首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Studies on the interaction of cholesterol absorption, synthesis, and excretion were carried out in eight patients using sterol balance techniques. Absorption of dietary cholesterol was found to increase with intake; up to 1 g of cholesterol was absorbed in patients fed as much as 3 g per day. In most patients, increased absorption of cholesterol evoked two compensatory mechanisms: (a) increased reexcretion of cholesterol (but not of bile acids), and (b) decrease in total body synthesis. However, the amount of suppression in synthesis was extremely variable from one patient to another; one patient had no decrease in synthesis despite a large increment in absorption of dietary cholesterol, and two patients showed a complete suppression of synthesis. In the majority of cases the accumulation of cholesterol in body pools was small because of adequate compensation by reexcretion plus reduced synthesis, but in a few patients large accumulations occurred on high cholesterol diets when absorption exceeded the compensatory mechanisms. These accumulations were not necessarily reflected in plasma cholesterol levels; these increased only slightly or not at all.  相似文献   

2.
We have already reported that peroxisomal beta-oxidation has an anabolic function, supplying acetyl-CoA for bile acid biosynthesis [H. Hayashi and A. Miwa, 1989, Arch. Biochem. Biophys. 274, 582-589]. The anabolic significance of peroxisomal beta-oxidation was further investigated in the present study by using clofibrate, a peroxisome proliferator, as an experimental tool. Clofibrate suppressed 3-hydroxymethylglutaryl-CoA reductase activity (the key enzyme of cholesterol synthesis) and enhanced fatty acyl-CoA oxidase activity (the rate-limiting enzyme of beta-oxidation). Rats were fed a chow containing 0.25% clofibrate for 2 weeks, and then a bile duct fistula was implanted. [1-14C]lignoceric acid, which is degraded exclusively by peroxisomal FAOS, was injected into the rats 24 h after the operation. By this time, the secondary bile acids and pooled cholesterol which would normally be secreted into the bile are considered to have been exhausted from the liver. Clofibrate significantly decreased the incorporations of radioactivity into biliary bile acid (40% of the control) and cholesterol (50%), but did not affect biliary lipid contents. [14C]Acetyl-CoA formed by peroxisomal beta-oxidation of [1-14C]lignoceric acid was preferentially utilized for syntheses of long-chain fatty acids and phospholipids rather than synthesis of cholesterol or triglyceride. The radioactivities incorporated into the former two lipids were increased 2-fold over the control by administration of clofibrate, while the incorporation into triglyceride was decreased to approximately half. In particular, the incorporation into phosphatidylethanolamine was increased as much as 3.5-fold over the control. The contents of these lipids in the liver were not affected by clofibrate. The results suggest that peroxisomal beta-oxidation plays an important role in the biosynthesis of functional lipids such as phospholipids (this work), in addition to bile acids and cholesterol (previous report) by supplying acetyl-CoA.  相似文献   

3.
Sterol balance measurements using isotopic and chromatographic techniques were carried out in rats fed diets containing beta-sitosterol (0.8%) and cholesterol (1.2%). The activities of the rate-limiting enzymes of cholesterol synthesis (beta-hydroxy-beta-methylglutaryl-CoA reductase, EC 1.1.1.34) and bile acid synthesis (cholesterol 7 alpha-hydroxylase) were determined in the same animals. Cholesterol feeding increased cholesterol absorption from 1.2 to 70 mg/day. The increased absorption was compensated for by inhibition of hepatic cholesterol synthesis, enhanced conversion of cholesterol to bile acids (from 13.7 to 27.3 mg/day) and a slight increase in the excretion of endogenous neutral steroids (from 7.7 to 11.2 mg/day). Despite the adaptation there was accumulation of cholesterol in the liver (from 2.2 to 9.2 mg/g). Beta-Sitosterol feeding inhibited cholesterol absorption (calculated absorption was zero). In these rats there was enhanced cholesterol synthesis (from 20.0 to 28.8 mg/day, but no change in the rates of bile acid formation. Measurements of the activities of the rate-limiting enzymes showed fair correlation with cholesterol-bile acid balance. In cholesterol fed animals, beta-hydroxy-beta-methylglutaryl-CoA reductase was inhibited 80% and cholesterol 7 alpha-hydroxylase was enhanced 61%. In beta-sitosterol-fed animals, the reductase was increased 2-fold and cholesterol 7 alpha-hydroxylase was not significantly different from controls.  相似文献   

4.
The purpose of this study was to determine whether diosgenin suppresses cholesterol absorption in rats, and to examine relevant changes in cholesterol and bile acid metabolism. Diosgenin fed with the diet for 1 week inhibited cholesterol absorption as determined by the serum isotope ratio technique, as well as by measuring in the feces the amount of unabsorbed radioactivity from orally administered [3H]cholesterol. In addition, diosgenin suppressed the serum and liver uptake of radioactivity from co-administered [3H]cholesterol as well as the accumulation of liver cholesterol in the cholesterol-fed rat; diosgenin was substantially more active than cholestyramine or beta-sitosterol. In vitro, diosgenin had no effect on the activity of rat pancreatic esterase. Diosgenin decreased the elevated cholesterol in serum LDL and elevated cholesterol in the HDL fraction of cholesterol-fed rats; diosgenin had no effect on serum cholesterol in normocholesterolemic rats. In contrast to cholestyramine, diosgenin markedly increased neutral sterol excretion without altering bile acid excretion; in vitro, diosgenin had no effect on bile acid binding. Diosgenin treatment increased hepatic and intestinal cholesterol synthesis as well as the activity of hepatic HMG CoA reductase. This was accompanied by increased biliary concentration of cholesterol, but not of bile acids. Diosgenin had no effect on cholesterol synthesis when added to normal rat liver homogenates. It was concluded that diosgenin interferes with the absorption of cholesterol of both exogenous and endogenous origin; such interference is accompanied by derepressed, i.e., increased, rates of hepatic and intestinal cholesterol synthesis. The increased unabsorbed cholesterol together with enhanced secretion of cholesterol into bile resulted in increased excretion of neutral sterols without affecting the biliary and fecal excretion of bile acids.  相似文献   

5.
To determine whether growth hormone (GH) has any impact on the hyperlipidemia seen in cholestatic patients, graded doses of GH in the sequence of 0.1, 0.2, 0.4, and 0.6 u/kg every other day were administered sc to a patient with Alagille syndrome. Serum total cholesterol, phospholipid, and bile acid were measured. The serum levels of all three decreased markedly after GH administration and the lowest levels were observed on the second day after the GH dose of 0.4 u/kg. However, they increased thereafter despite the administration of an increased dose of GH; especially the serum bile acid level returned to the initial value by day 8. Serum levels of SM-C and fT3 were not correlated with the changes in total cholesterol, phospholipid, and bile acid after GH administration. We suggest that the administration of GH may affect the state of hyperlipidemia seen in cholestatic patients.  相似文献   

6.
The effects of clofibrate, cholestyramine, and neomycin on hepatobiliary lipid metabolism were studied in adult rhesus monkeys in metabolic steady state with intact but exteriorized enterohepatic circulations. Clofibrate (30 mg/kg, id) had no effect on lipid secretion while cholestyramine (150 mg/kg, id) decreased biliary cholesterol secretion rate from 0.19 +/- 0.03 to 0.13 +/- 0.02 mmol/24 h, p less than 0.05. Neomycin (30 mg/kg, id) decreased bile flow from 216 +/- 10 to 191 +/- 7mL/24 h, p less than 0.05, and tended only to decrease bile salt and phospholipid secretion rates. Cholestyramine decreased cholesterol composition from 1.81 +/- 0.22 to 1.30 +/- 0.22 mol %, p less than 0.05, while clofibrate and neomycin had insignificant effects. Cholestyramine and neomycin decreased bile salt pool size from 1 +/- 0.1 to 0.77 +/- 0.15 and from 1.45 +/- 0.16 to 1.13 +/- 0.21 mmol, p less than 0.05, respectively, while clofibrate had no effect. Bile salt synthetic rate was increased only by cholestyramine, i.e., from 0.63 +/- 0.04 to 1.48 +/- 0.26 mmol/24 h, p less than 0.01. Concomitant cholesterol turnover studies revealed that cholestyramine increased the production rate and excretion of cholesterol in the rapidly miscible cholesterol pool and increased the transfer of cholesterol from slow to rapidly miscible pools. Neomycin, on the other hand, decreased the size of the rapidly miscible pool by decreasing production rate without affecting the size of the slowly miscible pool, while clofibrate had insignificant effects.  相似文献   

7.
The association of liver peroxisomal fatty acyl-CoA beta-oxidizing system (FAOS) with the synthesis of bile acids was investigated. When rats were given clofibrate, a peroxisome proliferator and stimulator of peroxisomal FAOS, the biosynthesis of bile acids was significantly increased. Di(2-ethylhexyl)phthalate, another peroxisome proliferator, also increased the biosynthesis of bile acids. On the other hand, administration of orotate, an inhibitor of mitochondrial FAOS activity, did not affect the biosynthesis. It is known that fatty acyl-CoA oxidase [EC 1.3.99.3] in peroxisomal FAOS conjugates with catalase [EC 1.11.1.6]. When the catalase activity of liver peroxisomes was irreversibly inhibited by administration of 3-amino-1,2,4-triazole (amino-triazole), the biosynthesis of bile acids was suppressed to about one-third, and the serum cholesterol level was increased. However, the bile acid components of the bile obtained from aminotriazole-treated rats were not essentially different from those of control rats, and no accumulation of intermediates of bile acid synthesis was found in this experiment. Peroxisomal FAOS activity of the liver from amino-triazole-treated rats was considerably lower than that of control liver. The above results indicate that liver peroxisomes play a role in the biosynthesis of bile acids in vivo.  相似文献   

8.
Giving clofibrate 2 g daily to seven patients significantly increased the biliary cholesterol concentration while the proportion of bile acids fell. Five patients on established clofibrate treatment were given 750 mg of chenodeoxycholic acid (CDCA) daily for one month. Biliary lipid analysis after the CDCA treatment showed a significant fall in the proportion of cholesterol and a rise in that of bile acids. The serum lipid concentrations, which had already been reduced by diet and clofibrate, showed a further significant reduction after the introduction of CDCA. This study suggests that CDCA may be usefully combined with clofibrate to reverse the tendency towards cholesterol saturation of bile and enhance the effect of lowering serum lipid concentrations.  相似文献   

9.
Certain individual squirrel monkeys ("hypo-responders") are able to remain normocholesterolemic when fed diets containing cholesterol (0.5 mg/kcal). Other squirrel monkeys ("hyperresponders") when fed the same diet become hypercholesterolemic. The purpose of these studies was to identify the mechanisms which allow hyporesponders to compensate for dietary cholesterol. Using formula diets and sterol balance techniques, we have compared cholesterol absorption, synthesis, excretion, and turnover in hypo- and hyperresponding monkeys. Cholesterol absorption was essentially identical in the two groups (about 55 mg/day). Cholesterol synthesis was likewise similar in the two groups (about 35 mg/day) and there was no evidence of feedback inhibition at the level of cholesterol fed. Hyporesponders had faster turnover rates and smaller body cholesterol pools than did hyperresponders. Excretion of neutral steroids was similar for hypo- and hyperresponders and did not change with cholesterol feeding. In contrast, hyporesponders increased bile acid excretion shortly after cholesterol feeding was begun. Hyperresponders responded more slowly and to a lesser degree. It is concluded that, in this species, the mechanism of control of plasma cholesterol levels is related to the rate of conversion of cholesterol to bile acids.  相似文献   

10.
A report on the effects of primary bile acid ingestion alone or in combination with plant sterols on serum cholesterol levels, biliary lipid secretion, and bile acid metabolism. Biliary bile acid and cholesterol secretion were measured in four patients with type IIa hypercholesterolemia before and after randomized treatment periods. During these periods either a bile acid mixture (cholic-chenodeoxycholic 2:1, a proportion similar to that endogenously synthesized in health), at a level of 20 mg/kg, or the same mixture plus sitosterols, 200 mg/kg, was fed. Serum cholesterol and the cholesterol saturation of fasting-state bile was also measured. Pretreatment biliary lipid secretion was within normal limits. Bile acid kinetic measurements were also recorded before treatment and showed that cholic acid synthesis was disproportionately decreased relative to that of chenodeoxycholic acid, a finding previously reported by others. Administration of the bile acid mixture increased biliary bile acid secretion in 3 of 4 patients, but did not influence biliary cholesterol secretion. The combination of sitosterol-bile acid, however, caused a relative decrease in cholesterol secretion in bile, and fasting-state bile became unsaturated in all patients. No change in fecal neutral sterol excretion occurred during the beta-sitosterol-bile acid regimen, suggesting that simultaneous bile acid feeding blocks the compensatory increase in cholesterol synthesis known to be induced by beta-sitosterol feeding in hypercholesterolemic patients. Serum cholesterol levels also fell modestly during the sitosterol-bile acid regimen, the decrease averaging 15%. We conclude that the abnormally low rate of bile acid synthesis in patients with type IIa hyperlipoproteinemia does not influence biliary lipid secretion; that increasing the input of the two primary bile acids into the enterohepatic circulation does not increase biliary cholesterol secretion or lower serum cholesterol levels in such patients; and that the usual increase in cholesterol synthesis induced by beta-sitosterol feeding does not occur if bile acids are administered simultaneously.  相似文献   

11.
To assess the importance of de novo cholesterol synthesis for bile salt formation, the effects of ML-236B (an inhibitor of 3-hydroxy-3-methylglutaryl-coenzyme A reductase) on biliary excretion of bile salts and lipids were studied in rats with permanent catheters in bile duct, heart and duodenum. In rats having their bile diverted continuously for 8 days, duodenal administration of ML-236B (50 mg/kg) caused an immediate transient choleresis, which subsided after 2 h. Concomitant with the choleresis concentrations of bile salt, phospholipid and cholesterol fell, but this decrease was maintained for 6 h. Consequently, ML-236B inhibited biliary output salts and lipids from the second till the sixth hour after injection. The kinetics of biliary excretion of intravenously injected [14C]taurocholate were not affected by ML-236B administration. In rats having their biliary catheter connected to the duodenal catheter, or in rats with prolonged bile diversion but treated with mevalonolactone, ML-236B again caused a transient choleresis (having subsided after 2 h), but now did not affect biliary excretion of bile salts and lipids. It is concluded that (1) ML-236B causes a transient bile salt-independent choleresis, (2) ML-236B depresses excretion of bile salts and lipids by blocking mevalonate synthesis and not by blocking the bile salt or lipid transport, (3) biliary excretions of phospholipids and cholesterol partly depend on excretion of bile salt, and (4) in rats with a prolonged total bile diversion newly formed mevalonate is a major substrate for bile salt synthesis.  相似文献   

12.
Serum and biliary lipid metabolism were examined in 13 patients with different types of hyperlipoproteinemia before and after 4 weeks of treatment with either bezafibrate or fenofibrate. In patients with heterozygous familial hypercholesterolemia (FH), bezafibrate (n = 5) and fenofibrate (n = 7) produced a similar significant reduction of total cholesterol, LDL-cholesterol, and triglycerides by 21, 23, and 32%, respectively. In patients with familial combined hyperlipidemia (CHL), only triglycerides decreased markedly. Biliary lipid secretion rates in patients with heterozygous FH were not different from those of young male volunteers, indicating that a reduction of hepatic LDL receptors did not affect hepatic elimination of cholesterol or bile acids. Biliary cholesterol secretion increased significantly from 57 to 75 mg/hr during bezafibrate therapy (n = 8) and from 62 to 71 mg/hr during fenofibrate therapy (n = 9). No consistent change in bile acid or phospholipid secretion was observed. The elevated output of biliary cholesterol increased cholesterol saturation significantly from 147 to 185% and from 152 to 173% during administration of bezafibrate and fenofibrate, respectively. The present study indicates that treatment with bezafibrate or fenofibrate is effective in lowering LDL cholesterol in patients with heterozygous FH, but both drugs increase cholesterol saturation of bile, which might enhance the risk of cholesterol gallstone formation.  相似文献   

13.
We have estimated the daily synthesis of cholesterol in man by measuring the excretion of cholesterol and its conversion products during periods of controlled sterol intake (sterol balance method), using isotopic or chromatographic procedures (or a combination of the two). Estimates of daily synthesis by this method are based on the premise that the subject is in the metabolic steady state; i.e., the synthesis of cholesterol is equal to the balance (or difference) between the intake of cholesterol and the excretion of cholesterol and its products. To test this premise, we carried out sterol balances in 11 patients; simultaneously, after administration of isotopic cholesterol, turnover was calculated according to previously described models (one-pool, two-pool, or isotopic steady state models for the distribution of radioactive cholesterol within various pools of the body). With calculations based on the one-pool model, turnover rates were considerably higher than estimates based on all other models, and reasons are given for considering these to be overestimates. Good agreement was obtained between results calculated from the two-pool model and those based on sterol balance data; neither method is theoretically preferable to the other. However, with the sterol balance method supplemented by isotopic techniques, valid measurements of cholesterol absorption can be obtained; this in turn permits the essential distinction to be made between daily synthesis and daily turnover of cholesterol when the diet contains cholesterol. In addition, the use of chromatographic isolation procedures provides an accurate measurement of the balance of -sitosterol. This in turn permits valid corrections to be made for losses (which may be large) of neutral steroids during intestinal transit; this is a unique advantage of the chromatographic method.  相似文献   

14.
Normal and alloxan-diabetic male mice (Crj-ICR) were fed a diet containing 0.5% cholesterol for 5 and 10 weeks, and gallbladder bile was analyzed for cholesterol, phospholipids and bile acids, feces for sterols and bile acids, and plasma and liver for cholesterol, phospholipids, and triglycerides. Normal mice developed no gallstones but the diabetic mice developed cholesterol gallstones with an incidence of 70% by 5 weeks and 80% by 10 weeks after feeding of the cholesterol diet. Diabetic mice fed the ordinary diet also developed stones (23%) by 10 weeks. In the diabetic mice, the gallbladder was enlarged about threefold, and biliary lipid concentration, diet intake, and fecal excretion of sterols and bile acids increased but body weight decreased. Cholic acid and beta-muricholic acid comprised over 40% each of the total biliary bile acids in normal mice, but cholic acid increased to about 80% and beta-muricholic acid decreased to a few percent in the diabetic mice. Fecal excretion of bile acids increased after cholesterol feeding in both normal and diabetic mice, but the increased bile acid in the normal animals was beta-muricholic acid and that in the diabetic mice was deoxycholic acid. The mice that developed gallstones showed a marked increase in biliary cholesterol value and decreases in gallbladder bile and bile acid concentration, but no difference in biliary and fecal bile acid composition, bile acid synthesis, fecal sterols, or plasma and liver lipid levels. Cholesterol absorption was increased in the diabetic mice when examined by plasma 14C/3H ratio and fecal 14C-labeled sterol excretion after a single oral administration of [14C]cholesterol and a simultaneous intravenous injection of [3H]cholesterol. These data led to the conclusion that cholesterol gallstones developed in alloxan-diabetic mice fed excess cholesterol, due to the hyperphagia and the enhancement of cholesterol absorption caused by increases in the synthesis and secretion of cholic acid.  相似文献   

15.
Overexpressing StAR (a mitochondrial cholesterol transporter) increases (>5-fold) the rate of 27-hydroxylation of cholesterol and the rates of bile acid synthesis in primary rat hepatocytes; suggesting that the transport of cholesterol into mitochondria is rate-limiting for bile acid biosynthesis via the CYP27A1 initiated 'acidic' pathway. Our objective was to determine the level of StAR expression in human liver and whether changes in StAR would correlate with changes in CYP27A1 activity/bile acid synthesis rates in human liver tissues. StAR mRNA and protein were detected in primary human hepatocytes and HepG2 cells by RT-PCR/Northern analysis and by Western analysis, respectively. In immunocompetition assays, liver StAR was competed away with the addition of purified human adrenal StAR. Overexpressing CYP27A1 in both cell types led to >2-fold increases in liver StAR concentration. StAR protein levels also increased approximately 2-fold with the addition of 27-hydroxycholesterol to HepG2 cell culture medium. Overexpressing StAR increased the rates of 27-hydroxylation of cholesterol/bile acid synthesis in both cell lines and increased intracellular levels of 27-hydroxycholesterol. In conclusion, human liver cells contain regulable StAR protein whose level of expression appears capable of regulating cellular cholesterol homeostasis, representing a potential therapeutic target in the management of hyperlipidemia.  相似文献   

16.
The hepatobiliary transport of two cholephilic anions, bilirubin and bromosulfophthalein, is compared in the rat following the administration of clofibrate. In the treated rats, the bilirubin transport maximum (on a whole liver basis) increased by 84%. This increase is related to a higher excretion rate of conjugated bilirubin in bile. Hepatic unconjugated bilirubin is not modified. On the contrary, bromosulfophthalein transport decreased slightly but significantly. These results suggest that clofibrate acts primarily on bilirubin hepatic transport by stimulating the conjugating enzyme activity.  相似文献   

17.
R A Davis  P Showalter  F Kern 《Steroids》1975,26(4):408-421
The relationship between 14CO2 evolution from the catabolism of [26 or 2714C] cholesterol to bile acids was studied in rats with biliary fistulae. When equal quantities of [26 or 2714C] cholesterol and [414C] cholesterol were administered, there was a significant linear relationship between 14CO2 expiration in the breath and [414C] bile acid excreted in the bile. Bile acid synthesis calculated as the ratio of 14CO2: molar specific activity of biliary cholesterol correlated highly with biliary bile acid excretion in the bile acid depleted rat. Phenobarbital, a known inducer of gamma-amino levulenic acid formation from succinyl CoA did not alter the relationship between the 14CO2 estimation of bile acid synthesis and biliary bile acid excretion, indicating that the relationship between [26 or 2714C] cholesterol side chain cleavage and 14CO2 formation was not altered. Phenobarbital, however, did cause a reduction in bile acid synthesis measured by 14CO2 evolution and by biliary bile acid excretion. The 14CO2 method underestimated bile acid excretion. 8.7% in untreated and phenobarbital treated rats respectively. Since 11% of the radioactivity which was expired as 14CO2 was isolated as bile acids, radioactivity cleaved as [1 or 314C] propionyl CoA may enter cholesterol-bile acid biosynthesis resulting in the underestimation of bile acid synthesis. To test whether radioactivity from propionyl CoA enters steroid biosynthesis [114C] propionate and [214C] propionate were given to untreated biliary fistula rats and the biliary lipids excreted in 60 hours were analyzed. Incorporation of radioactivity into cholesterol and bile acids was greater after the administration of [214C] propionate than after [114C] propionate than after [114C] propionate, suggesting that radioactivity from propionyl CoA may enter steroid biosynthesis by metabolic events in which the methylene and carboxyl carbon atoms are differentiated. Although the use of 14CO2 expiration from [26 or 2714C] cholesterol catabolism underestimates the rate of bile acid synthesis, it should have many applications because of the constant relationship between 14CO2 formation and cholesterol side chain cleavage.  相似文献   

18.
Influence of probucol on cholesterol and lipoprotein metabolism in man   总被引:1,自引:0,他引:1  
The mechanisms for the hypocholesterolemic action of probucol were examined in 17 patients with various levels of plasma cholesterol and triglycerides (TG). All the patients were studied on a metabolic ward. The first period of 6 weeks was for control. Thereafter, probucol was started, and after 2-6 months of drug treatment, the patients were readmitted for another 6-week period for a repeat study. During treatment with probucol, the cholesterol decreased in total plasma by an average of 12%, in low density lipoproteins (LDL) by 11%, and in high density lipoproteins (HDL) by 9%. The TG in total plasma and in very low density lipoproteins (VLDL) remained unchanged during probucol treatment. Turnover of low density lipoprotein apoprotein (apoLDL) was estimated following injection of 125I-labeled apoLDL. Probucol increased the fractional catabolic rate (FCR) for apoLDL by an average of 23%, but did not change apoLDL synthesis. The drug produced no consistent changes in fecal excretion of cholesterol (neutral steroids) and bile acids, in cholesterol absorption, in lipid composition of gallbladder bile, in biliary secretion of cholesterol and bile acids, or in the activities of lipoprotein lipase and hepatic lipase. These data show that probucol lowers LDL by increasing its catabolism. This effect appears to be independent of any changes in metabolism of cholesterol or bile acids.  相似文献   

19.
Administration of clofibrate to the rat increased several fold the activity of malic enzyme in the liver. Clofibrate treatment resulted also in an increased activity of the hepatic hexose monophosphate shunt dehydrogenases but was without effect on NADP-linked isocitrate dehydrogenase. The increased activity of malic enzyme in the liver resulting from the administration of clofibrate was inhibited by ethionine and puromycin, which suggests that de novo synthesis of the enzyme protein did occur as the result of the drug action. In contrast to the liver malic enzyme, the enzyme activity in kidney cortex increased only two-fold, whereas in the heart and skeletal muscle the activity was not affected by clofibrate administration.  相似文献   

20.
Bile acids and cholesterol metabolism exhibits distinct daily rhythms and uridine closely associated with bile acids has been well documented. However, how dynamic oral administration of uridine affects bile acid and cholesterol metabolism has not been studied. We conducted the present study to investigate effects of oral administration of uridine in the daytime and nighttime (D-UR and N-UR) on bile acid and cholesterol metabolism-related genes expression in liver and ileum of mice. The results showed that oral administration of uridine in the nighttime (N-UR) reduced serum CHOL and ALT levels at Zeitgeber time (ZT) 4, ZT22, respectively. Compared with D-UR group, the mRNA expression of FXR and SHP genes of liver decreased in N-UR group at ZT10, ZT16, respectively. In addition, oral administration of uridine in the nighttime rhythmically increased the mRNA expression of bile acid transport, cholesterol excretion and decreased the mRNA expression of cholesterol absorption in ileum. Moreover, the expression of nucleotide transport and synthesis genes were also explored in duodenum. Oral administration of uridine in the nighttime rhythmically up-regulated nucleotide transport and synthesis genes expression. In conclusion, these results indicated dynamic oral administration of uridine has effects on the rhythmic fluctuation of cholesterol, bile acid and nucleotide metabolism-related genes. These findings have important physiological and pathophysiological implications, since bile acid and cholesterol metabolism are essential for cell function and closely involved in the development of metabolic syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号