首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Recent work has shown that the yeast histone H4 N-terminus, while not essential for viability, is required for repression of the silent mating loci and activation of GAL1 and PHO5 promoters. Because histone H3 shares many structural features with histone H4 and is intimately associated with H4 in the assembled nucleosome, we asked whether H3 has similar functions. While the basic N-terminal domain of H3 is found to be non-essential (deletion of residues 4-40 of this 135 amino acid protein allows viability), its removal has only a minor effect on mating. Surprisingly, both deletions (of residues 4-15) and acetylation site substitutions (at residues 9, 14 and 18) within the N-terminus of H3 allow hyperactivation of the GAL1 promoter as well as a number of other GAL4-regulated genes including GAL2, GAL7 and GAL10. To a limited extent glucose repression is also alleviated by H3 N-terminal deletions. Expression of another inducible promoter, PHO5, is shown to be relatively unaffected. We conclude that the H3 and H4 N-termini have different functions in both the repression of the silent mating loci and in the regulation of GAL1.  相似文献   

2.
Heterochromatin at yeast telomeres and silent mating (HM) loci represses adjacent genes and is formed by the binding and spreading of silencing information regulators (SIR proteins) along histones. This involves the interaction between the C terminus of SIR3 and the N terminus of histone H4. Since H4 is hypoacetylated in heterochromatin we wished to determine whether acetylation is involved in regulating the contacts between SIR3 and H4. Binding of H4 peptide (residues 1-34) acetylated at lysines Lys-5, Lys-8, Lys-12, and Lys-16 to an immobilized SIR3 protein fragment (residues 510-970) was investigated using surface plasmon resonance. We find that acetylation of H4 lysines reduces binding (K(a)) of H4 to SIR3 in a cumulative manner so that the fully acetylated peptide binding is decreased approximately 50-fold relative to unacetylated peptide. Thus, by affecting SIR3-H4 binding, acetylation may regulate the formation of heterochromatin. These data help explain the hypoacetylated state of histone H4 in heterochromatin of eukaryotes.  相似文献   

3.
4.
5.
Silencers, silencing, and heritable transcriptional states.   总被引:46,自引:1,他引:45       下载免费PDF全文
  相似文献   

6.
7.
8.
9.
10.
11.
12.
P. Laurenson  J. Rine 《Genetics》1991,129(3):685-696
  相似文献   

13.
14.
Yeast histone H4 function was probed in vivo by deleting segments of this extremely conserved 102 amino acid protein. Deletions in the hydrophobic core of H4 are lethal and block chromosomal segregation. In contrast, deletions at the hydrophilic N terminus (residues 4-28) and C terminus (residues 100-102) are viable. However, N-terminal deletion alters normal chromatin structure and lengthens the cell cycle, especially G2. Surprisingly, removal of the H4 N terminus also derepresses the silent mating type loci, HML alpha and HMRa, disrupting mating. This activation is specific since other regulated genes (GAL10, PHO5, CUP1) are repressed and induced normally in these cells. Deletions of the hydrophilic N termini of H2A or H2B do not show this effect on mating. These experiments allow us to define a unique H4 function that is not shared by other histones (H2A and H2B).  相似文献   

15.
16.
17.
We have developed a highly specific antibody set for acetylation sites in yeast histones H4 (K5, K8, K12, and K16); H3 (K9, K14, K18, K23, and K27); H2A (K7); and H2B (K11 and K16). Since ELISA does not assure antibody specificity in chromatin immunoprecipitation, we have employed additional screens against the respective histone mutations. We now show that telomeric and silent mating locus heterochromatin is hypoacetylated at all histone sites. At the INO1 promoter, RPD3 is required for strongly deacetylating all sites except H4 K16, ESA1 for acetylating H2A, H2B, and H4 sites except H4 K16, and GCN5 for acetylating H2B and H3 sites except H3 K14. These data uncover the in vivo usage of acetylation sites in heterochromatin and euchromatin.  相似文献   

18.
The yeast silent mating loci HML and HMR are located at opposite ends of chromosome III adjacent to the telomeres. Mutations in the N terminus of histone H4 have been previously found to derepress the yeast silent mating locus HML to a much greater extent than HMR. Although differences in the a and alpha mating-type regulatory genes and in the cis-acting silencer elements do not appear to strongly influence the level of derepression at HMR, we have found that the differential between the two silent cassettes is largely due to the position of the HMR cassette relative to the telomere on chromosome III. While HML is derepressed to roughly the same extent by mutations in histone H4 regardless of its chromosomal location, HMR is affected to different extends depending upon its chromosomal positioning. We have found that HMR is more severely derepressed by histone H4 mutations when positioned far from the telomere (cdc14 locus on chromosome VI) but is only minimally affected by the same mutations when integrated immediately adjacent to another telomere (ADH4 locus on chromosome VII). These data indicate that the degree of silencing at HMR is regulated in part by its neighboring telomere over a distance of at least 23 kb and that this form of regulation is unique for HMR and not present at HML. These data also indicate that histone H4 plays an important role in regulating the silenced state at both HML and HMR.  相似文献   

19.
20.
Fourteen novel single-amino-acid substitution mutations in histone H3 that disrupt telomeric silencing in Saccharomyces cerevisiae were identified, 10 of which are clustered within the alpha1 helix and L1 loop of the essential histone fold. Several of these mutations cause derepression of silent mating locus HML, and an additional subset cause partial loss of basal repression at the GAL1 promoter. Our results identify a new domain within the essential core of histone H3 that is required for heterochromatin-mediated silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号