首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Distance- as well as marker-dependence of genetic recombination of bacteriophage T4 was studied in crosses between rIIB mutants with known base sequences. The notion of a "basic recombination," which is the recombination within distances shorter than hybrid DNA length in the absence of mismatch repair and any marker effects, was substantiated. The basic recombination frequency per base pair can serve as an objective parameter (natural constant) of general recombination reflecting its intensity. Comparative studies of the recombination properties of rIIB mutants with various sequence changes in the mutated sites showed that the main factor determining the probability of mismatch repair in recombination heteroduplexes is the length of a continuous heterologous region. A run of A:T pairs immediately adjoining the mismatch appears to stimulate its repair. In the case of mismatches with DNA strands of unequal length, formed by frameshift mutations, the repair is asymmetric, the longer strand (bulge) being preferentially removed. A pathway for mismatch repair including sequential action of endonuclease VII (gp49)----3'----5' exonuclease (gp43)----DNA polymerase (gp43)----DNA ligase (gp30) was proposed. A possible identity of the recombinational mismatch repair mechanism to that operating to produce mutations via sequence conversion is discussed.  相似文献   

2.
The effects of primase and topoisomerase II deficiency on the double-strand break (DSB) repair and genetic recombination in bacteriophage T4 were studied in vivo using focused recombination. Site-specific DSBs were induced by SegC endonuclease in the rIIB gene of one of the parents. The frequency/distance relationship was determined in crosses of the wild-type phage, topoisomerase II mutant amN116 (gene 39), and primase mutant E219 (gene 61). Ordinary two-factor (i × j) and three-factor (i k × j) crosses between point rII mutations were also performed. These data provide information about the frequency and distance distribution of the single-exchange (splice) and double-exchange (patch) events. In two-factor crosses ets1 × i, the topoisomerase and primase mutants had similar recombinant frequencies in crosses at ets1–i distances longer than 1000 bp, comprising about 80% of the corresponding wild-type values. They, however, differ remarkably in crosses at shorter distances. In the primase mutant, the recombinant frequencies are similar to those in the wild-type crosses at distances less than 100 bp, being a bit diminished at longer distances. In two-factor crosses ets1 × i of the topoisomerase mutant, the recombinant frequencies were reduced ten-fold at the shortest distances. In three-factor crosses a6 ets1 × i, where we measure patch-related recombination, the primase mutant was quite proficient across the entire range of distances. The topoisomerase mutant crosses demonstrated virtually complete absence of rII+ recombinants at distances up to 33 bp, with the frequencies increasing steadily at longer distances. The data were interpreted as follows. The primase mutant is fully recombination-proficient. An obvious difference from the wild-type state is some shortage of EndoVII function leading to prolonged existence of HJs and thus stretched out ds-branch migration. This is also true for the topoisomerase mutant. However, the latter is deficient in the ss-branch migration step of the DSB repair pathway and partially deficient in HJ initiation. In apparent contradiction to their effects on the DSB-induced site-specific recombination, the topoisomerase and primase mutants demonstrated about 3–8-fold increase in the recombinant frequencies in the ordinary crosses, with the recombination running exclusively via patches. This implies that most of the spontaneous recombination events are not initiated by dsDNA ends in these mutants.  相似文献   

3.
Mismatch repair and recombination in E. coli   总被引:14,自引:0,他引:14  
M Jones  R Wagner  M Radman 《Cell》1987,50(4):621-626
The involvement of the E. coli methyl-directed and very short patch (vsp) mismatch repair systems in bacteriophage lambda recombination has been studied. Genetic crosses and heteroduplex transfection experiments were performed using lambda phages with sequenced mutations in the cl gene. The results indicate that methyl-directed repair does operate during bacteriophage lambda recombination but generally does not contribute to the formation of recombinants involving close markers. Vsp repair apparently acts during bacteriophage lambda recombination to produce recombinants involving close markers because its action does not involve extensive excision tracts. Marker-specific hyperrecombination and the apparent clustering of genetic exchanges in bacteriophage lambda recombination can be accounted for by the action of the vsp repair system.  相似文献   

4.
The effect of nonhomologous DNA sequences at one or both sides of short genetic intervals on recombination within that interval was investigated, using an interplasmidic recombination system in Escherichia coli K-12. The recombining plasmids were derivatives of pBR322 and pACYC184, which share a 1330-nucleotide sequence that includes the tet gene. The genetic interval was defined by the HindIII and BamHI or BamHI and the SalI restriction endonuclease sites of this gene. The substantial differences between recombination frequencies measured within intervals bracketed or bounded on one side by major nonhomologies suggests that, in this system, strand exchange is polar and is blocked by major nonhomologies. This conclusion is substantiated by results of three-factor crosses and by structural analysis of recombination products. Results of two-factor crosses in recA genetic background and structural analysis of recombination products suggest that strand exchange occurs in the absence of a functional recA gene. "Opening" a bracketed BamHI-SalI genetic interval of the tet gene, at the SalI site, by substituting a major insertion with a short deletion, results in an increase in recombination frequency, within this genetic interval, which is greater than expected on the basis of the ratio of the length of homology on the two sides of the SalI site. This observation suggests that a genetic element that may affect rate of recombination initiation, polarity of strand exchange, template specificity in mismatch repair or more than one of these events may be present on the outer side of the SalI site of the tet gene.  相似文献   

5.
Recombinational effects of the antimutator allele tsL42 of gene 43 of phage T4, encoding DNA polymerase, were studied in crosses between rIIB mutants. Recombination under tsL42-restricted conditions differed from the normal one in several respects: (1) basic recombination was enhanced, especially within very short distances; (2) mismatch repair tracts were shortened, while the contribution of mismatch repair to recombination was not changed; (3) marker interference at very short distances was augmented. We infer that the T4 DNA polymerase is directly involved in mismatch repair, performing both excision of a nonmatched single strand (by its 3' -> 5' exonuclease) and filling the resulting gap. A pathway for the mismatch repair was substantiated; it includes sequential action of endo VII (gp49) -> 3'->5' exonuclease (gp43) -> DNA polymerase (gp43) -> DNA ligase (gp30). It is argued that the marker interference at very short distances may result from the same sequence of events during the final processing of recombinational intermediates.  相似文献   

6.
The product of the uvrD gene of Escherichia coli, UvrD (helicase II), is known to be involved in methyl-directed mismatch repair, transposon excision and uvrABC excision repair. In conjugational crosses, various uvrD mutants have been reported to result in higher, lower or unaffected recombination frequencies. In an attempt to clarify the role of UvrD in recombination, we have studied in vitro its effects on two key reactions driven by RecA, homologous pairing and strand exchange. We show here that UvrD efficiently prevents or reverses RecA-mediated homologous pairing. Unexpectedly, we also found that it can stimulate RecA-driven branch migration and even catalyze strand exchange in the absence of RecA. A possible in vivo role for these antagonistic activities is discussed.  相似文献   

7.
C Rayssiguier  C Dohet  M Radman 《Biochimie》1991,73(4):371-374
Interspecific recombination in conjugation between Escherichia coli and Salmonella typhimurium is several orders of magnitude lower than intraspecies recombination and is dependent on the RecA function. This low efficiency is due to a 20% divergence in the DNA sequence. The methyl-directed (mut H,L,S dependent) mismatch repair system appears to control the fidelity of homologous recombination; inactivating one of the Mut functions increases the interspecies recombination at least by 10(3)-fold. The interspecific recombination in mutS or mutL mutants is only approximately 10-fold lower than recombination in homospecific crosses as found after correction for the efficiency of mating and DNA transfer by zygotic induction experiments. The interspecific recombination is dependent on the RecABCD pathway: it was abolished in a recA mutant and decreased approximately 10(3)-fold in a recC mutant.  相似文献   

8.
In this paper, we present results of crosses designed to elucidate the structure of recombinants in the tail-fiber region of bacteriophage T4, in which a glucosylation-dependent recombinations mechanism is operative, and the cause of the "special" recombination in glycosylated crosses is discussed. We present evidence that, when phage are nonglycosylated, recombination in the tail-fiber region proceeds via long heteroduplex overlaps. Mismatched bases within such regions (in nonglycosylated phage) are repaired efficiently (as contrasted to those of glucosylated phage), but asymmetrically; that is, there may be an equal probability of resolving the mismatch to mutant or wild type.  相似文献   

9.
P. Schar  P. Munz    J. Kohli 《Genetics》1993,133(4):815-824
Hybrid DNA with mismatched base pairs is a central intermediate of meiotic recombination. Mismatch repair leads either to restoration or conversion, while failure of repair results in post-meiotic segregation (PMS). The behavior of three G to C transversions in one-factor crosses with the wild-type alleles is studied in Schizosaccharomyces pombe. They lead to C/C and G/G mismatches and are compared with closely linked mutations yielding other mismatches. A method is presented for the detection of PMS in random spores. The procedure yields accurate PMS frequencies as shown by comparison with tetrad data. A scheme is presented for the calculation of the frequency of hybrid DNA formation and the efficiency of mismatch repair. The efficiency of C/C repair in S. pombe is calculated to be about 70%. Other mismatches are repaired with close to 100% efficiency. These results are compared with data published on mutations in Saccharomyces cerevisiae and Ascobolus immersus. This study forms the basis for the detailed analysis of the marker effects caused by G to C transversions in two-factor crosses.  相似文献   

10.
The mismatch repair system is the major barrier to genetic recombination during interspecific sexual conjugation in prokaryotes. The existence of this anti-recombination activity has implications for theories of evolution and the isolation of species. To determine if this phenomenon occurs in eukaryotes, the effect of a deficiency of mismatch repair on the meiotic sterility of an interspecific hybrid of Saccharomyces cerevisiae and the closely related species Saccharomyces paradoxus was examined. The results demonstrate that the rare viable spores from these hybrids have high frequencies of aneuploidy and low frequencies of genetic exchange. Hybrids lacking mismatch repair genes PMS1 or MSH2 display increased meiotic recombination, decreased chromosome non-disjunction and improved spore viability. These observations are consistent with the proposal that the mismatch repair system is an element of the genetic barrier between eukaryotic species. We suggest that an anti-recombination activity during meiosis contributes towards the establishment of post-zygotic species barriers.  相似文献   

11.
Spontaneous and double-strand break (DSB)-induced allelic recombination in yeast was investigated in crosses between ura3 heteroalleles inactivated by an HO site and a +1 frameshift mutation, with flanking markers defining a 3.4-kbp interval. In some crosses, nine additional phenotypically silent RFLP mutations were present at approximately 100-bp intervals. Increasing heterology from 0.2 to 1% in this interval reduced spontaneous, but not DSB-induced, recombination. For DSB-induced events, 75% were continuous tract gene conversions without a crossover in this interval; discontinuous tracts and conversions associated with a crossover each comprised approximately 7% of events, and 10% also converted markers in unbroken alleles. Loss of heterozygosity was seen for all markers centromere distal to the HO site in 50% of products; such loss could reflect gene conversion, break-induced replication, chromosome loss, or G2 crossovers. Using telomere-marked strains we determined that nearly all allelic DSB repair occurs by gene conversion. We further show that most allelic conversion results from mismatch repair of heteroduplex DNA. Interestingly, markers shared between the sparsely and densely marked interval converted at higher rates in the densely marked interval. Thus, the extra markers increased gene conversion tract lengths, which may reflect mismatch repair-induced recombination, or a shift from restoration- to conversion-type repair.  相似文献   

12.
The msh6 mismatch repair gene of Schizosaccharomyces pombe was cloned, sequenced, and inactivated. Strains bearing all combinations of inactivated msh6, msh2, and swi4 (the S. pombe MSH3 ortholog) alleles were tested for their defects in mitotic and meiotic mismatch repair. Mitotic mutation rates were similarly increased in msh6 and msh2 mutants, both for reversion of a base-base substitution as well as of an insertion of one nucleotide in a mononucleotide run. Tetrad analysis and intragenic two-factor crosses revealed that meiotic mismatch repair was affected in msh6 to the same extent as in msh2 background. In contrast, loss of Swi4 likely did not cause a defect in mismatch repair, but rather resulted in reduced recombination frequency. Consistently, a mutated swi4 caused a two- to threefold reduction of recombinants in intergenic crosses, while msh2 and msh6 mutants were not significantly different from wild type. In summary, our study showed that Msh6 plays the same important role as Msh2 in the major mismatch repair pathway of S. pombe, while Swi4 rather functions in recombination.  相似文献   

13.
Mismatch repair systems correct replication- and recombination-associated mispaired bases and influence the stability of simple repeats. These systems thus serve multiple roles in maintaining genetic stability in eukaryotes, and human mismatch repair defects have been associated with hereditary predisposition to cancer. In prokaryotes, mismatch repair systems also have been shown to limit recombination between diverged (homologous) sequences. We have developed a unique intron-based assay system to examine the effects of yeast mismatch repair genes (PMS1, MSH2, and MSH3) on crossovers between homologous sequences. We find that the apparent antirecombination effects of mismatch repair proteins in mitosis are related to the degree of substrate divergence. Defects in mismatch repair can elevate homologous recombination between 91% homologous substrates as much as 100-fold while having only modest effects on recombination between 77% homologous substrates. These observations have implications for genome stability and general mechanisms of recombination in eukaryotes.  相似文献   

14.
贺继临  邱军  肖正明  侯福林 《遗传》2004,26(1):84-86
运用广义和狭义的定义模式,对Morgan定律中的几个基本概念做了新的注释,深入地分析了经典三点测交的使用条件,并找出了粗糙脉孢菌的经典三点测交中不相邻两点间的交换值(FC)与其重组值(FR)差的出处。 Abstract:Using the model of broad and narrow way,the paper introduces a new approach in the explaining of a few basic concepts in the Morgan Law.The paper introduces a thorough inquiry into the applying condition of the three-factor crosses,and finds the source of the difference between the crossover frequency (FC) and recombination frequency (FR) of the non-adjacent factors in the three-factor crosses in Neurospora crassa.  相似文献   

15.
J R Fincham 《Heredity》1976,36(1):81-89
It is argued that polarised intragenic recombination is not necessarily due to hybrid DNA extending into the gene for variable distances from one side; it can as well be explained by hybrid DNA usually covering the whole gene, the two complementary DNA strands of the gene having unequal chances of undergoing the interchromatid transfer involved in hybrid DNA formation, and excision from base-pair mismatches proceeding predominantly in one chemical direction (perhaps 5' to 3'). This alternative model for polarity is thought to be in better accord with the behaviour of flanking markers in the am data, which appears to show that conversion-associated crossing-over can occur with almost equal likelihood on either side of the gene (a feature previously held to support negative interference--Fincham, 1974). It also provides an explanation for an unusual marker effect involving two am mutational sites separated by only three base pairs. The nature of the sites (defined by amino acid replacement analysis) is such that one forms a purine-purine mismatch on the same chromatid as the other forms a pyrimidine-pyrimidine mismatch, and vice versa. They show an approximately two-fold difference in recombination frequencies in crosses to other am mutants mapping to the left, and a difference of similar magnitude, but opposite sign, in crosses to mutants mapping to the right.  相似文献   

16.
Sequence homology is expected to influence recombination. To further understand mechanisms of recombination and the impact of reduced homology, we examined recombination during transformation between plasmid-borne DNA flanking a double-strand break (DSB) or gap and its chromosomal homolog. Previous reports have concentrated on spontaneous recombination or initiation by undefined lesions. Sequence divergence of approximately 16% reduced transformation frequencies by at least 10-fold. Gene conversion patterns associated with double-strand gap repair of episomal plasmids or with plasmid integration were analyzed by restriction endonuclease mapping and DNA sequencing. For episomal plasmids carrying homeologous DNA, at least one input end was always preserved beyond 10 bp, whereas for plasmids carrying homologous DNA, both input ends were converted beyond 80 bp in 60% of the transformants. The system allowed the recovery of transformants carrying mixtures of recombinant molecules that might arise if heteroduplex DNA--a presumed recombination intermediate--escapes mismatch repair. Gene conversion involving homologous DNAs frequently involved DNA mismatch repair, directed to a broken strand. A mutation in the PMS1 mismatch repair gene significantly increased the fraction of transformants carrying a mixture of plasmids for homologous DNAs, indicating that PMS1 can participate in DSB-initiated recombination. Since nearly all transformants involving homeologous DNAs carried a single recombinant plasmid in both Pms+ and Pms- strains, stable heteroduplex DNA appears less likely than for homologous DNAs. Regardless of homology, gene conversion does not appear to occur by nucleolytic expansion of a DSB to a gap prior to recombination. The results with homeologous DNAs are consistent with a recombinational repair model that we propose does not require the formation of stable heteroduplex DNA but instead involves other homology-dependent interactions that allow recombination-dependent DNA synthesis.  相似文献   

17.
In yeast meiotic recombination, alleles used as genetic markers fall into two classes as regards their fate when incorporated into heteroduplex DNA. Normal alleles are those that form heteroduplexes that are nearly always recognized and corrected by the mismatch repair system operating in meiosis. High PMS (postmeiotic segregation) alleles form heteroduplexes that are inefficiently mismatch repaired. We report that placing any of several high PMS alleles very close to normal alleles causes hyperrecombination between these markers. We propose that this hyperrecombination is caused by the high PMS allele blocking a mismatch repair tract initiated from the normal allele, thus preventing corepair of the two alleles, which would prevent formation of recombinants. The results of three point crosses involving two PMS alleles and a normal allele suggest that high PMS alleles placed between two alleles that are normally corepaired block that corepair.  相似文献   

18.
The Neurospora homologue msh-2 of the Escherichia coli mismatch repair gene mutS was mutated by repeat-induced point mutation (RIP) of a 1.9-kb duplication covering 1661bp of the coding sequence and 302 bp 5' of the gene. msh-2(RIP-LK1) exhibited a mutator phenotype conferring a 17-fold increase in the frequency of spontaneous mitotic reversion of his-3 allele K458. In msh-2(RIP-LK1) homozygotes, recombination frequency at the his-3 locus increased up to 2.9-fold over that in msh-2(+) diploids. Progeny of crosses homozygous msh-2(RIP-LK1), like those from crosses homozygous msh-2(+) frequently had multiple patches of donor chromosome sequence, suggesting that patchiness in msh-2(+) crosses is not explained by incomplete repair of heteroduplex DNA by MSH-2. These findings are consistent with data from the analysis of events in a Neurospora translocation heterozygote that suggested multiple patches of donor chromosome sequence arising during recombination reflect multiple template switches during DNA repair synthesis.  相似文献   

19.
R Merkl  M Krger  P Rice    H J Fritz 《Nucleic acids research》1992,20(7):1657-1662
The abundance of all tetra- and pentanucleotide sequences is calculated for a set of DNA sequence data comprising 767,393 nucleotides of the E. coli K-12 genome. Observed frequencies are compared to those expected from a Markov chain prediction algorithm. Systematic and extreme non-random representations are found for special sets of sequences. These are interpreted as arising from incorporation of a 2'-deoxyguanosine residue opposite thymidine during replication which, in special sequence contexts, leads to a T/G mismatch that is simultaneously substrate for two competing DNA mismatch repair systems: the mutHLS and the VSP pathway. Processing by the former leads to error correction, by the latter to mutation fixation. The significance of the latter process, as demonstrated here, makes it unlikely that VSP repair has evolved mainly as a mutation avoidance mechanism. It is proposed that in E. coli K-12, VSP repair, together with DNA cytosine methylation, constitutes a mutagenesis/recombination system capable of promoting gene-conversion-like unidirectional transfer of short stretches of DNA sequence.  相似文献   

20.
Vedel M  Nicolas A 《Genetics》1999,151(4):1245-1259
We have examined meiotic recombination at the CYS3 locus. Genetic analysis indicates that CYS3 is a hotspot of meiotic gene conversion, with a putative 5'-3' polarity gradient of conversion frequencies. This gradient is relieved in the presence of msh2 and pms1 mutations, indicating an involvement of mismatch repair functions in meiotic recombination. To investigate the role of mismatch repair proteins in meiotic recombination, we performed a physical analysis of meiotic DNA in wild-type and msh2 pms1 strains in the presence or absence of allelic differences at CYS3. Neither the mutations in CYS3 nor the absence of mismatch repair functions affects the frequency and distribution of nearby recombination-initiating DNA double-strand breaks (DSBs). Processing of DSBs is also similar in msh2 pms1 and wild-type strains. We conclude that mismatch repair functions do not control the distribution of meiotic gene conversion events at the initiating steps. In the MSH2 PMS1 background, strains heteroallelic for frameshift mutations in CYS3 exhibit a frequency of gene conversion greater than that observed for either marker alone. Physical analysis revealed no modification in the formation of DSBs, suggesting that this marker effect results from subsequent processing events that are not yet understood.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号