu]L L-1 of ozone resulted in ozone uptake by the leaves close to 0.9 pmol cm-2 of leaf surface area s-1. Apoplastic AA was slowly oxidized by ozone. The initial decrease of apoplastic AA was <0.1 pmol cm-2 s-1. The apoplastic ratio of AA to (AA + DHA) decreased within 6 h of fumigation from 0.9 to 0.1. Initially, the concentration of (AA + DHA) did not change in the apoplast, but when fumigation was continued, DHA increased and AA remained at a very low constant level. After fumigation was discontinued, DHA decreased very slowly in the apoplast, reaching control level after 70 h. The data show that insufficient AA reached the apoplast from the cytosol to detoxify ozone in the apoplast when the ozone flux into the leaves was 0.9 pmol cm-2 s-1. The transport of DHA back into the cytosol was slower than AA transport into the apoplast. No dehydroascorbate reductase activity could be detected in the apoplast of spinach leaves. In contrast to its extracellular redox state, the intracellular redox state of AA did not change appreciably during a 24-h fumigation period. However, intracellular glutathi-one became slowly oxidized. At the beginning of fumigation, 90% of the total glutathione was reduced. Only 10% was reduced after 24-h exposure of the leaves to 0.3 [mu]L L-1 of ozone. Necrotic leaf damage started to become visible when fumigation was extended beyond a 24-h period. A close correlation between the extent of damage, on the one hand, and the AA content and the ascorbate redox state of whole leaves, on the other, was observed after 48 h of fumigation. Only the youngest leaves that contained high ascorbate concentrations did not exhibit necrotic leaf damage after 48 h.  相似文献   

10.
A quantitative cytochemical study of glucose-6-phosphate dehydrogenaseactivity as a marker of the pentose phosphate pathway (PPP)was made on shoot apices of Spinacia oleracea kept either continuouslyin short days for up to eight weeks or transferred for a singleperiod of 20 h to continuous light after between three and eightweeks in short days. By the time the apices kept in continuousshort days showed morphological changes relating to the floralstate, the PPP activity was already elevated. From four weeksonwards, the apices were more readily induced to the floralstate as evidenced by the increased PPP activity. In addition,the level of PPP activity achieved in the short-day apices asthey progressed to the floral state was as great as that observedin the apices induced to flower by a 20-h day. Spinacea oleracea, pentose phosphate pathway, shoot apex, cytochemistry, glucose-6-phosphate dehydrogenase, floral induction  相似文献   

11.
Polyhydroxyalkanoates (PHAs) are biologically produced polyesters that have potential application as biodegradable plastics. Especially important are the short-chain-length-medium-chain-length (SCL-MCL) PHA copolymers, which have properties ranging from thermoplastic to elastomeric, depending on the ratio of SCL to MCL monomers incorporated into the copolymer. Because of the potential wide range of applications for SCL-MCL PHA copolymers, it is important to develop and characterize metabolic pathways for SCL-MCL PHA production. In previous studies, coexpression of PHA synthase genes and the 3-ketoacyl-acyl carrier protein reductase gene (fabG) in recombinant Escherichia coli has been shown to enhance PHA production from related carbon sources such as fatty acids. In this study, a new fabG gene from Pseudomonas sp. 61-3 was cloned and its gene product characterized. Results indicate that the Pseudomonas sp. 61-3 and E. coli FabG proteins have different substrate specificities in vitro. The current study also presents the first evidence that coexpression of fabG genes from either E. coli or Pseudomonas sp. 61-3 with fabH(F87T) and PHA synthase genes can enhance the production of SCL-MCL PHA copolymers from nonrelated carbon sources. Differences in the substrate specificities of the FabG proteins were reflected in the monomer composition of the polymers produced by recombinant E. coli. SCL-MCL PHA copolymer isolated from a recombinant E. coli strain had improved physical properties compared to the SCL homopolymer poly-3-hydroxybutyrate. This study defines a pathway to produce SCL-MCL PHA copolymer from the fatty acid biosynthesis that may impact on PHA production in recombinant organisms.  相似文献   

12.
Fatty acid synthesis (FAS), a primary metabolic pathway, is essential for survival of bacteria. Ralstonia solanacearum, a β-proteobacteria member, causes a bacterial wilt affecting more than 200 plant species, including many economically important plants. However, thus far, the fatty acid biosynthesis pathway of R. solanacearum has not been well studied. In this study, we characterized two forms of 3-keto-ACP synthase III, RsFabH and RsFabW, in R. solanacearum. RsFabH, the homologue of Escherichia coli FabH, encoded by the chromosomal RSc1050 gene, catalyzes the condensation of acetyl-CoA with malonyl-ACP in the initiation steps of fatty acid biosynthesis in vitro. The RsfabH mutant lost de novo fatty acid synthetic ability, and grows in medium containing free fatty acids. RsFabW, a homologue of Pseudomonas aeruginosa PA3286, encoded by a megaplasmid gene, RSp0194, condenses acyl-CoA (C2-CoA to C10-CoA) with malonyl-ACP to produce 3-keto-acyl-ACP in vitro. Although the RsfabW mutant was viable, RsfabW was responsible for RsfabH mutant growth on medium containing free fatty acids. Our results also showed that RsFabW could condense acyl-ACP (C4-ACP to C8-ACP) with malonyl-ACP, to produce 3-keto-acyl-ACP in vitro, which implies that RsFabW plays a special role in fatty acid synthesis of R. solanacearum. All of these data confirm that R. solanacearum not only utilizes acetyl-CoA, but also, utilizes medium-chain acyl-CoAs or acyl-ACPs as primers to initiate fatty acid synthesis.  相似文献   

13.
Genes for subunits of acetyl coenzyme A carboxylase (ACC), which is the enzyme that catalyzes the first step in the synthesis of fatty acids in Lactobacillus plantarum L137, were cloned and characterized. We identified six potential open reading frames, namely, manB, fabH, accB, accC, accD, and accA, in that order. Nucleotide sequence analysis suggested that fabH encoded β-ketoacyl-acyl carrier protein synthase III, that the accB, accC, accD, and accA genes encoded biotin carboxyl carrier protein, biotin carboxylase, and the β and α subunits of carboxyltransferase, respectively, and that these genes were clustered. The organization of acc genes was different from that reported for Escherichia coli, for Bacillus subtilis, and for Pseudomonas aeruginosa. E. coli accB and accD mutations were complemented by the L. plantarum accB and accD genes, respectively. The predicted products of all five genes were confirmed by using the T7 expression system in E. coli. The gene product of accB was biotinylated in E. coli. Northern and primer extension analyses demonstrated that the five genes in L. plantarum were regulated polycistronically in an acc operon.  相似文献   

14.
The effect of mercaptoethanol at different concentrations on enzyme activity was investigated in leaves from Urtica dioica and Spinacia oleracea. The interference of mercaptoethanol with enzyme activity is dependent on the type of plant, the configuration of the enzyme and the concentration of mercaptoethanol. A stimulation of GDH (glutamate-dehydrogenase) was obtained in both species, while inhibition of GOT (glutamate-oxaloacetate transaminase) and GPT (glutamate-pyruvate transaminase) was demonstrated in Spinacia. The stimulation of GOT and GPT activity in Urtica was probably due to inhibition of phenol oxidase. Conclusions concerning the effect of mercaptoethanol on NR (nitrate reductase) activity were difficult to draw, since mercaptoethanol itself reduced nitrite and interfered with NR determination in tests in vitro. In Urtica. no activity could be obtained at all with the in vitro method, probably because an inhibitor of NR was liberated during the extraction procedure, Activity of NR could however be obtained in both species when using the in vivo method. Addition of protective agents to the extraction medium has been supposed to influence the protein extractability. In conformity with this increasing amount of fresh matter to the same volume of extraction medium resulted in decreased protein extractability. This led to differences in enzyme activity when expressed on a fresh weight basis but the specific activity remained constant.  相似文献   

15.
A cDNA clone for copper/zinc-superoxide dismutase (Cu/Zn-SOD)was isolated from spinach (Spinacia oleracea L.) leaves. Itsnucleotide sequence showed that it codes for a precursor polypeptideof 222 amino acids, including the NH2-terminal 68-residue extensionwhich corresponds to a plastidic transit peptide. Northern hybridization,using plastidic and cytosolic Cu/Zn-SOD cDNAs as the probes,revealed that these two genes are differentially expressed inthe roots and leaves of spinach. 1Present address: Department of Biochemistry and Microbiology,Cook College, Rutgers University New Brunswick, NJ 08903-0231,U.S.A.  相似文献   

16.
We have previously shown that the acyl transferase domain of ZmaA (ZmaA-AT) is involved in the biosynthesis of the aminopolyol polyketide/nonribosomal peptide hybrid molecule zwittermicin A from cereus UW85, and that it specifically recognizes the precursor hydroxymalonyl-acyl carrier protein (ACP) and transfers the hydroxymalonyl extender unit to a downstream second ACP via a transacylated AT domain intermediate. We now present the X-ray crystal structure of ZmaA-AT at a resolution of 1.7 Å. The structure shows a patch of solvent-exposed hydrophobic residues in the area where the AT is proposed to interact with the precursor ACP. We addressed the significance of the AT/ACP interaction in precursor specificity of the AT by testing whether malonyl- or methylmalonyl-ACP can be recognized by ZmaA-AT. We found that the ACP itself biases extender unit selection. Until now, structural information for ATs has been limited to ATs specific for the CoA-linked precursors malonyl-CoA and (2S)-methylmalonyl-CoA. This work contributes to polyketide synthase engineering efforts by expanding our knowledge of AT/substrate interactions with the structure of an AT domain that recognizes an ACP-linked substrate, the rare hydroxymalonate. Our structure suggests a model in which ACP interaction with a hydrophobic motif promotes secondary structure formation at the binding site, and opening of the adjacent substrate pocket lid to allow extender unit binding in the AT active site.  相似文献   

17.
When intact spinach chloroplasts were supplied with [32P]Pi, stromal protein phosphorylation was found to occur in the dark. On illumination the thylakoid protein kinase was activated and the amount of label found in thylakoid proteins quickly exceeded that incorporated into stromal protein, such that the latter was found to account for only 10-15% of the total radioactivity bound to chloroplast proteins after 5 min illumination. The rate of phosphorylation of stromal polypeptides was unchanged by light. After SDS/polyacrylamide-gel electrophoresis, more than 15 labelled polypeptides of stromal origin were observed. A polypeptide with an Mr of approx. 70 000 had the highest specific activity of labelling. Both the large and small subunits of the ribulose-1,5-bisphosphate carboxylase were phosphorylated. The level of phosphorylation of stromal protein was increased by CO2 fixation in intact chloroplasts. This increase was not observed in the absence of NaHCO3 or in the presence of the phosphoribulokinase inhibitor DL-glyceraldehyde. These effects appeared to be largely due to changes in the phosphorylation state of the large and small subunits of ribulose-1,5-bisphosphate carboxylase. Studies with the reconstituted chloroplast system showed that the thylakoid protein kinase(s) played no part in the phosphorylation of stromal protein. The rate and level of phosphorylation of stromal protein was unaffected by the activation state of the thylakoid protein kinase and was unchanged when thylakoids were omitted from the reaction medium. The phosphorylation of stromal proteins is therefore catalysed by a discrete soluble protein kinase.  相似文献   

18.
Steady-state and pre-steady-state kinetics for the hydrolysis of p-nitrophenyl esters of N-α-carbobenzoxy(-l-)amino acids catalyzed by leucine-proteinase were determined between pH 5 and 10 (I = 0.1 molar) at 23 ± 0.5°C. For the substrates considered: (a) the acylation step is rate-limiting in catalysis; (b) the pH profiles of kcat and kcat/Km reflect the ionization of two groups with pKa values ranging between 6.5 and 6.9, and 8.1 and 8.3 (probably, the histidine residue involved in the catalytic triad and the N-terminus, respectively); and (c) values of Km are pH independent. Among the substrates examined, N-α-carbobenzoxy-l-leucine-p-nitrophenyl ester shows the most favorable catalytic parameters and allows to determine an enzyme concentration as low as 5 × 10−10 molar at the optimum pH value (approximately 7.5).  相似文献   

19.
Salt tolerant spinach (Spinacia oleracea) and salt sensitive pea (Pisum sativum) plants were exposed to mild salinity under identical growth conditions. In order to compare the ability of the two species for extra- and intracellular solute compartmentation in leaves, various solutes were determined in intercellular washing fluids and in aqueously isolated intact chloroplasts. In pea plants exposed to 100 millimolar NaCl for 14 days, apoplastic salt concentrations in leaflets increased continuously with time up to 204 (Cl) and 87 millimolar (Na+), whereas the two ions reached a steady concentration of only 13 and 7 millimolar, respectively, in spinach leaves. In isolated intact chloroplasts from both species, sodium concentrations were not much different, but chloride concentrations were significantly higher in pea than in spinach. Together with data from whole leaf extracts, these measurements permitted an estimation of apoplastic, cytoplasmic, and vacuolar solute concentrations. Sodium and chloride concentration gradients across the tonoplast were rather similar in both species, but spinach was able to maintain much steeper sodium gradients across the plasmamembrane compared with peas. Between day 12 and day 17, concentrations of other inorganic ions in the pea leaf apoplast increased abruptly, indicating the onset of cell disintegration. It is concluded that the differential salt sensitivity of pea and spinach cannot be traced back to a single plant performance. Major differences appear to be the inability of pea to control salt accumulation in the shoot, to maintain steep ion gradients across the leaf cell plasmalemma, and to synthesize compatible solutes. Perhaps less important is a lower selectivity of pea for K+/Na+ and NO3/Cl uptake by roots.  相似文献   

20.
Johnson EJ  Bruff BS 《Plant physiology》1967,42(10):1321-1328
Washed whole chloroplasts of Spinacia oleracea isolated and assayed in a tris (hydroxymethyl aminomethane)-HCl buffered sucrose solution exhibited low dark CO2 fixing activity, whereas washed whole chloroplasts isolated in the same buffer but assayed in that buffer without sucrose exhibited much greater dark CO2 fixing activity. The lowered activity could be attributed to the impermeability of the chloroplast membrane to ribose-5-phosphate or adenosine triphosphate. The preservation of the integrity of the chloroplast membrane, as reflected by its impermeability to either or both of the abovementioned compounds, was measured by the fixation of 14CO2 into acid-stable products in the presence of ribose-5-phosphate and adenosine triphosphate by the whole chloroplast as compared with fixation by the chloroplast extract. An effect (i.e., apparent resistance to the passage of ribose-5-phosphate or adenosine-5-triphosphate into the chloroplast) similar to, but less pronounced than, that produced by the presence of sucrose in the isolation medium was observed upon the addition of MnCl2 or CaCl2 to the buffered sucrose isolation medium. The addition of KCl enhanced slightly the effect produced by addition of sucrose alone to the isolation medium. The presence of MgCl2 in the isolation medium, however, either caused the chloroplasts to become leaky or more fragile since more of the activity of the carboxylative phase enzymes appeared in the cytoplasm. When a mixture of all of the metal ions was added to the buffered sucrose suspending medium, the chloroplasts exhibited the same response observed with MgCl2 alone. The addition of ethylene diaminetetraacetate or dithiothreitol appeared to alter the permeability of the chloroplast membrane nonspecifically when the assay was conducted in the absence of sucrose. Specific activities (μmoles CO2 fixed/mg chlorophyll × hr) as high as 329.6 have been observed for dark fixation by chloroplasts. The phosphoenolpyruvate carboxylase activity in the chloroplasts was only one-seventh that of ribulose diphosphate carboxylase. The phosphoenolpyruvate carboxylase activity in the cytoplasm was 5 times that of the chloroplasts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号