首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
By the same method as in the previous paper by the author (Bull. Math. Biophysics,23, 55–68, 1961), the mobile electron system is studied in tryptophan which has donated an electron to another molecule. The obtained net charge distribution of tryptophan+ is compared with those of the semiquinones of riboflavin (FMN, FMNH and FMNH 2 + ). From this comparison, a suggestion is obtained for the structure of each of two charge transfer complexes between riboflavin and tryptophan in neutral and acid solution.  相似文献   

2.
Spectra of detached electrons produced in mutual collisions of D ions in the relative energy range of 1.8−6.1 eV were investigated. In addition to electrons corresponding to conversion of D ions into D0 atoms, peaks corresponding to the production of D2 molecules and D2 molecular ions in the ground electronic state were revealed. The existence of D2 ions over a time longer than the period of molecular oscillations was confirmed experimentally for the first time.  相似文献   

3.
In the last years, there has been a growing interest in the study of transition metal nanoparticles (Nps) due to their potential applications in several fields of science and technology. In particular, their optical properties are governed by the characteristics of the dielectric function of the metal, its size and environment. This work analyses the separated contribution of free and bound electrons on the optical properties of copper Nps. Usually, the contribution of free electrons to the dielectric function is corrected for particle size through the modification of the damping constant, which is changed as usual introducing a term inversely proportional to the particle’s radius to account for the extra collisions with the boundary when the size approaches the electronic mean free path limit (about 10 nm). For bound electron contribution, the interband transitions from the d-band to the conduction band are considered together with the fact that the electronic density of states in the conduction band must be made size-dependent to account for the larger spacing between electronic energy levels as the particle decreases in size below 2 nm. Taking into account these specific modifications of free and bound electron contributions to the dielectric function, it was possible to fit the bulk complex dielectric function, and consequently, determine optical parameters and band energy values such as the coefficient for bound electron contribution Q bulk?=?2?×?1024, gap energy E g?=?1.95 eV, Fermi energy E F?=?2.15 eV, and damping constant for bound electrons γ b?=?1.15?×?1014 Hz. With both size-dependent contributions to the dielectric function, extinction spectra of copper Nps in the subnanometer radius range can be calculated using Mie’s theory and its behaviour with size can be analysed. These studies are applied to fit experimental extinction spectra of very small spherical core–shell Cu–Cu2O Nps generated by ultrafast laser ablation of a solid target in water. Theoretical calculations for subnanometric core radius are in excellent agreement with experimental results obtained from core–shell colloidal Nps. From the fitting, it is possible determining core radius and shell thickness of the Nps, showing that optical extinction spectroscopy is a good complementary technique to standard high-resolution electron microscopy for sizing spherical nanometric-subnanometric Nps.  相似文献   

4.
Coherent anti-Stokes Raman scattering spectra, in resonance with the isoalloxazine visible electronic transition, have been obtained down to 300 cm?1 for flavin adenine dinucleotide, riboflavin binding protein and glucose oxidase, in H2O and D2O. Several isoalloxazine vibrational modes can be identified by analogy with those of uracil. Of particular interest is a band at ~1255 cm?1 in H2O, which is replaced by another at ~1295 cm?1, in D2O. The H2O band appears to be a sensitive monitor of H-bonding of the N3 isoalloxazine proton to a protein acceptor group. It shifts down by 10 cm?1 in riboflavin binding protein, and disappears altogether in glucose oxidase. Other band shifts, of 3–5 cm?1, are similar for the two flavoproteins, and may reflect environmental changes between aqueous solution and the protein binding pockets.  相似文献   

5.
Dissimilatory metal reducing bacteria can exchange electrons extracellularly and hold great promise for their use in simultaneous wastewater treatment and electricity production. This study investigated the role of riboflavin, an electron carrier, in the decolourisation of Congo red in microbial fuel cells (MFCs) using Shewanella oneidensis MR-1 as a model organism. The contribution of the membrane-bound protein MtrC to the decolourisation process was also investigated. Within the range of riboflavin concentrations tested, 20 µM was found to be the best with >95% of the dye (initial concentration 200 mg/L) decolourised in MFCs within 50 h compared to 90% in the case where no riboflavin was added. The corresponding maximum power density was 45 mW/m2. There was no significant difference in the overall decolourisation efficiencies of Shewanela oneidensis MR-1 ΔMtrC mutants compared to the wild type. However, in terms of power production the mutant produced more power (Pmax 76 mW/m2) compared to the wild type (Pmax 46 mW/m2) which was attributed to higher levels of riboflavin secreted in solution. Decolourisation efficiencies in non-MFC systems (anaerobic bottles) were similar to those under MFC systems indicating that electricity generation in MFCs does not impair dye decolourisation efficiencies. The results suggest that riboflavin enhances both decolourisation of dyes and simultaneous electricity production in MFCs.  相似文献   

6.
Abstract

The photochemical fate of riboflavin (vitamin B2) in the presence of barbituric acid was examined employing polarographic detection of dissolved oxygen and steady-state and time-resolved spectroscopy. Under visible light, riboflavin reacts with barbituric acid – the latter being transparent to this type of photo-irradiation – via radicals and reactive oxygen species, such as singlet molecular oxygen [O2(1Δg)] and superoxide radical anion, which are generated from the excited triplet state of the vitamin. As a result, both the vitamin and barbituric acid are photodegraded. Kinetic and mechanistic studies on the photoreactions of riboflavin in the presence of barbituric acid indicate the excellent quenching ability of the latter towards O2(1Δg).  相似文献   

7.
The potential energy curves of the 19 lowest-lying singlet and triplet electronic states in the 2S+1Λ(+/?) representation of the AsCl molecule have been investigated using the complete active space self-consistent field (CASSCF) with multireference configuration interaction (MRCI+Q) method including single and double excitations and with the Davidson correction. The harmonic frequency ω e, the internuclear distance R e, the dipole moment, and the electronic energy with respect to the ground state T e were calculated for the electronic states considered. By using the canonical functions approach, the eigenvalue E v, the rotational constant B v, and the abscissae of the turning points R min and R max were calculated for the electronic states up to the vibrational level v?=?60. The values obtained in the present work agree well with corresponding values available in the literature for several electronic states. Fifteen new electronic states were investigated here for the first time.  相似文献   

8.
Jane C. Chang  T.P. Das 《BBA》1978,502(1):61-79
The electronic structures of the cation and anion of bacteriopheophytin a monomer are investigated by the self-consistent charge extended Hückel procedure including both π and σ electrons in the molecule. The calculated electron distributions are tested by comparison of the predicted hyperfine fields at proton sites with experimental data in both the ions and most important, by their ability to explain the observed trend in the hyperfine fields in going from the cation bacteriopheophytin+a to the anion, a trend that is similar in many respects to the corresponding observed trend for the bacteriochlorophyll a cation and anion. Good agreement is obtained with experiment both for the absolute values of the observed proton hyperfine fields in both bacteriopheophytin a cation and anion as well as the ratio of the corresponding fields for the two systems. In particular, our calculated electron distributions in the two molecules lead, for the cation, to substantially different proton hyperfine fields for the two methyl groups attached to rings I and III, while for the anion, the corresponding fields are much closer to each other, a trend in good agreement with recent data. Also explained are the features of larger methine hyperfine constants in the anion as compared to the cation and the reverse trend for the protons in rings II and IV. Other features of the calculated electron distributions in the cation and anion are discussed and compared with each other. Possible additional measurements in the two systems that could provide further tests of the theoretically obtained electron distribution will be pointed out.  相似文献   

9.
The reaction mechanisms involved in the scavenging of hydroxyl (OH·), methoxy (OCH3 ·), and nitrogen dioxide (NO2 ·) radicals by ellagic acid and its monomethyl and dimethyl derivatives were investigated using the transition state theory and density functional theory. The calculated Gibbs barrier energies associated with the abstraction of hydrogen from the hydroxyl groups of ellagic acid and its monomethyl and dimethyl derivatives by an OH· radical in aqueous media were all found to be negative. When NO2 · was the radical involved in hydrogen abstraction, the Gibbs barrier energies were much larger than those calculated when the OH· radical was involved. When OCH3 · was the hydrogen-abstracting radical, the Gibbs barrier energies lay between those obtained with OH· and NO2 · radicals. Therefore, the scavenging efficiencies of ellagic acid and its monomethyl and dimethyl derivatives towards the three radicals decrease in the order OH· >> OCH3 · > NO2 ·. Our calculated rate constants are broadly in agreement with those obtained experimentally for hydrogen abstraction reactions of ellagic acid with OH· and NO2· radicals.
Figure
Reactant complex (RC), transition state (TS), and product complex (PC) for hydrogen abstraction from ellagic acid by an OH· radical  相似文献   

10.
Summary Hematoporphyrin (Hp) solutions were subjected to a wide range high intensity (0.2–10.0 GW/cm2) near-UV laser pulse radiation ( exc=355 nm, pulse duration 30 ps). The formation of stable Hp photoproducts was followed by UV-VIS absorption spectroscopy and liquid-gel column chromatography. As judged by the influence of free radial scavengers, a significant part of the products is assigned to arise from the reaction of Hp with OH · (and H ·) radicals. Using nitroxide radicals (TEMPO and TEMPONE) and the spin trap DMPO the generation of primary transient photoproducts, hydrated electrons (e aq ), OH · and H · radicals, was studied varying the pulse intensity at a constant absorbed light energy. The results showed that bi-photonic processes are responsible for the observed product generation (different fore aq photoejection and OH · (OH ·) formation). A tentative diagram of the Hp excitation routes involved in the present high intensity laser flash photolysis is suggested. According to it, OH · and H · radicals are supposed to be generated in a resonance energy transfer reaction from highly excited Hp** to water molecules (H2O sensitization).  相似文献   

11.
《Inorganica chimica acta》1986,115(2):163-167
The compound [Mo(tdt)3] (tdt=toluene-3,4-dithiolate) reacts with aromatic hydrocarbons, N-heterocycles, riboflavin and molybdoenzyme substrates such as purines and aldehydes forming the reduced species [Mo(tdt)3] and organic radicals. The reactions were followed with UV-Vis and ESR spectroscopy; organic radicals were trapped with 2-methyl-2-nitrosopropane and 5,5-dimethyl-1-pyrroline-N-oxide. The stoichiometry of the reaction with naphthalene and triphenylphosphine, determined by Job's method of continuous variations, was 1:1.The solvent was dichloromethane. For the reactions to occur the presence of a base was necessary, a reactant or added ethanol for the hydrocarbon reactions. The reactions involved electron transfer from the organic molecule to the molybdenum dithiolate.  相似文献   

12.
The physical properties of a material are defined by its electronic structure. Electrons in solids are characterized by energy (ω) and momentum (k) and the probability to find them in a particular state with given ω and k is described by the spectral function A(k, ω). This function can be directly measured in an experiment based on the well-known photoelectric effect, for the explanation of which Albert Einstein received the Nobel Prize back in 1921. In the photoelectric effect the light shone on a surface ejects electrons from the material. According to Einstein, energy conservation allows one to determine the energy of an electron inside the sample, provided the energy of the light photon and kinetic energy of the outgoing photoelectron are known. Momentum conservation makes it also possible to estimate k relating it to the momentum of the photoelectron by measuring the angle at which the photoelectron left the surface. The modern version of this technique is called Angle-Resolved Photoemission Spectroscopy (ARPES) and exploits both conservation laws in order to determine the electronic structure, i.e. energy and momentum of electrons inside the solid. In order to resolve the details crucial for understanding the topical problems of condensed matter physics, three quantities need to be minimized: uncertainty* in photon energy, uncertainty in kinetic energy of photoelectrons and temperature of the sample.In our approach we combine three recent achievements in the field of synchrotron radiation, surface science and cryogenics. We use synchrotron radiation with tunable photon energy contributing an uncertainty of the order of 1 meV, an electron energy analyzer which detects the kinetic energies with a precision of the order of 1 meV and a He3 cryostat which allows us to keep the temperature of the sample below 1 K. We discuss the exemplary results obtained on single crystals of Sr2RuO4 and some other materials. The electronic structure of this material can be determined with an unprecedented clarity.  相似文献   

13.
Results from experimental studies of bremsstrahlung and characteristic radiation spectra from laser targets irradiated with ultrashort laser pulses with intensities of up to ~1019 W/cm2 are presented. The continuous spectra of hard X-ray emission from Ta and Al targets and the line spectrum of copper were measured. The temperature of fast electrons was obtained from the measured hard X-ray spectra, and the Kα radiation yield from Ta was measured. The energy conversion efficiency of laser radiation into the copper characteristic radiation was obtained from the measured yield of Kα radiation.  相似文献   

14.
《BBA》2022,1863(5):148547
The Na+-pumping NADH-ubiquinone (UQ) oxidoreductase (Na+-NQR) is an essential bacterial respiratory enzyme that generates a Na+ gradient across the cell membrane. However, the mechanism that couples the redox reactions to Na+ translocation remains unknown. To address this, we examined the relation between reduction of UQ and Na+ translocation using a series of synthetic UQs with Vibrio cholerae Na+-NQR reconstituted into liposomes. UQ0 that has no side chain and UQCH3 and UQC2H5, which have methyl and ethyl side chains, respectively, were catalytically reduced by Na+-NQR, but their reduction generated no membrane potential, indicating that the overall electron transfer and Na+ translocation are not coupled. While these UQs were partly reduced by electron leak from the cofactor(s) located upstream of riboflavin, this complete loss of Na+ translocation cannot be explained by the electron leak. Lengthening the UQ side chain to n-propyl (C3H7) or longer significantly restored Na+ translocation. It has been considered that Na+ translocation is completed when riboflavin, a terminal redox cofactor residing within the membrane, is reduced. In this view, the role of UQ is simply to accept electrons from the reduced riboflavin to regenerate the stable neutral riboflavin radical and reset the catalytic cycle. However, the present study revealed that the final UQ reduction via reduced riboflavin makes an important contribution to Na+ translocation through a critical role of its side chain. Based on the results, we discuss the critical role of the UQ side chain in Na+ translocation.  相似文献   

15.
Abstrac A study is made of the nonlocal nature of the electron energy distribution function in the positive column of a glow discharge in a tube filled with pure oxygen. The distribution function and the axial (E z) and radial (E r) electric fields as functions of radius are measured using an array of mobile probes. The experimentally obtained spatial profiles of the distribution function are used to test the applicability of the two-term approximation to the distribution function of the electrons with a nonlocal energy spectrum. The distribution function in a specified electric field E=E z +E r (where E zE r) is calculated by solving the coordinate-dependent Boltzmann equation in the two-term approximation and by directly integrating the equations of electron motion using the Monte Carlo method. A comparison between the experimental data and the results of simulations carried out for a broad parameter range shows that, in the case of a highly nonlocal electron energy spectrum, the two-term approximation makes it possible to calculate the electron distribution function with a fairly good accuracy, in which case, however, in imposing the boundary conditions, the electron losses at the plasma surface should be treated in the kinetic approximation. It is shown that using the reflection coefficient of the plasma surface for electrons instead of the loss cone in space makes it possible to accurately calculate the electron energy distribution function over the entire parameter range under consideration, including the transient region in which the electron-energy relaxation length is comparable to the characteristic plasma dimension. __________ Translated from Fizika Plazmy, Vol. 26, No. 11, 2000, pp. 1038–1045. Original Russian Text Copyright ? 2000 by Ivanov, Klopovskii, Lopaev, Rakhimov, Rakhimova.  相似文献   

16.
Flash photolysis techniques have been utilized to investigate the reactivity patterns of flavin radical species. Rate constants for disproportionation were found to be la the following order: lumiflavin>FMN>FAD and neutral radicals>anionic radicals. Neutral flavin radicals react with oxygen at a rate which is at least 104 times slower than the anionic species. No evidence for an intermediate complex or adduct is obtained in this reaction. The pK values for the ionization of the neutral flavin radicals are in the order FAD>FMN>riboflavin=limiflavin. The rates of reaction of ferricyanide with flavin radicals are essentially independent of pH, whereas benzoquinone reacts slightly more slowly (5 times) with the neutral flavin radical than with the anionic form. Cytochromec reacts at least ten times more slowly with flavin radicals than does ferricyanide.  相似文献   

17.
Free radicals can be scavenged from biological systems by genistein, daidzein, and their methyl derivatives through hydrogen atom transfer (HAT), single-electron transfer (SET), and sequential proton-loss electron-transfer (SPLET) mechanisms. Reactions between these derivatives and the free radicals OH., OCH3., and NO2. via the HAT mechanism in the gas phase were studied using the transition state theory within the framework of DFT. Solvation of all the species and complexes involved in the HAT reactions in aqueous media was treated by performing single point energy calculations using the polarizable continuum model (PCM). The SET and SPLET mechanisms for the above reactions were also considered by applying the Marcus theory of electron transfer, and were found to be quite sensitive to geometry and solvation. Therefore, the geometries of all the species involved in the SET and SPLET mechanisms were fully optimized in aqueous media. The calculated barrier energies and rate constants of the HAT-based scavenging reactions showed that the OH group of the B ring in genistein, daidzein, and their methyl derivatives plays a major role in the scavenging of free radicals, and the role of this OH group in the HAT-based free-radical scavenging decreases in the following order: OH.?>?OCH3. > NO2.. The SPLET mechanism was found to be an important mechanism in these free-radical scavenging reactions, whereas the SET mechanism was not important in this context.  相似文献   

18.
The evidence for solid state physical processes in diverse biological systems is reviewed. Semiconduction of electrons across the enzyme particles as the rate-limiting process in cytochrome oxidase is evidenced by the peculiar kinetic patterns of this enzyme and by microwave Hall effect measurements. PN junction conduction of electrons is suggested by kinetics of photobiological free radicals in eye and photosynthesis. Superconduction at physiological temperatures may be involved in growth and nerve. Phonons and polarons seem likely to be involved in mitochondrial phosphorylation. Piezoelectricity and pyroelectricity may be involved in growth and nerve. Infrared electromagnetic waves may transmit energy in lipid bilayers of nerve and mitochondria. Complexed sodium and potassium ions in structured cell water may be analogous to valence band electrons in a semiconductor, and the free cations may be considered analogous to conduction band electrons. Ionic processes in cell water therefore resemble electronic conduction processes in solid semiconductors, which leads to kinetic predictions in agreement with experiment. The future of solid state biology depends on the development of new experimental methods able to measure solid state physical properties in biological materials which are non-crystalline, impure, particulate, and wet.  相似文献   

19.
The interaction of NO and O?2free radicals generated from PMA (phorbol myristate acetate)-stimulated PMN (polymorphonuclear leukocytes) was studied by a nitroxide spin trap, DMPO (5,5-dimethyl-1-pyrroline-1-oxide). It was found that addition of L-arginine to the system would significantly decrease the trapped O?2by DMPO and addition of NG-monomethyl-arginine (NGMA) would significantly increase the trapped O?2by DMPO. It was proved that the formation of ONOO?by the reaction of NO and O?2was the main reason for the decrease of trapped O?2in the experiment with xanthine/xanthine oxidase and irradiation of riboflavin systems. The yield of NO during this process was calculated. The generation dynamic of NO was studied by a luminol-dependent chemiluminescence technique and it was found that after stimulation of PMN by PMA, there would be an immediate, significant chemi-luminescence, which came mainly from the active oxygen free radicals generated by PMN. If L-arginine was added to this system, the chemiluminescence would increase about 100-fold, but NGMA inhibited the increase of the chemiluminescence. Ten minutes after addition of L-arginine, this increase did not change, the chemiluminescence peak decreased gradually, but the half life increased. The ESR and chemiluminescence properties of NO and ONOO?synthesized were also studied in model systems.  相似文献   

20.
Pulse radiolytic studies of α-tocopherol (αTH) oxidation-reduction processes were carried out with low doses (5 Gy) of high-energy electrons in O2−, N2−, and air-saturated ethanolic solutions. Depending on the concentration of oxygen in solution, two different radicals, A· and B·, were observed. The first, A·, was obtained under N2 and results from aTH reaction with solvated electron (kaTH+csolv = 3.4 × 108 mol−1 liter s−1) and with H3C-ĊH-OH, (R·) (kaTH + R· = 5 × 105 mol−1 liter s−1). B·, observed under O2, is produced by αTH reaction with RO2 peroxyl radicals (kaTH + RO2. = 9.5 × 104 mol−1 liter s−1).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号