首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Regulation of Ca2+ entry is a key process for lymphocyte activation, cytokine synthesis and proliferation. Several members of the transient receptor potential (TRP) channel family can contribute to changes in [Ca2+]in; however, the properties and expression levels of these channels in human lymphocytes continue to be elusive. Here, we established and compared the expression of the most Ca2+-selective members of the TRPs, Ca2+ channels transient receptor potential vanilloid 5 and 6 (TRPV5 and TRPV6), in human blood lymphocytes (HBLs) and leukemia Jurkat T cells. We found that TRPV6 and TRPV5 mRNAs are expressed in both Jurkat cells and quiescent HBLs; however, the levels of mRNAs were significantly higher in malignant cells than in quiescent lymphocytes. Western blot analysis showed TRPV5/V6 proteins in Jurkat T cells and TRPV5 protein in quiescent HBLs. However, the expression of TRPV6 protein was switched off in quiescent HBLs and turned on after mitogen stimulation of the cells with phytohemagglutinin. Inwardly directed monovalent currents that displayed characteristics of TRPV5/V6 currents were recorded in both Jurkat cells and normal HBLs. In outside–out patch-clamp studies, currents were reduced by ruthenium red, a nonspecific inhibitor of TRPV5/V6 channels. In addition, ruthenium red downregulated cell-cycle progression in both activated HBLs and Jurkat cells. Thus, we identified TRPV5 and TRPV6 calcium channels, which can be considered new candidates for Ca2+ entry into human lymphocytes. The correlation between expression of TRPV6 channels and the proliferative status of lymphocytes suggests that TRPV6 may be involved in the physiological and/or pathological proliferation of lymphocytes.  相似文献   

3.
4.
Proteome analysis of Jurkat T cells was performed in order to identify proteins that are modified during apoptosis. Subtractive analysis of two-dimensional gel patterns of apoptotic and nonapoptotic cells revealed differences in 45 protein spots. 37 protein spots of 21 different proteins were identified by peptide mass fingerprinting using matrix-assisted laser desorption/ionization mass spectrometry. The hnRNPs A0, A2/B1, A3, K, and R; the splicing factors p54(nrb), SRp30c, ASF-2, and KH-type splicing regulatory protein (FUSE-binding protein 2); and alpha NAC, NS1-associated protein 1, and poly(A)-binding protein 4 were hitherto unknown to be involved in apoptosis. The putative cleavage sites of the majority of the proteins could be calculated by the molecular masses and isoelectric points in the two-dimensional electrophoresis gel, the peptide mass fingerprints, and after translation by treatment with recombinant caspase-3. Remarkably, 15 of the 21 identified proteins contained the RNP or KH motif, the best characterized RNA-binding motifs.  相似文献   

5.
Inhibition of DNA synthesis and cell proliferation of mouse 3T3 cells by aphidicolin did not affect the expression of cyclin, a nuclear protein whose synthesis correlates with cell proliferation, as determined by quantitative two-dimensional gel electrophoresis analysis. Serum stimulation of quiescent 3T3 cells revealed that cyclin synthesis increases shortly before DNA synthesis. Inhibition of DNA synthesis by aphidicolin in serum-stimulated quiescent cells did not affect the increase of cyclin following stimulation. These results demonstrate that cyclin synthesis is not coupled to DNA synthesis and that it is one of the latest events before DNA replication.  相似文献   

6.
Proteins and protein subunits from Novikoff hepatoma cells have been mapped by two-dimensional polyacrylamide gel electrophoresis utilizing the BASO-DALT system to resolve the basic proteins. Utilizing this technique, it has been demonstrated that human urine contains proteins that retain biological activity and can stimulate synthesis of several new proteins in neoplastic cells. This stimulatory activity has been detected in urine from cancer patients and normal individuals.  相似文献   

7.
Cytoplasmic extracts prepared from T cell lines undergoing antigen-specific, interleukin-2 (IL-2)-dependent proliferation were tested for their ability to induce DNA synthesis in isolated, quiescent nuclei. A tetanus toxoid (TET)-specific T cell line, established from peripheral blood of a normal human volunteer, was stimulated in the presence of relevant antigen and 1 unit/ml IL-2. Cytoplasmic extracts prepared from these cells were capable of inducing DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated, quiescent nuclei. The ability of cytoplasmic extracts to induce DNA synthesis in isolated nuclei correlated positively with the degree of proliferation induced in these cells. In contrast, incubation of this T cell line in the absence of antigen failed to induce proliferation and cytoplasmic extracts prepared from these cells induced little to no DNA synthesis in isolated, quiescent nuclei. The factor present in the cytoplasm of T cells stimulated with relevant antigen in the presence of IL-2 is similar, if not identical, to a factor which we have previously demonstrated in cytoplasmic extracts prepared from transformed lymphoblastoid cell lines and from mitogenically stimulated normal human peripheral blood mononuclear cells. This factor, which we have called activator of DNA replication (ADR) is a heat-labile protein, and is inactivated by treatment with protease inhibitors, including aprotinin. The ability of cytoplasmic extracts from T cells undergoing antigen-specific, IL-2-dependent proliferation to induce DNA synthesis in isolated, quiescent nuclei was markedly inhibited in the presence of aprotinin, providing strong evidence that a cytoplasmic activator of DNA replication, ADR, is involved in the signal transduction process for antigen-specific, IL-2-dependent T cell proliferation. ADR may represent a common intracellular mediator of DNA synthesis in activated and transformed lymphocytes.  相似文献   

8.
9.
CCR6 is expressed by memory T cells (mTC) and is a requirement for efficient arrest of a subset of mTC to activated human dermal microvascular endothelial cells (HDMEC) under physiologic shear stress. We now address whether CCR6 alone is sufficient to induce arrest of a model T cell line (Jurkat) that shows low expression of all CCRs tested (CCR1-10). Herein, we transduced Jurkat (JK) T cells expressing fucosyltransferase VII with a chimeric chemokine receptor consisting of CCR6 fused to enhanced green fluorescent protein. In contrast to the starting JK lines, the resulting cell line (JK fucosyltransferase VII-CCR6) migrated 6-fold better to CCL20 in chemotaxis assays, arrested in response to CCL20 that was immobilized to plastic, and demonstrated a 2.5-fold increase in adhesion to activated HDMEC (p = 0.001). Adhesion was blocked by anti-CD18 mAb (p = 0.005) but not by anti-CD49d mAb (p = 0.3). After arrest on recombinant substrates, CCR6 clustered on the surface as detected by real-time observation of enhanced green fluorescent protein fluorescence. Dual-label confocal microscopy revealed that LFA-1 (CD18 and CD11a), but not CXCR4, colocalized with clustered CCR6 in the presence of immobilized CCL20. Thus, the functional expression of CCR6 is sufficient to provide the chemokine signaling necessary to induce arrest of a JK T cell line to activated HDMEC. Clustering of CCR6 and coassociation with critical integrins may serve to strengthen adhesion between T cells and activated endothelial cells.  相似文献   

10.
Synthesis of cyclin in serum-stimulated quiescent 3T3 cells increases shortly before DNA synthesis after 10 h of stimulation, reaching a maximum after 16 h. Inhibition of DNA synthesis by hydroxyurea does not affect the increase of cyclin following stimulation, as determined by quantitative two-dimensional gel electrophoresis. The levels of cyclin decrease dramatically at the end of the S-phase. Cells kept in the presence of hydroxyurea (G1/S boundary) do not show this decrease in cyclin, indicating that its amounts are regulated by events occurring during the S-phase. Immunofluorescence studies of serum-stimulated quiescent cells in the presence of hydroxyurea, using proliferating cell nuclear antigen (PCNA) autoantibodies, confirm the results obtained by protein analysis. They also reveal that there are dramatic changes in the nuclear distribution of cyclin and that these depend on DNA synthesis or events occurring during the S-phase. Cyclin (PCNA) is no longer detectable at the end of the S-phase. However, pulse-chase experiments indicate that this protein is very stable, suggesting that it possibly interacts with other macromolecules rendering it inaccessible to the antibody. These results strengthen the notion that cyclin is an important component of the events leading to DNA replication and cell division.  相似文献   

11.
Respirometric experiments demonstrated that the oxygen uptake by Thiobacillus ferrooxidans strain LR was not inhibited in the presence of 200 mM copper. Copper-treated and untreated cells from this T. ferrooxidans strain were used in growth experiments in the presence of cadmium, copper, nickel and zinc. Growth in the presence of copper was improved by the copper-treated cells. However, no growth was observed for these cells, within 190 h of culture, when cadmium, nickel and zinc were added to the media. Changes in the total protein synthesis pattern were detected by two-dimensional polyacrylamide gel electrophoresis for T. ferrooxidans LR cells grown in the presence of different heavy metals. Specific proteins were induced by copper (16, 28 and 42 kDa) and cadmium (66 kDa), whereas proteins that had their synthesis repressed were observed for all the heavy metals tested. Protein induction was also observed in the cytosolic and membrane fractions from T. ferrooxidans LR cells grown in the presence of copper. The level of protein phosphorylation was increased in the presence of this metal.  相似文献   

12.
In the present study we tested whether the forced expression of the CD3zeta chain within detergent-resistant, glycosphingolipid-enriched membrane microdomains (GEMs) will result in a constitutively activated phenotype in human T cells. To this aim, a monomeric recombinant protein (LckSH4-CD3zeta), containing the intracellular part of human CD3zeta chain fused to N-terminal double-acylation motif (SH4 domain) of protein tyrosine kinase Lck, was expressed in Jurkat human T lymphoid cell line and its Lck-negative mutant, J. CaM1.6. The Lck SH4 domain indeed predominantly targeted the chimeric protein into GEMs. In transfectants derived from wild-type Jurkat cells, but not in those derived from the Lck-deficient mutant, the LckSH4-CD3zeta protein was constitutively tyrosine-phosphorylated. Tyrosine phosphorylation of a major Jurkat cell phosphoprotein (pp85) was diminished in the transfectants. However, the transfectants did not exhibit any features of constitutively activated T cells, and their responses to anti-CD3 treatment were very similar to the wild-type Jurkat cells. Thus, the constitutive expression of this form of CD3zeta chain in GEMs is not sufficient for eliciting an activated state in the Jurkat cells.  相似文献   

13.
The bacteriophage T4 gene 61 protein is required, together with the gene 41 protein and single-stranded DNA, for the synthesis of the pentaribonucleotides that are used as primers for the start of each new Okazaki DNA fragment during T4 DNA replication. Using this priming activity as an assay, we have purified the 61 protein to essential homogeneity in milligram amounts. The priming activity was identified with the product of T4 gene 61 by using two-dimensional polyacrylamide gel electrophoresis to compare all of the T4-induced proteins in wild-type and mutant infections; the purified protein co-migrates with the only detectable protein missing in a 61- mutant infection. The purified 61 protein is shown to bind to the T4 helix-destabilizing protein (gene 32 protein) and to both single-stranded and double-stranded DNA. We have failed to detect any ribonucleotide polymerizing activity in either the 61 protein or the 41 protein alone; both the 61 and 41 proteins must be present to observe any synthesis of oligoribonucleotides.  相似文献   

14.
15.
为了考察表达天冬氨酸转氨酶工程菌在转基因前后蛋白质水平的差异变化,采用固相pH梯度-SDS聚丙烯酰胺双向凝胶电泳对转基因前后的大肠杆菌(E.coli BL21)的总蛋白进行分离,银染、显色后,使用2D蛋白质图象分析系统Image Master 2D Platinum 5.0和SWISS-2D PAGE蛋白质组数据库对双向电泳图谱进行分析,识别了近600个蛋白点,比较分析了与苯丙氨酸合成途径相关的关键蛋白的差异,初步探讨了AspC基因的导入后大肠杆菌蛋白质水平的精细调控。  相似文献   

16.
17.
12-O-tetradecanoylphorbol-13-acetate (TPA), a potent tumor promoter, acts similarly to growth factors by selectively increasing the rate of production of the secreted proteins, mitogen regulated protein (MRP) and major excreted protein (MEP) by murine 3T3 cells. MRP, a 34 kilodalton (kDa) glycoprotein, is a member of the prolactin-growth hormone family of proteins. MEP, a 39 kDa glycoprotein, is a lysosomal thiol protease that is also secreted. The aim of our investigation was to determine the relation between increases in MRP and MEP production and the initiation of DNA synthesis in response to mitogens. The TNR-9 cell line is a variant of 3T3 cells in which growth factors, but not TPA and teleocidin, stimulate DNA synthesis and cell division. Using [35S]methionine to metabolically label proteins and SDS polyacrylamide gel electrophoresis to resolve the proteins, we found that growing cultures of 3T3 and TNR-9 cells responded equally well to TPA and teleocidin with increased rates of production of MRP and MEP. By contrast, the responses of quiescent TNR-9 cells to these tumor promoters in the increased production of MRP and MEP was greatly diminished compared with quiescent 3T3 cells. The changes in production of MRP in response to tumor promoters in quiescent and growing cells paralleled similar changes in the level of MRP mRNA. In summary, the ability to TPA and teleocidin to increase the rate of production of MRP and MEP correlated with the ability of these tumor promoters to stimulate DNA synthesis in quiescent 3T3 and TNR-9 cells. Evidently the biochemical condition that distinguishes TNR-9 from 3T3 cells and that limits the ability of tumor promoters to stimulate the production of MEP and MRP, and perhaps also DNA synthesis in TNR-9 cells occurs only when the cells are quiescent.  相似文献   

18.
The implication of protein phosphorylation in the mitogenic action of high density lipoproteins (HDL) on bovine vascular endothelial cells was investigated by incubating endothelial cell cultures in the presence of 32P-labeled phosphoric acid. The incorporation of 32P into proteins was measured after fractionation by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and autoradiography of the gel. In endothelial cells seeded at low density and made quiescent by serum starvation, HDL markedly and consistently enhanced the degree of phosphorylation of a Mr 27,000 protein in a time- and dose-dependent manner. Using 500 micrograms/ml HDL, 32P labeling of the 27-kDa protein was already measurable after 10 min of incubation and reached a maximum at 20-30 min. Minimal effective dose of HDL during a 30-min incubation period was in the range of 5-10 micrograms/ml. While the apolipoprotein moiety of HDL was able to mimic the effect of total HDL, the lipid part of HDL was not. Furthermore, fibroblast growth factor appeared to potentiate the effect of HDL on 27-kDa protein phosphorylation, in agreement with the synergism observed between fibroblast growth factor and HDL on endothelial cell proliferation. Two activators of protein kinase C, 12-O-tetradecanoylphorbol 13-acetate and 1-oleoyl-2-acetylglycerol also induced the phosphorylation of the 27-kDa protein. These results suggest that the 27-kDa protein may be a physiological substrate for protein kinase C and that HDL could exert their mitogenic effect on endothelial cells through activation of protein kinase C and subsequent protein phosphorylation.  相似文献   

19.
The interleukin-2 IL-2 receptor beta-chain (IL-2Rbeta) is an essential component of the receptors for IL-2 and IL-15. Although IL-2Rbeta is constitutively expressed by lymphocytes, its expression can be further induced by a number of stimuli, including phorbol 12-myristate 13-acetate (PMA). We have now characterized factors that bind to an enhancer region located between nucleotides -170 and -139 of the human IL-2Rbeta promoter. Both Sp1 and Sp3 bound to the 5' portion of this region, whereas a PMA-inducible factor (PIF) mainly bound to its 3' portion and bound to the Sp binding motifs as well. In Jurkat T cells, induction of PIF DNA binding activity was rapidly induced, required de novo protein synthesis, and was sustained at a high level for at least 23 h. Interestingly, PIF was constitutively activated in human T-cell leukemia virus type 1-transformed MT-2 cells. In this paper, we demonstrate that PIF is Egr-1 based on its recognition by anti-Egr-1 antisera in gel mobility shift assays, even though the IL-2Rbeta DNA binding motif differed substantially from the canonical Egr-1 binding site. In addition, Egr-1 bound to the Sp binding site. In Jurkat cells, both sites were required for maximal IL-2Rbeta promoter activity, and in HeLaS3 cells, transfection of Egr-1 could drive activity of a reporter construct containing both sites. Moreover, Sp1 and Egr-1 could form a complex with kinetics that correlated with the production of Egr-1 in Jurkat cells upon PMA stimulation. Thus, Sp1 and Egr-1 physically and functionally cooperate to mediate maximal IL-2Rbeta promoter activity.  相似文献   

20.
Cytomatrix synthesis in MDCK epithelial cells   总被引:1,自引:0,他引:1  
Detailed information regarding the synthesis rates of individual protein components is important in understanding the assembly and dynamics of the cytoskeletal matrix of eukaryotic cells. As an approach to this topic, the dual isotope technique of Clark and Zak (J. Biol. Chem., 256:4863-4870, 1981), was employed to measure fractional synthesis rates (FSRs) in growing and quiescent cultures of MDCK epithelial cells. Cell protein was labeled to equilibrium with [14C]leucine over several days and then pulse-labeled for 4 hours with [3H]leucine. FSRs (as percent per hour) were calculated from the 3H/14C ratio of cell extracts or individual proteins separated by two-dimensional polyacrylamide gel electrophoresis and the 3H/14C ratio of free leucine in the medium. Synthesis of total cell protein rose from approximately 1.4%/hour in quiescent cells to 3.5%/hour in the growing cultures. The latter rate was sufficient to account for the rate of protein accumulation and a low level of turnover in the growing cultures. The FSR of the buffered-Triton soluble extract was higher and the cytoskeletal FSR significantly lower than that for total protein in quiescent monolayers. This difference, however, was not observed in growing cultures. A distinct pattern of differences was seen in the FSRs of individual cytoskeletal proteins in the quiescent cultures. Vimentin synthesis was significantly lower than that of the keratins and the keratin FSRs were not obviously matched in pairwise fashion. Unexpectedly, the FSRs of alpha- and beta-tubulin diverged in quiescent cells with alpha-tubulin turnover exceeding beta-tubulin. Likewise, components of the microfilament lattice showed unequal fractional synthesis rates, myosin and alpha-actinin being faster than actin. In addition, the FSR for globular actin exceeded that of the cytoskeletal associated form. The results suggest that metabolic coupling between individual cellular filament systems is not strict. The data are, however, consistent with models that predict that assembly of a subcellular structure influences the turnover of its component proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号