首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Myosin and actin were purified from ascidian smooth muscle. Ascidian myosin contained two classes of light chains and the pH dependence of Ca2+-activated ATPase and the KCl dependence of actin-activated ATPase of ascidian myosin differed from those of vertebrate skeletal myosin. Troponin-tropomyosin complex from ascidian increased the ATPase activity of ascidian reconstituted actomyosin in a Ca2+-dependent manner. Ascidian myosin provided the reconstituted actomyosin with the responsiveness to calcium ions. Two actin isoforms were present in ascidian, which were distinguished by isoelectric points.  相似文献   

2.
Regulation of the actin-activated ATPase of aorta smooth muscle myosin   总被引:1,自引:0,他引:1  
Phosphorylation of the 20,000-Da light chains, LC20, of vertebrate smooth muscle myosins is thought to be the primary mechanism for regulating the actin-activated ATPase activities of these myosins and consequently smooth muscle contraction. While actin stimulates the MgATPase activities of phosphorylated smooth muscle myosins, it is generally believed that the MgATPase activities of the unphosphorylated myosins are not stimulated by actin. However, under conditions where both unphosphorylated (5% phosphorylated LC20) and phosphorylated calf aorta myosins are mostly filamentous, the maximum rate, Vmax, of the actin-activated ATPase of the unphosphorylated myosin is one-half that of the phosphorylated myosin. While LC20 phosphorylation causes only a modest increase in Vmax, in the presence of tropomyosin, this phosphorylation does cause up to a 10-fold decrease in Kapp, the actin concentration required to achieve 1/2 Vmax. In the presence of low concentrations of tropomyosin/actin, a linear relationship is obtained between the fraction of LC20 phosphorylated and stimulation of the actin-activated ATPase. The relatively high actin-activated ATPase activity of unphosphorylated aorta myosin suggests that other proteins may be involved in the regulation of smooth muscle contraction. In contrast to the results presented here for aorta myosin, it has been reported that actin does not activate the MgATPase activity of unphosphorylated gizzard myosin and that the actin-activated ATPase of gizzard myosin increases more slowly than LC20 phosphorylation.  相似文献   

3.
Calponin isolated from chicken gizzard smooth muscle inhibits the actin-activated MgATPase activity of smooth muscle myosin in a reconstituted system composed of contractile and regulatory proteins. ATPase inhibition is not due to inhibition of myosin phosphorylation since, at calponin concentrations sufficient to cause maximal ATPase inhibition, myosin phosphorylation was unaffected. Furthermore, calponin inhibited the actin-activated MgATPase of fully phosphorylated or thiophosphorylated myosin. Although calponin is a Ca2(+)-binding protein, inhibition did not require Ca2+. Furthermore, although calponin also binds to tropomyosin, ATPase inhibition was not dependent on the presence of tropomyosin. Calponin was phosphorylated in vitro by protein kinase C and Ca2+/calmodulin-dependent protein kinase II, but not by cAMP- or cGMP-dependent protein kinases, or myosin light chain kinase. Phosphorylation of calponin by either kinase resulted in loss of its ability to inhibit the actomyosin ATPase. The phosphorylated protein retained calmodulin and tropomyosin binding capabilities, but actin binding was greatly reduced. The calponin-actin interaction, therefore, appears to be responsible for inhibition of the actomyosin ATPase. These observations suggest that calponin may be involved in regulating actin-myosin interaction and, therefore, the contractile state of smooth muscle. Calponin function in turn is regulated by Ca2(+)-dependent phosphorylation.  相似文献   

4.
The contractile system of smooth muscle exhibits distinctive responses to varying Mg2+ concentrations in that maximum adenosine-5'-triphosphatase (ATPase) activity of actomyosin requires relatively high concentrations of Mg2+ and also that tension in skinned smooth muscle fibers can be induced in the absence of Ca2+ by high Mg2+ concentrations. We have examined the effects of MgCl2 on actomyosin ATPase activity and on tension development in skinned gizzard fibers and suggest that the MgCl2-induced changes may be correlated to shifts in myosin conformation. At low concentrations of free Mg2+ (less than or equal to 1 mM) the actin-activated ATPase activity of phosphorylated turkey gizzard myosin is reduced and is increased as the Mg2+ concentration is raised. The increase in Mg2+ (over a range of 1-10 mM added MgCl2) induces the conversion of 10S phosphorylated myosin to the 6S form, and it was found that the proportion of myosin as 10S is inversely related to the level of actin-activated ATPase activity. Activation of the actin-activated ATPase activity also occurs with dephosphorylated myosin but at higher MgCl2 concentrations, between 10 and 40 mM added MgCl2. Viscosity and fluorescence measurements indicate that increasing Mg2+ levels over this concentration range favor the formation of the 6S conformation of dephosphorylated myosin, and it is proposed that the 10S to 6S transition is a prerequisite for the observed activation of ATPase activity. With glycerinated chicken gizzard fibers high MgCl2 concentrations (6-20 mM) promote tension in the absence of Ca2+.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The preparation and characterization of a Ca2+-sensitive actomyosin from chicken gizzard is described. The pH curve of the Mg2+ ATPase activity of the actomyosin was dominated by the activity of the myosin component, and this gave rise to the acid and alkaline optima. Skeletal muscle myosin showed a similar curve. Both the activation of myosin ATPase by actin, and the Ca2+ sensitivity were confined to the neutral pH region. The subunit composition of the Ca2+-sensitive actomyosin was interesting in that no components corresponding to skeletal muscle troponin were obvious. It is suggested that the activity of gizzard actomyosin is regulated by a protein on the thin filaments with a subunit weight of ~130,000.  相似文献   

6.
Calcium-Dependent Myosin from Insect Flight Muscles   总被引:2,自引:0,他引:2       下载免费PDF全文
Calcium regulation of the insect actomyosin ATPase is associated with the thin filaments as in vertebrate muscles, and also with the myosin molecule as in mollusks. This dual regulation is demonstrated using combinations of locust thin filaments with rabbit myosin and locust myosin with rabbit actin; in each case the ATPase of the hybrid actomyosin is calcium dependent. The two regulatory systems are synergistic, the calcium dependency of the locust actomyosin ATPase being at least 10 times that of the hybrid actomyosins described above. Likewise Lethocerus myosin also contains regulatory proteins. The ATPase activity of Lethocerus myosin is labile and is stabilized by the presence of rabbit actin. Tropomyosin activates the ATPase of insect actomyosin and the activation occurs irrespective of whether the myosin is calcium dependent or rendered independent of calcium.  相似文献   

7.
Caldesmon, a major calmodulin- and actin-binding protein of smooth muscle (Sobue, K., Muramoto, Y., Fujita, M., and Kakiuchi, S. (1981) Proc. Natl. Acad. Sci. U. S. A. 78, 5652-5655), has been obtained in highly purified form from chicken gizzard by a modification of a previously published procedure (Ngai, P. K., Carruthers, C. A., and Walsh, M. P. (1984) Biochem. J. 218, 863-870) and was found to cause a significant inhibition of both superprecipitation and actin-activated myosin Mg2+-ATPase activity in a system reconstituted from the purified contractile and regulatory proteins without influencing the phosphorylation state of myosin. This inhibitory effect was seen both in the presence and absence of tropomyosin. A Ca2+-and calmodulin-dependent kinase which catalyzed phosphorylation of caldesmon was identified in chicken gizzard; this kinase is distinct from myosin light-chain kinase. Caldesmon prepared by calmodulin-Sepharose affinity chromatography was contaminated with caldesmon kinase activity and was unable to inhibit actomyosin ATPase activity or superprecipitation. Phosphatase activity capable of dephosphorylating caldesmon was also identified in smooth muscle. These results indicate that caldesmon can inhibit smooth muscle actomyosin ATPase activity in vitro, and this function may itself be subject to regulation by reversible phosphorylation of caldesmon.  相似文献   

8.
The regulatory light chains (RLCs) located on the myosin head, regulate the interaction of myosin with actin in response to either Ca2+ or phosphorylation signals. The RLCs belong to a family of calcium binding proteins and are composed of four "EF hand" ancestral calcium binding motifs (numbered I to IV). To determine the role of the first EF hand (EF hand I) in the regulatory process, chimaeric light chains were constructed by protein engineering, by switching this region between smooth muscle and skeletal muscle myosin RLCs. For example, chimaera G(I)S consisted of EF hand I of the smooth muscle (gizzard) RLC and EF hands II to IV of the skeletal muscle RLC, whereas chimaera S(I)G consisted of EF hand I of the skeletal muscle RLC and EF hands II to IV of the smooth muscle RLC. The chimaeric RLCs were expressed in Escherichia coli using the pLcII expression system, and after isolation and purification their regulatory properties were compared with those of wild-type smooth and skeletal muscle myosin RLCs. The chimaeric RLCs bound to the myosin heads in scallop striated muscle myofibrils from which the endogenous RLCs had been removed ("desensitized" myofibrils) with similar affinities to those of the wild-type smooth and skeletal muscle RLCs. Both chimaeric RLCs were able to regulate the actin-activated Mg(2+)-ATPase activity of scallop myosin: G(I)S inhibited the ATPase in the presence and absence of Ca2+, like the wild-type skeletal muscle RLC, while S(I)G inhibited the myosin ATPase in the absence of Ca2+, and this inhibition was relieved on Ca2+ addition, in the same way as the wild-type smooth muscle RLC. Thus the type of regulation that the RLCs confer on the myosin is determined by the source of EF hands II to IV rather than that of EF hand I.  相似文献   

9.
The effects of C-protein on actin-activated myosin ATPase depending on Ca(2+)-level and LC2-phosphorylation were studied. Column-purified myosin and non-regulated actin were used. At ionic strength of 0.06 C-protein inhibits actomyosin ATPase activity both in the presence and in the absence of calcium, more effective in the case of dephosphorylated myosin. For this myosin, at mu = 0.12 C-protein activates actomyosin ATPase at pCa4, but slightly inhibits at pCa8. No such effects have been observed in the case of phosphorylated myosin. The possibility of coordinative action of LC2-chains and C-protein in regulatory mechanism of skeletal muscle contraction is discussed.  相似文献   

10.
To examine the functional role of the essential light chain (ELC) in the phosphorylation-dependent regulation of smooth muscle myosin, we replace the native light chain in smooth muscle myosin with bacterially expressed chimeric ELCs in which one or two of the four helix-loop-helix domains of chicken gizzard ELC were substituted by the corresponding domains of scallop (Aquipecten irradians) ELC. All of these myosins, regardless of the ELC mutations or regulatory light chain (RLC) phosphorylation, showed normal subunit constitutions and NH(4)(+)/EDTA-ATPase activities, both of which were similar to those of native myosin. None of the ELC mutations changed the actin-activated ATPase activity of myosin in the absence of RLC phosphorylation. However, in the presence of RLC phosphorylation, the substitution of domain 1 or 2 in the ELC significantly decreased the actin-activated ATPase activity, whereas the substitution of both of these domains did not change the activity. In contrast to myosin, the domain 2 substitution in the ELC did not affect the actin-activated ATPase activity of single-headed myosin subfragment 1. These results suggest an interhead interaction between domains 1 and 2 of ELCs which is required to attain the full actin-activated ATPase activity of smooth muscle myosin in the presence of RLC phosphorylation.  相似文献   

11.
R J Heaslip  S Chacko 《Biochemistry》1985,24(11):2731-2736
There are conflicting reports on the effect of Ca2+ on actin activation of myosin adenosine-triphosphatase (ATPase) once the light chain is fully phosphorylated by a calcium calmodulin dependent kinase. Using thiophosphorylated gizzard myosin, Sherry et al. [Sherry, J. M. F., Gorecka, A., Aksoy, M. O., Dabrowska, R., & Hartshorne, D. J. (1978) Biochemistry 17, 4417-4418] observed that the actin activation of ATPase was not inhibited by the removal of Ca2+. Hence, it was suggested that the regulation of actomyosin ATPase activity of gizzard myosin by calcium occurs only via phosphorylation. In the present study, phosphorylated and thiophosphorylated myosins were prepared free of kinase and phosphatase activity; hence, the ATPase activity could be measured at various concentrations of Ca2+ and Mg2+ without affecting the level of phosphorylation. The ATPase activity of myosin was activated either by skeletal muscle or by gizzard actin at various concentrations of Mg2+ and either at pCa 5 or at pCa 8. The activation was sensitive to Ca2+ at low Mg2+ concentrations with both actins. Tropomyosin potentiated the actin-activated ATPase activity at all Mg2+ and Ca2+ concentrations. The calcium sensitivity of phosphorylated and thiophosphorylated myosin reconstituted with actin and tropomyosin was most pronounced at a free Mg2+ concentration of about 3 mM. The binding of 125I-tropomyosin to actin showed that the calcium sensitivity of ATPase observed at low Mg2+ concentration is not due to a calcium-mediated binding of tropomyosin to F-actin. The actin activation of both myosins was insensitive to Ca2+ when the Mg2+ concentration was increased above 5 mM.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
The motor protein myosin in association with actin transduces chemical free energy in ATP into work in the form of actin translation against an opposing force. Mediating the actomyosin interaction in myosin is an actin binding site distributed among several peptides on the myosin surface including surface loops contributing to affinity and actin regulation of myosin ATPase. A structured surface loop on beta-cardiac myosin, the cardiac or C-loop, was recently demonstrated to affect myosin ATPase and was indirectly implicated in the actomyosin interaction. The C-loop is a conserved feature of all myosin isoforms with crystal structures, suggesting that it is an essential part of the core energy transduction machinery. It is shown here that proteolytic digestion of the C-loop in beta-cardiac myosin eliminates actin-activated myosin ATPase and reduces actomyosin affinity in rigor more than 100-fold. Studies of C-loop function in smooth muscle myosin were also undertaken using site-directed mutagenesis. Mutagenesis of a single charged residue in the C-loop of smooth muscle myosin alters actomyosin affinity and doubles myosin in vitro motility and actin-activated ATPase velocities, thereby involving a charged region of the loop in the actomyosin interaction. It appears likely that the C-loop is an essential electrostatic binding site for actin involved in modulation of actomyosin affinity and regulation of actomyosin ATPase velocity.  相似文献   

13.
Calcium regulation of porcine aortic myosin   总被引:1,自引:0,他引:1  
Calcium regulation of actin-activated porcine aortic myosin MgATPase was studied. The MgATPase of the purified actomyosin was stimulated about 10-fold by 0.1 mM Ca2+. The 20,000 molecular weight light chain subunit (LC20) of myosin was phosphorylated by an endogenous kinase that required Ca2+. Half-maximal activation of both kinase and ATPase occurred at about 0.9 microM Ca2+. Phosphorylated and unphosphorylated myosins, free of actin, kinase, and phosphatase, were purified by gel filtration. The MgATPase of phosphorylated myosin was activated by rabbit skeletal muscle actin; unphosphorylated myosin was actin activated to a much lesser extent. Actin activation was maximal in the presence of Ca2+. Regulation of the aortic myosin MgATPase seems to involve both direct interaction of calcium with phosphorylated myosin and calcium activation of the myosin kinase. The MgATPase of trypsin-treated actomyosin did not require Ca2+ for full activity. The trypsin-treated actomyosin was devoid of LC20. When purified unphosphorylated aortic myosin was treated with trypsin, the LC20, was cleaved and the MgATPase, which was not appreciably actin activated before exposure to protease, was increased and was activated by skeletal muscle actin. After incubation of this light chain-depleted myosin with light chain from rabbit skeletal muscle myosin, the actin activation but not the increased activity, was abolished. Unphosphorylated LC20 seems to inhibit actin activation in this smooth muscle.  相似文献   

14.
In vertebrate smooth muscle actomyosin and myofibrils a myosin light chain of molecular weight about 20,000 becomes phosphorylated at the same Ca2+ concentration as required to stimulate the actin-activated ATPase activity of myosin. Further, the degree of phosphorylation in the preparations as well as in various reconstituted actomyosins is proportional to their measured Ca2+ sensitivity. The phosphorylation process is very rapid and is essentially completed before the rise in ATPase activity. The enzyme responsible for the observed myosin phosphoylation is a specific myosin light chain kinase which is routinely co-purified with myosin. This kinase is normally present in actomyosin and its removal together with tropomyosin leads to a complete loss of the actin-activated ATPase activity. It is suggested that the Ca-dependent phosphorylation of the light chain via the light chain kinase represents the initial step in the activation of myosin that leads to contraction. Relaxation is probably effected by an as yet uncharacterised light chain phosphatase.  相似文献   

15.
Like other vertebrate nonmuscle myosins, thymus myosin contains two phosphorylatable light chains. Phosphorylation of these light chains regulates the actin-activated ATPase of this myosin. The time courses for the phosphorylation of both monomeric and filamentous thymus myosin by gizzard myosin light chain kinase fitted single exponentials to greater than 85% phosphorylation. This indicates that the two heads of thymus myosin are phosphorylated at the same rate and suggests that these phosphorylations are random processes. The actin-activated ATPases of thymus myosins with different levels of light chain phosphorylation were also determined. A linear relationship was obtained between the extent of light chain phosphorylation and stimulation of the actin-activated ATPase. Since thymus myosin appears to be phosphorylated randomly, this linear relationship indicates that phosphorylation of one head of thymus myosin stimulates the actin-activated ATPase of that head independently of the phosphorylation of the second head. The apparent random phosphorylation of thymus myosin light chains contrasts with the reported ordered phosphorylation of the light chains of filamentous smooth (gizzard) muscle myosin. Also, while the actin-activated ATPases of the two heads of thymus myosin are regulated independently, both heads of gizzard myosin must be phosphorylated before the ATPase of either head is activated by actin.  相似文献   

16.
Scallop myosin molecules contain two moles of regulatory light chains and two moles of light chains with unknown function. Removal of one of the regulatory light chains by treatment with EDTA is accompanied by the complete loss of the calcium dependence of the actin-activated ATPase activity and by the loss of one of the two calcium binding sites on the intact molecule. Such desensitized preparations recombine with one mole of regulatory light chain and regain calcium regulation and calcium binding. The second regulatory light chain may be selectively obtained from EDTA-treated scallop muscles by treatment with the Ellman reagent (5,5′-dithiobis(2-nitrobenzoic acid)): treatment with this reagent, however, leads to an irreversible loss of ATPase activity. The light chains obtained by treatment with EDTA and then DTNB are identical in composition and function. A different light chain fraction obtained by subsequent treatment with guanidine-HCl does not bind to desensitized or intact myoflbrils and has no effect on ATPase activity.Regulatory light chains which bind to desensitized scallop myofibrils with high affinity and restore calcium control were found in a number of molluscan and vertebrate myosins, including Mercenaria, Spisula, squid, lobster tail, beef heart, chicken gizzard, frog and rabbit. Although these myosins all have a similar subunit structure and contain about two moles of regulatory light chain, only scallop myosin or myofibrils can be desensitized by treatment with EDTA.There appear to be two classes of regulatory light chains. The regulatory light chains of molluscs and of vertebrate smooth muscles restore full calcium binding and also resensitize purified scallop myosin. The regulatory light chains from vertebrate striated, cardiac, and the fast decapod muscles, on the other hand, have no effect on calcium binding and do not resensitize purified scallop myosin unless the myosin is complexed with actin. The latter class of light chains is found in muscles where in vitro functional tests failed to detect myosin-linked regulation.  相似文献   

17.
A Persechini  J T Stull 《Biochemistry》1984,23(18):4144-4150
Purified rabbit skeletal muscle myosin is phosphorylated on one type of light-chain subunit (P-light chain) by calmodulin-dependent myosin light chain kinase and dephosphorylated by phosphoprotein phosphatase C. Analyses of the time courses of both phosphorylation and dephosphorylation of skeletal muscle myosin indicated that both reactions, involving at least 90% of the P-light chain, were kinetically homogeneous. These results suggest that phosphorylation and dephosphorylation of rabbit skeletal muscle myosin heads are simple random processes in contrast to the sequential phosphorylation mechanism proposed for myosin from gizzard smooth muscle. We also examined the effect of phosphorylation of rabbit skeletal muscle myosin on the actin-activated ATPase activity. We observed an apparent 2-fold decrease in the Km for actin, from about 6 microM to about 2.5 microM, with no significant effect on the Vmax (1.8s-1) in response to P-light-chain phosphorylation. There was no significant effect of phosphorylation on the ATPase activity of myosin alone (0.045 s-1). ATPase activation could be fully reversed by addition of phosphatase catalytic subunit. The relationship between the extents of P-light-chain phosphorylation and ATPase activation (at 3.5 microM actin and 0.6 microM myosin) was essentially linear. Thus, in contrast to results obtained with myosin from gizzard smooth muscle, these results suggest that cooperative interactions between the myosin heads do not play an important role in the activation process in skeletal muscle. Since the effect of P-light-chain phosphorylation is upon the Km for actin, it would appear to be associated with a significant activation of ATPase activity only at appropriate concentrations of actin and salt.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The mechanism of the ATPase [EC 3.6.1.3] reaction of porcine platelet myosin and the binding properties of platelet myosin with rabbit skeletal muscle F-actin were investigated. The kinetic properties of the platelet myosin ATPase reaction, that is, the rate, the extent of fluorescence enhancement of myosin, the size of the initial P1 burst of myosin, and the amount of nucleotides bound to myosin during the ATPase reaction, were very similar to those found for other myosins. Strong binding of platelet myosin with rabbit skeletal muscle F-actin, as found for smooth muscle myosin, was suggested by the following results. The rate of the ATP-induced dissociation of hybrid actomyosin, reconstituted from platelet myosin and skeletal muscle F-actin, was very slow. The amount of ATP necessary for complete dissociation of hybrid actomyosin was 2 mol/mol of myosin, although skeletal muscle actomyosin is known to dissociate completely upon addition of 1 mol ATP per mol of myosin. Unlike skeletal muscle myosin, the EDTA(K+)-ATPase activity of platelet myosin was inhibited by skeletal muscle F-actin. These observations indicate that ATP hydrolysis by vertebrate nonmuscle myosin follows the same mechanism as with other myosins and that the binding properties of nonmuscle myosin with F-actin are similar to those of smooth muscle myosin but not to those of skeletal muscle myosin.  相似文献   

19.
The 20-kDa regulatory myosin light chain (MLC), also known as MLC-2, plays an important role in the regulation of both smooth muscle and nonmuscle cell contractile activity. Phosphorylation of MLC-2 by the enzyme MLC kinase increases the actin-activated myosin ATPase activity and thereby regulates the contractile activity. We have isolated and characterized an MLC-2 cDNA corresponding to the human vascular smooth muscle MLC-2 isoform from a cDNA library derived from umbilical artery RNA. The translation of the in vitro synthesized mRNA, corresponding to the cDNA insert, in a rabbit reticulocyte lysate results in the synthesis of a 20,000-dalton protein that is immunoreactive with antibodies raised against purified chicken gizzard MLC-2. The derived amino acid sequence of the putative human smooth muscle MLC-2 shows only three amino acid differences when compared to chicken gizzard MLC-2. However, comparison with the human cardiac isoform reveals only 48% homology. Blot hybridizations and S1 nuclease analysis indicate that the human smooth muscle MLC-2 isoform is expressed restrictively in smooth muscle tissues such as colon and uterus and in some, but not all, nonmuscle cell lines. Previously reported MLC-2 cDNA from rat aortic smooth muscle cells in culture is ubiquitously expressed in all muscle and nonmuscle cells, and it was suggested that both smooth muscle and nonmuscle MLC-2 proteins are identical and are probably encoded by the same gene. In contrast, the human smooth muscle MLC-2 cDNA that we have characterized from an intact smooth muscle tissue is not expressed in skeletal and cardiac muscles and also in a number of nonmuscle cells.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Myosin and F-actin were prepared from bovine carotid arterial smooth muscle and the properties of the binding of myosin to F-actin were compared with those of the binding of skeletal muscle myosin to F-actin. The following differences were observed between skeletal and smooth muscle myosins. 1. The rate of ATP-induced dissociation of arterial actomyosin was equal to that of hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin, but was much lower than those of skeletal muscle actomyosin and of hybrid actomyosin reconstituted from skeletal muscle myosin and arterial F-actin. 2. The amount of ATP necessary for complete dissociation of arterial actomyosin was 2 mol/mol of myosin, although it is well known that skeletal muscle actomyosin is dissociated completely by the addition of 1 mol ATP per mol of myosin. 3. Arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin did not dissociate upon addition of 0.1 mM PPi, while skeletal muscle actomyosin dissociated completely. 4. In the absence of Mg2+, neither dissociation by ATP nor ATPase [EC 3.6.1.3] activity was observed with arterial actomyosin and hybrid actomyosin reconstituted from arterial myosin and skeletal muscle F-actin. On the other hand, skeletal muscle actomyosin dissociated almost completely upon addition of ATP and showed a considerably high ATPase activity. These observations reveal marked differences between myosins from skeletal and smooth muscles in their binding properties to F-actin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号