首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
The 11th influenza A virus protein PB1-F2 was previously shown to enhance apoptosis in response to cytotoxic stimuli. The 87 amino acid protein that is encoded by an alternative reading frame of the PB1 polymerase gene was described to localize to mitochondria consistent with its proapoptotic function. However, PB1-F2 is also found diffusely distributed in the cytoplasm and in the nucleus suggesting additional functions of the protein. Here we show that PB1-F2 colocalizes and directly interacts with the viral PB1 polymerase protein. Lack of PB1-F2 during infection resulted in an altered localization of PB1 and decreased viral polymerase activity. Consequently, mutant viruses devoid of a functional PB1-F2 reading frame exhibited a small plaque phenotype. Thus, we have identified a novel function of PB1-F2 as an indirect regulator of the influenza virus polymerase activity via its interaction with PB1.  相似文献   

2.
Abstract: It is generally believed that protein phosphorylation is an important mechanism through which the functions of voltage- and ligand-gated channels are modulated. The intracellular carboxyl terminus of P2×2 receptor contains several consensus phosphorylation sites for cyclic AMP (cAMP)-dependent protein kinase (PKA) and protein kinase C (PKC), suggesting that the function of the P2×2 purinoceptor could be regulated by the protein phosphorylation. Whole-cell voltage-clamp recording was used to record ATP-evoked cationic currents from human embryonic kidney (HEK) 293 cells stably transfected with the cDNA encoding the rat P2×2 receptor. Dialyzing HEK 293 cells with phorbol 12-myristate 13-acetate, a PKC activator, failed to affect the amplitude and kinetics of the ATP-induced cationic current. The role of PKA phosphorylation in modulating the function of the P2×2 receptor was investigated by internally perfusing HEK 293 cells with 8-bromo-cAMP or the purified catalytic subunit of PKA. Both 8-bromo-cAMP and PKA catalytic subunit caused a reduction in the magnitude of the ATP-activated current without affecting the inactivation kinetics and the value of reversal potential. Site-directed mutagenesis was also performed to replace the intracellular PKA consensus phosphorylation site (Ser431) with a cysteine residue. In HEK 293 cells expressing (S431C) mutant P2×2 receptors, intracellular perfusion of 8-bromo-cAMP or purified PKA catalytic subunit did not affect the amplitude of the ATP-evoked current. These results suggest that as with other ligand-gated ion channels, protein phosphorylation by PKA could play an important role in regulating the function of the P2×2 receptor and ATP-mediated physiological effects in the nervous system.  相似文献   

3.
Abstract: Sodium- and chloride-coupled transport of dopamine from synapses into presynaptic terminals plays a key role in terminating dopaminergic neurotransmission. Regulation of the function of the dopamine transporter, the molecule responsible for this translocation, is thus of interest. The primary sequence of the dopamine transporter contains multiple potential phosphorylation sites, suggesting that the function of the transporter could be regulated by phosphorylation. Previous work from this laboratory has documented that phorbol ester activation of protein kinase C (PKC) decreases dopamine transport V max in transiently expressing COS cells. In the present report, we document in vivo phosphorylation of the rat dopamine transporter stably expressed in LLC-PK1 cells and show that phosphorylation is increased threefold by phorbol esters. Dopamine uptake is also regulated by phorbol esters in these cells; phorbol 12-myristate 13-acetate (PMA) reduces transport V max by 35%. Parallels between the time course, concentration dependency, and staurosporine sensitivity of alterations in transporter phosphorylation and transporter V max suggest that dopamine transporter phosphorylation involving PKC could contribute to this decreased transporter function. Phosphorylation of the dopamine transporter by PKC or by a PKC-activated kinase could be involved in rapid neuroadaptive processes in dopaminergic neurons.  相似文献   

4.
Abstract: The γ2 subunit of the GABAA receptor (GABAA-R) is alternatively spliced. The long variant (γ2L) contains eight additional amino acids that possess a consensus sequence site for protein phosphorylation. Previous studies have demonstrated that a peptide or fusion protein containing these eight amino acids is a substrate for protein kinase C (PKC), but not cyclic AMP-dependent protein kinase A (PKA)-stimulated phosphorylation. We have examined the ability of PKA, PKC, and Ca2+/calmodulin-dependent protein kinase (CAM kinase II) to phosphorylate a synthetic peptide corresponding to residues 336–351 of the intracellular loop of the γ2L subunit and inclusive of the alternatively spliced phosphorylation consensus sequence site. PKC and CAM kinase II produced significant phosphorylation of this peptide, but PKA was ineffective. The K m values for PKC-and CAM kinase II-stimulated phosphorylation of this peptide were 102 and 35 μM , respectively. Maximal velocities of 678 and 278 nmol of phosphate/min/mg were achieved by PKC and CAM kinase II, respectively. The phosphorylation site in the eight-amino-acid insert of the γ2L subunit has been shown to be necessary for ethanol potentiation of the GABAA-R. Thus, our results suggest that PKC, CAM kinase II, or both may play a role in the effects of ethanol on GABAergic function.  相似文献   

5.
The study was aimed at investigating in vivo and in vitro the involvement of the cGMP/cGMP-dependent protein kinase (PKG) signaling pathway in MPP+-induced cytosolic phospholipase A2 (cPLA2) activation of dopaminergic neurons. MPP+ activated neuronal nitric oxide synthase (NOS)/soluble guanylyl cyclase/cGMP pathway in mouse midbrain and striatum, and in pheochromocytoma cell line 12 cells, and caused an upward shift in [Ca2+]i level in the latter. The activation was accompanied by increases in total and phosphorylated cPLA2, and increased arachidonic acid release. Effects of selective inhibitors [2-oxo-1,1,1-trifluoro-6,9-12,15-heneicosatetraene (AACOCF3), (E)-6-(bromomethylene)tetrahydro-3-(1-naphthalenyl)2h-pyran-2-one (BEL)] indicated the main impact of cPLA2 on arachidonic acid release in pheochromocytoma cell line 12 cells. Treatment of the cells with the protein kinase inhibitors GF102610x, UO126, and KT5823, and with the nitric oxide synthase (NOS) inhibitor NNLA revealed the involvement of protein kinase C (PKC) and extracellular signal-regulated kinases 1 and 2 (ERK 1/2), with the possible key role of PKG, in cPLA2 phosphorylation at Ser505. Inhibitors of cPLA2 and PKG increased viability and reduced MPP+-induced apoptosis of the cells. Our results indicate that the neuronal NOS/cGMP/PKG pathway stimulates cPLA2 phosphorylation at Ser505 by activating PKC and ERK1/2, and suggest that up-regulation of this pathway in experimental models of Parkinson's disease may mediate dopaminergic neuron degeneration and death through activation of cPLA2.  相似文献   

6.
7.
Abstract: We investigated the interaction between Pb2+ and protein kinase C (PKC) in the Pb2+-induced release of norepinephrine (NE) from permeabilized adrenal chromaffin cells. Our analysis of endogenous PKC activity in permeabilized cells suggests that Pb2+ interacts with the adrenal enzyme at multiple sites. Pb2+ activates the enzyme through high-affinity ( K A(Pb) = 2.4 × 10−12 M ) interactions and inhibits the enzyme by competitive and noncompetitive interactions with nanomolar-( K i = 7.1 × 10−9 M ) and micromolar- ( K 'i = 2.8 × 10−7 M ) affinity sites, respectively. Activation of PKC by 12- O -tetradecanoylphorbol 13-acetate (TPA) in Ca2+-deficient, Pb2+-containing medium, enhances the Pb2+-induced NE release from permeabilized chromaffin cells by lowering the concentration of Pb2+ required for half-maximal activation of the secretory response from 7.5 × 10−10 to 5.7 × 10−11 M . The PKC inhibitors staurosporine and pseudosubstrate PKC (19–36) abolish the effect of TPA without affecting the Pb2+-induced secretion in the absence of TPA. These results indicate that (a) Pb2+ is a partial agonist of PKC, capable of both activating and inhibiting the enzyme and (b) synergistic activation of PKC by TPA and Pb2+ results in increased sensitivity of exocytosis to Pb2+ but is not obligatory for Pb2+-triggered secretion.  相似文献   

8.
Dexmedetomidine (Dexmd), a potent and highly specific α2 adrenoreceptor agonist, is an efficient therapeutic agent for sedation. Dexmd has been recently reported to have a neuroprotective effect. Heat shock protein (HSP) 27, a low-molecular weight HSP has been shown to be expressed following cerebral ischemia in astrocytes but not in neurons. HSP27 expression is involved in ischemic tolerance of the brain. This study investigated the effect of Dexmd on HSP27 in rat C6 glioma cells. 12- O -tetradecanoylphorbol-13-actate (TPA), a direct activator of protein kinase C (PKC), stimulated the phosphorylation of HSP27 at Ser82, but not Ser15 in a time-dependent manner. Prostaglandin (PG) E1 or PGE2 which activates the adenylyl cyclase-cAMP system as well as forskolin and dibutyryl-cAMP, suppressed the TPA-induced phosphorylation of HSP27. Dexmd reversed the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system. Therefore, these results strongly suggest that Dexmd reverses the suppression of HSP27 phosphorylation by the adenylyl cyclase-cAMP system activation through the inhibition of its system in C6 cells. α2 Adrenoreceptor agonists may therefore show a neuroprotective effect through the modification of HSP27 phosphorylation induced by PKC activation.  相似文献   

9.
Agonists stimulate cannabinoid 1 receptor (CB1R) internalization. Previous work suggests that the extreme carboxy-terminus of the receptor regulates this internalization – likely through the phosphorylation of serines and threonines clustered within this region. While truncation of the carboxy-terminus (V460Z CB1) and consequent removal of these putative phosphorylation sites prevents endocytosis in AtT20 cells, the residues necessary for CB1R internalization remain elusive. To determine the structural requirements for internalization, we evaluated endocytosis of carboxy-terminal mutant CB1Rs stably expressed in HEK293 cells. In contrast to AtT20 cells, V460Z CB1R expressed in HEK293 cells internalized to the same extent and with similar kinetics as the wild-type receptor. However, mutation of serine and/or threonine residues within the extreme carboxy-terminal attenuated internalization when these receptors were expressed in HEK293 cells. These results establish that the extreme carboxy-terminal phosphorylation sites are not required for internalization of truncated receptors, but are required for internalization of full-length receptors in HEK293 cells. Analysis of β-arrestin-2 recruitment to mutant CB1R suggests that putative carboxy-terminal phosphorylation sites mediate β-arrestin-2 translocation. This study indicates that the local cellular environment affects the structural determinants of CB1R internalization. Additionally, phosphorylation likely regulates the internalization of (full-length) CB1Rs.  相似文献   

10.
11.
The role of mitochondrial respiration in optimizing photosynthesis was assessed in mesophyll protoplasts of pea ( Pisum sativum L., cv. Arkel) by using low concentrations of oligomycin (an inhibitor of oxidative phosphorylation), antimycin A (inhibits cytochrome pathway of electron transport) and salicylhydroxamic acid (SHAM, an inhibitor of alternative oxidase). All three compounds decreased the rate of photosynthetic O2 evolution in mesophyll protoplasts, but did not affect chloroplast photosynthesis. The inhibition of photosynthesis by these mitochondrial inhibitors was stronger at optimal CO2 (1.0 m M NaHCO3) than that at limiting CO2 (0.1 m M NaHCO3). We conclude that mitochondrial metabolism through both cytochrome and alternative pathways is essential for optimizing photosynthesis at limiting as well as at optimal CO2. The ratios of ATP to ADP in whole protoplast extracts were hardly affected, despite the marked decrease in their photosynthetic rates by SHAM. Similarly, the decrease in the ATP/ADP ratio by oligomycin or antimycin A was more pronounced at limiting CO2 than at optimal CO2. The mitochondrial oxidative electron transport, through both cytochrome and alternative pathways, therefore akppears to be more important than oxidative phosphorylation in optimizing photosynthesis, particularly at limiting CO2 (when ATP demand is expected to be low). Our results also confirm that the alternative pathway has a significant role in contributing to the cellular ATP, when the cytochrome pathway is limited.  相似文献   

12.
Free radical formation and subsequent lipid peroxidation may participate in the pathogenesis of tissue injury, including the brain injury induced by hypoxia or trauma and cardiac injury arising from ischemia and reperfusion. However, the exact cellular mechanisms by which the initial oxidative insult leads to the ultimate tissue damage are not known. A number of reports have indicated that protein kinase C (PKC) may be activated following oxidative stress and that this enzyme may play an important role in the steps leading to cellular damage. In this work, we have examined in a cell model whether PKC is activated following oxidative exposure. UC11MG cells, a human astrocytoma cell line, were treated with H2O2. Incubation with 0.5 mM H2O2 increased malondialdehyde levels by as early as 15 minutes. To assess the effects of H2O2 treatment on PKC activation, we measured phosphorylation of an endogenous PKC substrate, the MARCKS (myristoylated alanine-rich C kinase substrate) protein. Treatment of cells with 0.2-1.0 mM H2O2 resulted in a rapid increase in MARCKS phosphorylation. Phosphorylation was stimulated approximately 2.5-fold following treatment with 0.5 mM H2O2 for ten minutes. Treatment with phorbol 12-myristate 13-acetate, a PKC activator, increased MARCKS phosphorylation approximately 4-fold. The H2O2-induced MARCKS phosphorylation was inhibited by the addition of the kinase inhibitors H-7 and staurosporine. Furthermore, specific down-regulation of PKC by phorbol ester also inhibited H2O2-induced MARCKS phosphorylation. These results indicate that PKC is rapidly activated in cells following an oxidative exposure and that this cell system may be a good model to further investigate the role of PKC in regulating oxidative damage in the cell.  相似文献   

13.
The 11th influenza A virus gene product is an 87-amino-acid protein provisionally named PB1-F2 (because it is encoded by an open reading frame overlapping the PB1 open reading frame). A significant fraction of PB1-F2 localizes to the inner mitochondrial membrane in influenza A virus-infected cells. PB1-F2 appears to enhance virus-induced cell death in a cell type-dependent manner. For the present communication we have identified and characterized a region near the COOH terminus of PB1-F2 that is necessary and sufficient for its inner mitochondrial membrane localization, as determined by transient expression of chimeric proteins consisting of elements of PB1-F2 genetically fused to enhanced green fluorescent protein (EGFP) in HeLa cells. Targeting of EGFP to mitochondria by this sequence resulted in the loss of the inner mitochondrial membrane potential, leading to cell death. The mitochondrial targeting sequence (MTS) is predicted to form a positively charged amphipathic alpha-helix and, as such, is similar to the MTS of the p13(II) protein of human T-cell leukemia virus type 1. We formally demonstrate the functional interchangeability of the two sequences for mitochondrial localization of PB1-F2. Mutation analysis of the putative amphipathic helix in the PB1-F2 reveals that replacement of five basic amino acids with Ala abolishes mitochondrial targeting, whereas mutation of two highly conserved Leu to Ala does not. These findings demonstrate that PB1-F2 possesses an MTS similar to other viral proteins and that this MTS, when fused to EGFP, is capable of independently compromising mitochondrial function and cellular viability.  相似文献   

14.
Abstract: In a previous study, protein kinase FA/glycogen synthase kinase-3 ( FA/GSK-3 ) was identified as a myelin basic protein (MBP) kinase associated with intact brain myelin. In this report, the phosphorylation sites of MBP by kinase FA/GSk-3 were further determined by two-dimensional electrophoresis/TLC, phosphoamino acid analysis, tryptic peptide mapping, Edman degradation, and direct sequencing. Kinase FA/GSK-3 phosphorylates MBP on both threonine and serine residues. Three tryptic phosphopeptide peaks were resolved by C18 reverse-phase HPLC. Sequential manual Edman degradation together with direct sequence analysis revealed that T(p)PPPSQGK is the phosphorylation site sequence for the first major phosphopeptide peak. When mapping with the bovine brain MBP sequence, we finally demonstrate Thr97-Pro, one of the in vivo phosphorylation sites in MBP, as the major site phosphorylated by kinase FA/GSK-3, implicating a physiologically relevant role of FA/GSK-3 in the regulation of brain myelin function. By using the same approach, we also identified NIVT94(p)PR as the phosphorylation site sequence in the second major tryptic phosphopeptide derived from [32P]MBP phosphorylated by kinase FA/GSK-3, further indicating that kinase FA/GSK-3 represents a Thr-Pro motif-directed MBP kinase involved in the phosphorylation of brain myelin.  相似文献   

15.
Abstract: The growth cone is responsible for axonal elongation and pathfinding by responding to various modulators for neurite growth, including neurotransmitters, although the sensor mechanisms are not fully understood. Among neurotransmitters, GABA is most likely to demonstrate activity in vivo because GABA and the GABAA receptor appear even in early stages of CNS development. We investigated the GABAA receptor-mediated signaling pathway in the growth cone using isolated growth cones (IGCs). Both the GABAA binding site and the benzodiazepine modulatory site were enriched in the growth cone membrane. In the intact IGC, GABA induced picrotoxin-sensitive Cl flux (not influx but efflux) and increased the intracellular Ca2+ concentration in a picrotoxin- and verapamil-sensitive manner. Protein kinase C (PKC)-dependent phosphorylation of two proteins identified as GAP-43 and MARCKS protein was enhanced in the intact IGC stimulated by GABA, resulting in the release of MARCKS protein and GAP-43 from the membrane. Collectively, our results suggest the following scheme: activation of the functional GABAA receptor localized in the growth cone membrane → Cl efflux induction through the GABAA-associated Cl channel → Ca2+ influx through an L-type voltage-sensitive Ca2+ channel → Ca2+-dependent phosphorylation of GAP-43 and MARCKS protein by PKC.  相似文献   

16.
Abstract: GT1-7 cells, a clonal line derived from specific tumours of gonadotropin-releasing hormone-secreting neurons from mouse hypothalamus, were used as a model system to investigate the cellular mechanisms underlying the histamine H1 receptor-mediated desensitisation. GT1-7 cells contain H1 receptors, acute stimulation of which leads to the desensitisation of histamine-mediated calcium mobilisation and is manifest as a concurrent reduction in both the magnitude of the calcium transient and of the sustained phase. Acute pretreatment of the cells with the phorbol ester, phorbol 12-myristate 13-acetate, can also ablate the histamine-stimulated calcium mobilisation. In addition, acute H1-receptor stimulation and acute phorbol ester treatment result in the attenuation of histamine-mediated inositol phosphate production. Receptor desensitisation resulting from acute stimulation with histamine is not affected by inhibiting protein kinase C (PKC) activity with Ro 31-7549 or staurosporine. In contrast, the desensitisation of H1-receptor responses induced by direct activation of protein kinase C is preventable by PKC inhibitors. Thus, these results imply that a PKC-dependent mechanism and PKC-independent mechanism are involved in the H1-receptor desensitisation cascade in GT1-7 cells and do not support the involvement of PKC in the receptor-mediated desensitisation of H1 receptor-stimulated calcium and inositol phosphate responses.  相似文献   

17.
Abstract: To gain insight into the molecular mechanism for nociceptin function, functional coupling of the nociceptin receptor expressed in Chinese hamster ovary (CHO) cells with phospholipase A2 (PLA2) was examined. In the presence of A23187, a calcium ionophore, activation of the nociceptin receptor induced time- and dose-dependent release of arachidonate, which was abolished by pretreatment of the cells with pertussis toxin (PTX). Immunoblot analysis using anti-Ca2+-dependent cytosolic PLA2 (cPLA2) monoclonal antibody demonstrates that activation of the nociceptin receptor induces a time- and dose-dependent electrophoretic mobility shift of cPLA2, suggesting that phosphorylation of cPLA2 is induced by the nociceptin receptor. Pretreatment of the cells with PD98059, a specific mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 inhibitor, or staurosporine, a potent inhibitor of serine/threonine protein kinases and tyrosine protein kinases, partially inhibited the nociceptin-induced cPLA2 phosphorylation and arachidonate release. These results indicate that the nociceptin receptor expressed in CHO cells couples with cPLA2 through the action of PTX-sensitive G proteins and suggest that cPLA2 is activated by phosphorylation induced by the nociceptin receptor via mechanisms partially dependent on p44 and p42 mitogen-activated protein kinases.  相似文献   

18.
A novel influenza A virus mitochondrial protein that induces cell death.   总被引:35,自引:0,他引:35  
While searching for alternative reading-frame peptides encoded by influenza A virus that are recognized by CD8+ T cells, we found an abundant immunogenic peptide encoded by the +1 reading frame of PB1. This peptide derives from a novel conserved 87-residue protein, PB1-F2, which has several unusual features compared with other influenza gene products in addition to its mode of translation. These include its absence from some animal (particularly swine) influenza virus isolates, variable expression in individual infected cells, rapid proteasome-dependent degradation and mitochondrial localization. Exposure of cells to a synthetic version of PB1-F2 induces apoptosis, and influenza viruses with targeted mutations that interfere with PB1-F2 expression induce less extensive apoptosis in human monocytic cells than those with intact PB1-F2. We propose that PB1-F2 functions to kill host immune cells responding to influenza virus infection.  相似文献   

19.
Abstract: The effects of D1 and D2 dopamine ligands on protein kinase C (PKC) activity were examined in synaptoneurosomes. Incubation with D1 agonists (SKF 38393, fenodopam), in the presence of calcium, decreased the soluble and increased the particulate PKC activity. These effects were reversed by SCH 23390, which by itself had the opposite effect of increasing the soluble and decreasing the particulate PKC activity. In contrast, incubation with the D2 agonists [LY 171555, (+)-3-(3-hydroxyphenyl)- N - n -propylpiperidine, RU 24213] increased the soluble and decreased the particulate PKC activity. These effects were reversed by sulpiride. (−)-3-(3-Hydroxyphenyl)- N - n -propylpiperidine had a D2 antagonist profile. Apomorphine showed a biphasic dose-response change; i.e., it decreased particulate PKC activity at the D2 receptor at low concentrations (0.1 µ M ) and increased it at the D1 receptor at higher concentrations (10 µ M ). Pretreatment with tetrodotoxin or omission of calcium in the incubation medium did not alter the responses of the D2 agonists, but it reversed the changes in PKC activity induced by the D1 agonists and converted the biphasic response of apomorphine to a monophasic inhibition. These results indicate that (1) D1 and D2 dopamine receptors are negatively coupled to PKC and (2) the increase in particulate PKC activity seen with the D1 drugs in the presence of calcium is mediated indirectly via a transneuronal effect.  相似文献   

20.
Abstract: The metabotropic glutamate receptor mGluR5, but not the closely related mGluR1, is expressed in cultured astrocytes, and this expression is up-regulated by specific growth factors. We investigated the capability and underlying mechanisms of mGluR5 to induce oscillatory responses of intracellular calcium concentration ([Ca2+]i) in cultured rat astrocytes. Single-cell [Ca2+]i recordings indicated that an mGluR-selective agonist, (1 S ,3 R )-1-aminocyclopentane-1,3-dicarboxylate (1 S ,3 R -ACPD), elicits [Ca2+]i oscillations in good agreement with the growth factor-induced up-regulation of mGluR5 in cultured astrocytes. A protein kinase C (PKC) inhibitor, bisindolylmaleimide I, converted a 1 S ,3 R -ACPD-mediated oscillatory response into a nonoscillatory response. In addition, the PKC activator phorbol 12-myristate 13-acetate completely abolished the [Ca2+]i increase. These and other pharmacological properties of 1 S ,3 R -ACPD-induced [Ca2+]i oscillations correlate well with those of the cloned mGluR5 characterized in heterologous expression systems. Furthermore, the potential involvement of protein phosphatases in [Ca2+]i oscillations is suggested. The present study demonstrates that mGluR5 is capable of inducing [Ca2+]i oscillations in cultured astrocytes and that phosphorylation/dephosphorylation of mGluR5 is critical in [Ca2+]i oscillations, analogous to the cloned mGluR5 expressed in heterologous cell lines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号