首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An organism's phenotype is to some extent influenced by costs and benefits in terms of natural and sexual selection. The intensity of natural selection can in part be driven by habitat structure, which may result in varying levels of crypsis and/or selection on traits related to maximizing performance in that habitat. This may be countered by sexual selection, which can lead to sexual dimorphism in body size and/or the expression of conspicuous ornamentation relating to maximizing reproductive success. The intensity of these forces can also be different between the sexes, resulting in complex patterns of phenotypic variation. With this in mind, we examined morphological variation within the Cape Dwarf Chameleon, Bradypodion pumilum. The species inhabits two geographically disjunct habitat types and, in the present study, we demonstrate that chameleons from the two habitats show morphological differences. Large, conspicuous individuals inhabit closed vegetation, whereas small, drab individuals inhabit open vegetation. However, when morphological traits are size‐adjusted, the open vegetation morph displays many traits that are larger for its body size than the closed vegetation morph, especially for characters related to locomotion (limbs) and bite force (head width). Sexual dimorphism is also present, although the degree and number of dimorphic characters was very different between the two morphs, with size‐adjusted male‐biased dimorphism much more pronounced in the closed morph. Overall, our findings suggest that natural selection in open habitats limits both body size and conspicuous characters, although sexual selection in closed habitats favours the development of ornamentation related to display. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 878–888.  相似文献   

2.
Quantitative genetic models are used to investigate the evolution of generalists and specialists in a coarse-grained environment with two habitat types when there are costs attached to being a generalist. The outcomes for soft and hard selection models are qualitatively different. Under soft selection (e.g., for juvenile or male-reproductive traits) the population evolves towards the single peak in the adaptive landscape. At equilibrium, the population mean phenotype is a compromise between the reaction that would be optimal in both habitats and the reaction with the lowest cost. Furthermore, the equilibrium is closer to the optimal phenotype in the most frequent habitat, or the habitat in which selection on the focal trait is stronger. A specialist genotype always has a lower fitness than a generalist, even when the costs are high. In contrast, under hard selection (e.g., for adult or female-reproductive traits) the adaptive landscape can have one, two, or three peaks; a peak represents a population specialized to one habitat, equally adapted to both habitats, or an intermediate. One peak is always found when the reaction with the lowest cost is not much different from the optimal reaction, and this situation is similar to the soft selection case. However, multiple peaks are present when the costs become higher, and the course of evolution is then determined by initial conditions, and the region of attraction of each peak. This implies that the evolution of specialization and phenotypic plasticity may not only depend on selection regimes within habitats, but also on contingent, historical events (migration, mutation). Furthermore, the evolutionary dynamics in changing environments can be widely different for populations under hard and soft selection. Approaches to measure costs in natural and experimental populations are discussed.  相似文献   

3.
Natural selection tends to favour optimal phenotypes either through directional or stabilizing selection; however, phenotypic variation in natural populations is common and arises from a combination of biotic and abiotic interactions. In these instances, rare phenotypes may possess a fitness advantage over the more common phenotypes in particular environments, which can lead to adaptation and ecological speciation. A recently radiated clade of dwarf chameleons (Bradypodion) restricted to southern KwaZulu‐Natal Province, South Africa, is currently comprised of two species (Bradypodion melanocephalum and Bradypodion thamnobates), yet three other phenotypic forms exist, possibly indicating the clade is far more speciose. Very little genetic differentiation exists between these five phenotypic forms; however, all are allopatric in distribution, occupy different habitats and vary in overall size and coloration, which may indicate that these forms are adapting to their local environments and possibly undergoing ecological speciation. To test this, we collected morphometric and habitat data from each form and examined whether ecological relevant morphological differences exist between them that reflect their differential habitat use. Sexual dimorphism was detected in four of the five forms. Yet, the degree and number of dimorphic characters was different between them, with size‐adjusted male‐biased dimorphism being much more pronounced in B. thamnobates. Habitat differences also existed between sexes, with males occupying higher perches in more closed canopy (forested) habitats than females. Clear morphological distinctions were detected between four of the five forms, with the head explaining the vast majority of the variation. Chameleons occupying forested habitats tended to possess proportionally larger heads and feet but shorter limbs than those in open canopy habitats (i.e. grassland). These results show that this species complex of Bradypodion is morphologically variable for traits that are ecologically relevant for chameleons, and that the variation among the five phenotypic forms is associated with habitat type, suggesting that this species complex is in the early stages of ecological speciation. © 2013 The Linnean Society of London, Biological Journal of the Linnean Society, 2013, 109 , 113–130.  相似文献   

4.
Why warning patterns are so diverse is an enduring evolutionary puzzle. Because predators associate particular patterns with unpleasant experiences, an individual's predation risk should decrease as the local density of its warning pattern increases, promoting pattern monomorphism. Distasteful Heliconius butterflies are known for their diversity of warning patterns. Here, we explore whether interlocus sexual conflict can contribute to their diversification. Male Heliconius use warning patterns as mating cues, but mated females may suffer costs if this leads to disturbance, favouring novel patterns. Using simulations, we show that under our model conditions drift alone is unlikely to cause pattern diversification, but that sexual conflict can assist such a process. We also find that genetic architecture influences the evolution of male preferences, which track changes in warning pattern due to sexual selection. When male attraction imposes costs on females, this affects the speed at which novel pattern alleles increase. In two experiments, females laid fewer eggs with males present. However, although males in one experiment showed less interest in females with manipulated patterns, we found no evidence that female colouration mitigates sex-specific costs. Overall, male attraction to conspecific warning patterns may impose an unrecognized cost on Heliconius females, but further work is required to determine this experimentally.  相似文献   

5.
We demonstrate how a genetic polymorphism of distinctly different alleles can develop during long-term frequency-dependent evolution in an initially monomorphic diploid population, if mutations have only small phenotypic effect. As a specific example, we use a version of Levene's (1953) soft selection model, where stabilizing selection acts on a continuous trait within each of two habitats. If the optimal phenotypes within the habitats are sufficiently different, then two distinctly different alleles evolve gradually from a single ancestral allele. In a wide range of parameter values, the two locally optimal phenotypes will be realized by one of the homozygotes and the heterozygote, rather than by the two homozygotes. Unlike in the haploid analogue of the model, there can be multiple polymorphic evolutionary attractors with different probabilities of convergence. Our results differ from the population genetic models of short-term evolution in two aspects: (1) a polymorphism that is population genetically stable may be invaded by a new mutant allele and, as a consequence, the population may fall back to monomorphism, (2) long-term evolution by allele substitutions may lead from a population where polymorphism is not possible into one where polymorphism is possible.  相似文献   

6.
Spatial and temporal heterogeneity within landscapes influences the distribution and phenotypic diversity of individuals both within and across populations. Phenotype–habitat correlations arise either through phenotypes within an environment altering through the process of natural selection or plasticity, or phenotypes remaining constant but individuals altering their distribution across environments. The mechanisms of non‐random movement and phenotype‐dependent habitat choice may account for associations within highly heterogeneous systems, such as streams, where local adaptation may be negated, plasticity too costly and movement is particularly important. Despite growing attention, however, few empirical tests have yet to be conducted. Here we provide a test of phenotype‐dependent habitat choice and ask: 1) if individuals collected from a single habitat type continue to select original habitat; 2) if decisions are phenotype‐dependent and functionally related to habitat requirements; and 3) if phenotypic‐sorting continues despite increasing population density. To do so we both conducted experimental trials manipulating the density of four stream‐fish species collected from either a single riffle or pool and developed a game‐theoretical model exploring the influence of individuals’ growth rate, sampling and competitive abilities as well as interference on distribution across two habitats as a function of density. Our experimental trials show individuals selecting original versus alternative habitats differed in their morphologies, that morphologies were functionally related to habitat‐type swimming demands, and that phenotypic‐sorting remained significant (although decreased) as density increased. According to our model this only occurs when phenotypes have contrasting habitat preferences and only one phenotype disperses (i.e. selects alternatives) in response to density pressures. This supports our explanation that empirical habitat selection was due to a combination of collecting a fraction of mobile individuals with different habitat preferences and the exclusion of individuals via scramble competition at increased densities. Phenotype‐dependent habitat choice can thereby account for observed patterns of natural stream‐fish distribution.  相似文献   

7.
Local adaptation to rare habitats is difficult due to gene flow, but can occur if the habitat has higher productivity. Differences in offspring phenotypes have attracted little attention in this context. We model a scenario where the rarer habitat improves offspring's later competitive ability – a carryover effect that operates on top of local adaptation to one or the other habitat type. Assuming localised dispersal, so the offspring tend to settle in similar habitat to the natal type, the superior competitive ability of offspring remaining in the rarer habitat hampers immigration from the majority habitat. This initiates a positive feedback between local adaptation and trait divergence, which can thereafter be reinforced by coevolution with dispersal traits that match ecotype to habitat type. Rarity strengthens selection on dispersal traits and promotes linkage disequilibrium between locally adapted traits and ecotype‐habitat matching dispersal. We propose that carryover effects may initiate isolation by ecology.  相似文献   

8.
ABSTRACT The practice of feeding cervids in winter, either as a supplement to enhance nutritional status or to divert animals away from roads, railways, or vulnerable habitats, is rising noticeably. Moose (Alces alces) densities in Scandinavia are currently at historically high levels, resulting in amplified damage to economically important young Scots pine (Pinus sylvestris) forest stands. Nevertheless, there is limited information as to how diversionary feeding affects herbivore space use and habitat selection. We followed 32 female moose marked with Global Positioning System collars to evaluate 1) if feeding stations serve as attraction points to the extent that habitat-selection patterns resemble those of central-place foragers (i.e., high usage and more uniform selection close to the attraction point), and 2) if moose using feeding sites select young pine stands less than those not using feeding sites. Moose that used diversionary forage concentrated their space use around feeding stations and selected habitats as predicted for a central-place forager with a decreasing probability of using areas away from feeding sites and a low degree of habitat selectivity close to feeding sites. However, moose that used feeding sites continued to select young pine stands to the same extent as moose that did not use feeding sites. Feeding sites were, therefore, not successful in diverting moose away from valuable natural browse, so we recommend wildlife managers establish feeding sites in sacrifice areas where moose browsing is permissible and, if possible, >1 km from young pine plantations.  相似文献   

9.
Conspecific attraction plays an important role in habitat selection of several taxa and can affect and determine distribution patterns of populations. The behaviour is largely studied and widespread among birds, but in amphibians, its occurrence seems limited to breeding habitats of adults and gregarious tadpoles. The Australian green and golden bell frogs (Litoria aurea) have suffered considerable shrinking of their original distribution in south-eastern Australia since the 1970s. Currently, with only about 40 populations remaining, the species is considered nationally threatened. In natural conditions, these frogs are aggregated in the landscape and do not seem to occupy all suitable ponds within the occurrence area. To date, studies focusing on the frogs’ habitat have failed in finding a general habitat feature that explains current or past occupancy. This led us to the hypothesis that social cues may play a key role in habitat selection in this species. Using two choice experiments, we tested the preference of juvenile green and golden bell frogs for habitats containing cues of conspecifics of similar size versus habitats without conspecific cues. Tested frogs did not show a preference for habitats containing only scent from conspecifics but did prefer habitats where conspecifics were present. Our results show that conspecific attraction is a determining factor in juvenile green and golden bell frog habitat selection. To our knowledge, this is the first time the behaviour is shown to occur in juvenile frogs in the habitat selection context. From a conservation management point of view, the behaviour may help to explain the failure of reintroductions to areas where the frogs have been extinct, and the non-occupation of suitable created habitats in areas where they still inhabit and develop appropriated management strategies.  相似文献   

10.
Eco‐evolutionary responses of natural populations to spatial environmental variation strongly depend on the relative strength of environmental differences/natural selection and dispersal/gene flow. In absence of geographic barriers, as often is the case in lake ecosystems, gene flow is expected to constrain adaptive divergence between environments – favoring phenotypic plasticity or high trait variability. However, if divergent natural selection is sufficiently strong, adaptive divergence can occur in face of gene flow. The extent of divergence is most often studied between two contrasting environments, whereas potential for multimodal divergence is little explored. We investigated phenotypic (body size, defensive structures, and feeding morphology) and genetic (microsatellites) structure in threespine stickleback (Gasterosteus aculeatus) across five habitat types and two basins (North and South) within the geologically young and highly heterogeneous Lake Mývatn, North East Iceland. We found that (1) North basin stickleback were, on average, larger and had relatively longer spines than South basin stickleback, whereas (2) feeding morphology (gill raker number and gill raker gap width) differed among three of five habitat types, and (3) there was only subtle genetic differentiation across the lake. Overall, our results indicate predator and prey mediated phenotypic divergence across multiple habitats in the lake, in face of gene flow.  相似文献   

11.
The evolution of phenotypic plasticity is studied in a model with two reproductively isolated “species” in a coarse-grained environment, consisting of two types of habitats. A quantitative genetic model for selection was constructed, in which habitats differ in the optimal value for a focal trait, and with random dispersal among habitats. The main interest was to study the effects of different selection regimes. Three cases were investigated: (1) without any limits to plasticity; (2) without genetic variation for plasticity; and (3) with a fitness cost for phenotypically plastic reactions. In almost all cases a generalist strategy to exploit both habitats emerged. Without any limits to plasticity, optimal adaptive reactions evolved. Without any genetic variation for plasticity, a compromise strategy with an intermediate, fixed phenotype evolved, whereas in the presence of costs a plastic compromise between the demands of the habitats and the costs associated with plasticity was found. Specialization and phenotypic differentiation was only found when selection within habitats was severe and optimal phenotypes for different habitats were widely different. Under soft selection (local regulation of population numbers in each habitat) the specialists coexisted; under hard selection (global regulation of population numbers) one specialist outcompeted the other. The prevalent evolutionary outcome of compromises rather than specialization implies that costs or constraints are not necessarily detectable as local adaptation in transplantation or translocation experiments.  相似文献   

12.
13.
In order for competing species to coexist, segregation on some ecological niche component is required and is often mediated by differential habitat use. When unequal competitors are involved, the dominant species tends to displace the subordinate one to its less preferred habitat. Here, we use habitat isodars, an approach which reflects evolutionary stable strategies of habitat selection, to evaluate whether interspecific competition between two competing species with distinct habitat preferences, the little bustard Tetrax tetrax and the great bustard Otis tarda, modulates their habitat use. Field data on these endangered species demonstrate that unequal competitors can coexist without completely segregating on their preferred habitats. The negatively sloped isodar of the subordinate little bustard unveils its competition with the dominant great bustard. Interference from great bustards in secondary cereal habitats reinforces use of preferred natural habitat by little bustards. Studies of density‐dependent habitat selection by a single‐species can thus aid in identifying the effects of competition on community composition, and guide the conservation of at‐risk species. Isodars, in particular, represent a promising method to gain clear knowledge on interspecific competition for species in which experimental manipulations are not feasible.  相似文献   

14.
The present study reports on a natural experiment with twelve replicates in which rapid, predictable and consistent divergence of Cepaea nemoralis populations occurred in response to repeated selection gradient of adjacent open and shaded habitats. Because the frequencies of various genetically‐based phenotypes varied widely among surveyed populations, and there was a large overlap between habitat types, no overall association with habitat was apparent. In paired comparisons, however, significant changes were consistently towards higher frequencies of light morphs in the open than corresponding shaded habitats, and this result is attributable to natural selection. This shows that the knowledge of the genetic composition of reference populations is often essential for discerning selection from random processes. At each site, a different morph combination contributed to the divergence of populations, indicating that there are many genetic solutions to similar ecological problems; this likely enhances the maintenance of high levels of polymorphism. Adaptation of populations occurred in contemporary time and was fast. In one case where it was possible to follow changes, significant shifts in morph frequencies occurred within just two snail generations (selection coefficients of 0.404 and 0.518). High evolvability may be one of the factors contributing to the ecological success of Cepaea nemoralis. © 2011 The Linnean Society of London, Biological Journal of the Linnean Society, 2011, 102 , 251–262.  相似文献   

15.
Polymorphism has been shown to be possible but unlikely with a different selection intensity in each of several niches, or with varying selection intensity during successive generations. We show that polymorphism is likely with the combination of several niches and several seasons. The model contains two seasons, three habitats, many generations per season, habitat selection, positive assortative mating, movement between habitats, and different fitnesses of each genotype in each habitat. It is a stepping stone model with differential migration of genotypes. It is applied to the polymorphism of the indoor and the outdoor genotypes of the yellow fever mosquito Aedes aegypti. Matrix methods and simple models of population genetics comprised the computer model. Polymorphism is likely with most reasonable values of the parameters. Fitnesses and rate of movement are the most important parameters influencing the character and likelihood of polymorphism; habitat selection and positive assortative mating have much less effect. The model indicates that polymorphism of A. aegypti in east Africa results from: (1) the presence of a dry season when breeding occurs only in the human habitat; (2) greater fitness of the indoor ecotype in the human habitat and of the outdoor ecotype in the natural habitat; and (3) less than random movement between human and natural habitats.  相似文献   

16.
刘艳华  牛莹莹  周绍春  张子栋  梁卓  杨娇  鞠丹 《生态学报》2021,41(17):6913-6923
在动物生境研究中,移动生境和卧息生境是生境研究的焦点。开展移动生境和卧息生境选择,并在此基础上进行生境评价,有利于深入了解动物对移动和卧息生境条件的需求,制定科学合理的栖息地保护计划。以东北虎(Panthera tigris altaica)的主要猎物物种之一-狍(Capreolus pygargus)为研究对象,于2017-2019年冬季积雪覆盖期在老爷岭南部通过随机布设28个大样方和84条用于足迹链跟踪的样线收集狍的移动点和卧息点信息,再结合近年来收集的东北虎出现点,利用广义可加模型(GAM)和最大熵模型(MaxEnt)进行狍移动、卧息生境选择及评价研究。移动生境选择研究表明,狍在移动的过程中偏好选择坡度小、距农田距离>500 m、远离道路、居民点和低海拔或较高海拔的区域;移动生境评价分析表明,移动适宜和次适宜生境面积之和为1318.16 km2,占研究区域面积的51.28%,当加入虎活动点影响因子后,狍移动适宜和次适宜生境面积之和为901.52 km2,适宜和次适宜生境面积之和减少了31.61%。狍卧息生境选择研究表明,水源、农田、道路和雪深是影响狍卧息的关键因素,其中雪深对狍卧息生境选择的贡献率达到70.13%;卧息生境评价表明,卧息适宜和次适宜生境面积之和为1243.77 km2,占研究区域面积的48.39%,当加入虎出现点因子后,适宜生境和次适宜生境面积之和减少了61.00%,仅为485.02 km2。研究认为,虎的出现对狍移动和卧息生境选择均产生影响,虎的活动及捕食行为可能会减少狍的活动范围和频次,狍远离虎活动区域卧息休息,压缩了狍适宜卧息的空间。  相似文献   

17.
In order to understand habitat selection in birds, it is important to know how individuals respond when encountering a variety of habitats during dispersal and must choose between them. However, very few field studies have addressed this question. We compared habitat selection of ortolan buntings Emberiza hortulana before and after dispersal events. In Norway, this species has a patchy distribution and breeds in different open habitats of which the two major ones are botanically distinct: raised peat bogs and forest clear‐cuts on dry, sandy soil. There was no evidence that habitat selection of males after natal dispersal was influenced by natal habitat, and 83% changed vegetation type. Habitat selection was random when taking the availability of each vegetation type into account, both at the landscape level and among habitats encountered along likely dispersal routes. Habitat selection after breeding dispersal was not influenced by the habitat of the patch of origin, and 62–71% changed habitat during successive dispersal events. Changing habitat did not seem to affect pairing or breeding success, but decreased with age. Lifetime patterns of habitat selection indicated that the majority (86%) changed habitat one or more times. However, the proportion never changing habitat (14%) was significantly higher than expected if settlement after dispersal was random (5%), suggesting that the majority of males were flexible whereas a minority was habitat conservative. These results provide some of the first systematic evidence based on settlement decisions of individuals that habitat selection of birds can be flexible with regard to vegetation type.  相似文献   

18.
Some birds use social cues, such as the presence of conspecifics, when selecting breeding habitat. This phenomenon, known as conspecific attraction, has been well‐documented in migratory species, but has not been assessed for resident species of birds. We used Dupont's Larks (Chersophilus duponti) as a model species to determine if conspecific attraction plays a role in habitat selection by resident species of birds. At our study site in Soria province in central Spain, we monitored two potential habitat patches and one managed site where management actions had provided apparently suitable habitat. At each site, we broadcast recordings of the songs and calls of male Dupont's Larks, and monitored their presence during the breeding season and dispersal period in 2018 using automated recorders and field surveys. No birds were attracted to our study sites. Our results suggest that management of patches of suitable habitat should occur close to areas (within 1 km) already occupied by Dupont's Larks to encourage natural colonization because, based on our results, playback of conspecific vocalizations may not attract the species to new breeding areas. However, additional studies are needed before drawing conclusions about the effectiveness of conspecific attraction for this and other resident species of birds.  相似文献   

19.
The expression of sexually selected traits in highly dimorphic ungulates may be influenced by environmental quality. Variations in habitat conditions can impose different constraints on the allocation of energy resources to male life‐history traits, and possibly alter the female preferences for specific features. Here, we compared the horn growth patterns in male European mouflon Ovis aries musimon living in different habitats (Mediterranean vs. continental) but sharing a common genetic origin. We hypothesized that the expression of sexually selected traits such as horn development should be promoted in more favorable habitat conditions (i.e., Mediterranean). Using linear mixed models on data retrieved from individuals harvested under the same hunting regime, we found longer horns and greater individual variance in horn segment length in the Mediterranean population than in the continental one. Furthermore, Mediterranean rams showed no evidence of compensatory horn growth, as opposed to the continental rams. Unexpectedly, horn base circumference was greater in the continental habitat than in the Mediterranean one. The overall results suggest different patterns of investment in horns in the two populations, with seemingly stronger pressure and consequences of sexual selection on mouflon rams living in more favorable environments. Although the role of hunters' selectivity cannot be excluded a priori, our data suggest that the differences in the expression of sexually selected traits in our study populations may be influenced by environmental conditions. Because sexual selection can impose substantial fitness costs on individuals, further investigations on the trade‐offs between reproduction and survival would improve our understanding of the dynamics of mouflon populations living in different environmental conditions.  相似文献   

20.
Sweet-flowered plants of Polemonium viscosum in Colorado are visited by a fly-dominated pollinator fauna at timberline (krummholz), but almost exclusively by bumblebees in higher-elevation tundra habitats. Significant increases in flower size and height are associated with increasing elevation along this habitat gradient. This paper presents the results of an experiment designed to test whether bumblebees exert sufficient selection on morphometric floral phenotypes to account for the clinal shifts seen in natural populations. Two populations of sweet-flowered plants of krummholz origin were established: one randomly pollinated, the other solely bumblebee-pollinated. I tested the effects of two independent axes of floral variation, obtained by principal-components analysis, on mean seed set per flower of plants in each population. PC1, with strong correlations to corolla diameter, corolla length, and stem height, explained a significant amount of variance in seed set for bumblebee-pollinated plants but had no bearing on that of randomly pollinated plants. PC2, with strong correlation to flower number, did not influence seed set in either population. Bumblebee behavior was correlated with variation in PC1 scores of the selected population, yielding positive directional selection on morphometric floral traits associated with PC1. Selection coefficients for PC1, corolla length, corolla diameter, and inflorescence height were estimated, respectively, as 0.11, 0.09, 0.07, and 0.06 (P < 0.025 in all cases). These results support the hypothesis that pollinator-mediated selection can bring about changes in floral form, and can explain shifts in floral morphology of P. viscosum along natural habitat gradients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号