首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abscisic acid (ABA) moving from roots to shoots in the transpirationstream is a potential hormonal message integrating perceptionof a root stress with adaptive changes in the shoot. A twinroot system was used to study ways of estimating effects ofdroughting the upper roots of Ricinus communis L. on abscisicacid (ABA) transport to the shoot in the transpiration stream.Droughted plants transpired more slowly than controls. Droughtingalso increased concentrations of ABA up to I I-fold in sap inducedto flow from the roots of freshly decapitated plants at ratesof whole plant transpiration. However, because of dilution effectsarising from the different sap flows in control and droughtedplants, these changes in ABA concentration in the xylem sapdid not accurately reflect amounts of ABA transported. To overcomethis problem, delivery rates were calculated by multiplyingconcentration with sap flow rate to generate ABA delivery interms of µmol s–1 per plant. Droughting for 24 hor more increased ABA delivery from roots to shoots by 5-fold.Since droughting can alter the relative sizes of the roots andshoots and also the root:shoot ratio these delivery rates wererefined in several ways to reflect both the amount of root generatingthe ABA message and the size of the recipient shoot system. Key words: Abscisic acid, Ricinus communis L., soil drying, xylem sap  相似文献   

2.
Calcium in Xylem Sap and the Regulation of its Delivery to the Shoot   总被引:7,自引:2,他引:5  
Amounts of total and free calcium in root and shoot xylem sapwere quantified for a number of species grown in comparableenvironments and in a rooting medium not deficient in calcium.The potential for the shoot to sequester calcium was also examined,along with the ability for ABA to regulate calcium flux to theleaf. Xylem sap calcium showed considerable interspecific and diurnalvariation, even though the plants were grown with similar rhizosphericcalcium concentrations. The potential for the shoot to sequesterxylem sap calcium was also highly variable between species andimplied an ability, at least in some species, to regulate thecalcium reaching the shoot in the transpiration stream. Long distance transport of calcium in the xylem was not primarilyby mass flow, because neither calcium uptake nor distributionwere closely related to water uptake or transpiration. The diurnalchanges in xylem sap total ion concentration appeared to benegatively correlated with transpiration while, in contrast,the calcium ion concentration showed two peaks, one occurringin the dark and the other in the light period. The application of ABA to roots caused an increase in the rateof exudation from the xylem of detopped well-watered plants.These experiments suggest that changes in root water relationsdriven by ionic fluxes were the likely cause for enhanced sapexudation from ABA-treated roots. The steady-state concentrationof calcium in the xylem sap was unaffected by ABA when exudationrate increased and, consequently, the flux of calcium must alsohave increased. Key words: Abscisic acid, calcium, xylem sap, ionic fluxes  相似文献   

3.
Collection of Xylem Sap at Flow Rate Similar to in vivo Transpiration Flux   总被引:3,自引:0,他引:3  
We have explored a method to collect xylem sap using a Scholanderpressure chamber for potted plants. Intact root system in potswhich fitted the pressure chamber was pressurised at a pneumaticpressure numerically equal to the absolute value of shoot waterpotential. The rate of xylem flow obtained from the stem stumpunder such pressure was found similar to the rate of transpirationbefore detopping. The rate of pressurised flow from detop-pedroots was linearly related to the pressure applied in both well-wateredand soil-dried plants. The osmotic concentration of the xylemsap was negatively related to the rate of volume flow, suggestingthe necessity to collect xylem sap at in vivo flow rate if originalsolute concentration is to be evaluated. The concentration ofABA in the xylem sap, however, did not show such a relationshipwith water flux. Both well-watered and soil-dried plants showedthe concentration of ABA in xylem sap largely stable with arange of volume flow rate, indicating a linear relationshipbetween the rate of ABA delivery through xylem and that of volumeflow. We also compared the concentrations of ABA in xylem sapsequentially collected from pressurised roots with that fromdetached shoots of the same plants. The concentration of ABAin the initial saps from shoots showed to be similar to thatfrom roots. However, a decrease in the concentration of ABAin the xylem sap collected from detached leaf or twig was observedwhen more volume of sap was collected, which might also be dependenton the plant species and the volume of xylem vessels concerned. (Received February 3, 1997; Accepted October 7, 1997)  相似文献   

4.
In flooded soils, the rapid effects of decreasing oxygen availability on root metabolic activity are likely to generate many potential chemical signals that may impact on stomatal apertures. Detached leaf transpiration tests showed that filtered xylem sap, collected at realistic flow rates from plants flooded for 2 h and 4 h, contained one or more factors that reduced stomatal apertures. The closure could not be attributed to increased root output of the glucose ester of abscisic acid (ABA-GE), since concentrations and deliveries of ABA conjugates were unaffected by soil flooding. Although xylem sap collected from the shoot base of detopped flooded plants became more alkaline within 2 h of flooding, this rapid pH change of 0.5 units did not alter partitioning of root-sourced ABA sufficiently to prompt a transient increase in xylem ABA delivery. More shoot-sourced ABA was detected in the xylem when excised petiole sections were perfused with pH 7 buffer, compared with pH 6 buffer. Sap collected from the fifth oldest leaf of "intact" well-drained plants and plants flooded for 3 h was more alkaline, by approximately 0.4 pH units, than sap collected from the shoot base. Accordingly, xylem [ABA] was increased 2-fold in sap collected from the fifth oldest petiole compared with the shoot base of flooded plants. However, water loss from transpiring, detached leaves was not reduced when the pH of the feeding solution containing 3-h-flooded [ABA] was increased from 6.7 to 7.1 Thus, the extent of the pH-mediated, shoot-sourced ABA redistribution was not sufficient to raise xylem [ABA] to physiologically active levels. Using a detached epidermis bioassay, significant non-ABA anti-transpirant activity was also detected in xylem sap collected at intervals during the first 24 h of soil flooding.  相似文献   

5.
Sycamore seedlings were grown with their root systems dividedequally between two containers. Water was withheld from onecontainer while the other container was kept well-watered. Effectsof soil drying on stomatal behaviour, shoot water status, andabscisic acid (ABA) concentration in roots, xylem sap and leaveswere evaluated. At 3 d, root ABA in the drying container increased significantly,while the root ABA in the unstressed container of the same plantsdid not differ from that of the control. The increase in rootABA was associated with the increase in xylem sap ABA and withthe decrease in stomatal conductance without any significantperturbation in shoot water status. At 7 d, despite the continuous increase in root ABA concentration,xylem sap ABA showed a marked decline when soil water contentwas depleted below 013 g g–1. This reduction in xylemsap ABA coincided with a partial recovery of stomatal conductance.The results indicate that xylem sap ABA is a function of rootABA as well as the flow rate of water from roots to shoots,and that this ABA can be a sensitive indicator to the shootof the effect of soil drying. Key words: Acer pseudoplatanus L., soil drying, stomatal behaviour, xylem sap ABA  相似文献   

6.
In this work we investigated the function of abscisic acid (ABA) as a long-distance chemical signal communicating water shortage from the root to the shoot in citrus plants. Experiments indicated that stomatal conductance, transpiration rates, and leaf water potential decline progressively with drought. ABA content in roots, leaves, and xylem sap was also increased by the drought stress treatment three- to sevenfold. The addition of norflurazon, an inhibitor of ABA biosynthesis, significantly decreased the intensity of the responses and reduced ABA content in roots and xylem fluid, but not in leaves. Polyethylene glycol (PEG)-induced osmotic stress caused similar effects and, in general, was counteracted only by norflurazon at the lowest concentration (10%). Partial defoliation was able to diminish only leaf ABA content (22.5%) at the highest PEG concentration (30%), probably through a reduction of the active sites of biosynthesis. At least under moderate drought (3–6 days without irrigation), mechanisms other than leaf ABA concentration were required to explain stomatal closure in response to limited soil water supply. Measurements of xylem sap pH revealed a progressive alkalinization through the drought condition (6.4 vs. 7.1), that was not counteracted with the addition of norflurazon. Moreover, in vitro treatment of detached leaves with buffers iso-osmotically adjusted at pH 7.1 significantly decreased stomatal conductance (more than 30%) as much as 70% when supplemented with ABA. Taken together, our results suggest that increased pH generated in drought-stressed roots is transmitted by the xylem sap to the leaves, triggering reductions in shoot water loss. The parallel rise in ABA concentration may act synergistically with pH alkalinization in xylem sap, with an initial response generated from the roots and further promotion by the stressed leaves.  相似文献   

7.
Two aspects of root to shoot communication in flooded plants are discussed (i) the formation of porous aerenchyma that enhances the passage of oxygen, and other gases, from shoots to roots and (ii) the movement of the ethylene precursor 1-aminocyclopropane-1-carboxylic acid (ACC) from roots to shoots in the transpiration stream, and the effect of this on ethylene production and epinastic curvature in the shoots. For aerenchyma studies a highly sensitive photoacoustic laser detector for ethylene was used to avoid interference associated with other methods of ethylene measurement that require tissue excision. ACC concentrations in xylem sap were measured by physico-chemical means to ensure correct identification and account for processing losses. Solute concentrations, e.g., abscisic acid (ABA), in xylem sap are shown to be distorted by temporary contamination caused by the method used to collect sap. Concentrations of solutes in xylem sap (e.g., ACC) are also altered by changes in sap flow brought about by conventional methods of sap collection or by experimental treatments such as flooding the soil. Ways of for overcoming these problems are described together with a summary of preliminary results.  相似文献   

8.
During two seasons, ABA concentrations were monitored in roots, leaves and xylem sap of field-grown maize. The water status of soil and plant was also measured. Plants were grown on plots with compacted or non-compacted soil, which were irrigated or remained unwatered. ABA concentration in the xylem sap before dawn and in the roots increases 25-fold and five-fold, respectively, as the soil dried, with a close correlation with the soil water status, but with no clear effect of the soil structure. In contrast to the results of several laboratory experiments, no appreciable increase in xylem [ABA] and reduction in stomatal conductance were observed with dehydration of the part of the root system located in soil upper layers. These responses only occurred when the water reserve of the whole soil profile was close to depletion and the transpiration declined. Xylem [ABA] measured during the day was appreciably higher in the compacted treatment than in non-compacted treatment, unlike that measured before dawn. Since a mechanical message is unlikely to undergo such day-night alterations, we suggest that this was due to a faster decrease in root water potential and water flux in the compacted treatment, linked to the root spatial arrangement. These results raise the possibility that ABA concentration in the xylem sap could be controlled by two coexisting mechanisms: (1) the rate of ABA synthesis in the roots linked to the soil or root water status, as shown in laboratory experiments; (2) the dilution of ABA in the water flow from roots, which could be an overriding mechanism in field conditions. This second mechanism would allow the plant to sense the water flux through the root system.  相似文献   

9.
Cytokinins are predominantly root-born phytohormones which are distributed in the shoot via the xylem stream. In the hormone message concept they are considered as root signals mediating the transport of the photosynthates to the various sinks of a plant. In this paper the cytokinin relations of Urtica dioica L., the stinging nettle, are described, based on the daily flux from the roots to the shoot. Trans-zeatin-type cytokinins predominate in the various tissues of Urtica (Wagner and Beck, 1993), and accordingly trans-zeatin riboside and trans-zeatin are the forms transported by the xylem sap. The daily time-course of cytokinin concentration in root pressure exudates and in xylem sap collected from a petiole after pressurizing the root bed showed high concentrations in the morning, followed by a substantial drop to a level of 15–30% of the initial concentration which was then maintained during the afternoon. This time-course is interpreted as resulting from continuous synthesis and exudation of cytokinins into the xylem fluid of the roots whose cytokinin concentration is then modified by the dynamics of the transpiration stream. Loading of cytokinins into the xylem sap could be enhanced several times by increasing the flux rate of the xylem stream to the maximal transpiration rate when a maximum export rate was reached. The total daily cytokinin gain by the shoot depended on the nitrogen status of the plant. Roots of Urtica plants grown on a sufficient nitrogen supply had a significantly higher cytokinin content and exuded more cytokinins into the shoot than those of plants raised under nitrogen shortage. A positive correlation was found between the steady rates of cytokinin export measured during the afternoon and the shoot to root-ratios of biomass which, in turn, corresponded to the nitrogen status of the plants.  相似文献   

10.
When soil moisture is heterogeneous, sap flow from, and ABA status of, different parts of the root system impact on leaf xylem ABA concentration ([X-ABA]leaf). The robustness of a model for predicting [X-ABA]leaf was assessed. 'Two root-one shoot' grafted sunflower (Helianthus annuus L.) plants received either deficit irrigation (DI, each root system received the same irrigation volumes) or partial rootzone drying (PRD, only one root system was watered and the other dried the soil). Irrespective of whether relative sap flow was assessed using sap flow sensors in vivo or by pressurization of de-topped roots, each root system contributed similarly to total sap flow during DI, while sap flow from roots in drying soil declined linearly with soil water potential (Psisoil) during PRD. Although Psisoil of the irrigated pot determined the threshold Psisoil at which sap flow from roots in drying soil decreased, the slope of this decrease was independent of the wet pot Psisoil. Irrespective of whether sap was collected from the wet or dry root system of PRD plants, or a DI plant, root xylem ABA concentration increased as Psisoil declined. The model, which weighted ABA contributions of each root system according to the sap flow from each, almost perfectly explained [X-ABA] immediately above the graft union. That the model overestimated measured [X-ABA]leaf may result from changes in [X-ABA] along the transport pathway or an artefact of collecting xylem sap from detached leaves. The implications of declining sap flow through partially dry roots during PRD for the control of stomatal behaviour and irrigation scheduling are discussed.  相似文献   

11.
土壤干旱条件下氮素营养对玉米内源激素含量影响   总被引:8,自引:6,他引:8  
张岁岐  山仑 《应用生态学报》2003,14(9):1503-1506
在田间持水量分别保持于35%、55%和75%±5%的土壤水分条件下,利用盆栽实验研究了土壤干旱和氮素营养对玉米内源激素和气孔导度的影响.结果表明,土壤干旱下氮素营养明显降低了玉米根系木质部汁液ABA浓度,而正常供水下施氮处理间则无显著差异(施氮处理仍较低),同时测定的叶片ABA浓度则呈相反的变化趋势,表现为干旱下施氮处理要高于不施氮处理;施氮处理木质部汁液中ZRs浓度应低于相应的不施氮处理,在调控气孔行为方面并未表现拮抗ABA作用;3种土壤水分条件下,施氮玉米叶片的气孔导度均高于不施氮处理,与木质部汁液ABA浓度呈负相关,说明施氮处理较低的根源ABA浓度是导致其气孔导度较大的主要原因.  相似文献   

12.
Hormonal changes induced by partial rootzone drying of irrigated grapevine   总被引:26,自引:0,他引:26  
Partial rootzone drying (PRD) is a new irrigation technique which improves the water use efficiency (by up to 50%) of wine grape production without significant crop reduction. The technique was developed on the basis of knowledge of the mechanisms controlling transpiration and requires that approximately half of the root system is always maintained in a dry or drying state while the remainder of the root system is irrigated. The wetted and dried sides of the root system are alternated on a 10-14 d cycle. Abscisic acid (ABA) concentration in the drying roots increases 10-fold, but ABA concentration in leaves of grapevines under PRD only increased by 60% compared with a fully irrigated control. Stomatal conductance of vines under PRD irrigation was significantly reduced when compared with vines receiving water to the entire root system. Grapevines from which water was withheld from the entire root system, on the other hand, show a similar reduction in stomatal conductance, but leaf ABA increased 5-fold compared with the fully irrigated control. PRD results in increased xylem sap ABA concentration and increased xylem sap pH, both of which are likely to result in a reduction in stomatal conductance. In addition, there was a reduction in zeatin and zeatin-riboside concentrations in roots, shoot tips and buds of 60, 50 and 70%, respectively, and this may contribute to the reduction in shoot growth and intensified apical dominance of vines under PRD irrigation. There is a nocturnal net flux of water from wetter roots to the roots in dry soil and this may assist in the distribution of chemical signals necessary to sustain the PRD effect. It was concluded that a major effect of PRD is the production of chemical signals in drying roots that are transported to the leaves where they bring about a reduction in stomatal conductance.  相似文献   

13.
Unusual stomatal behaviour on partial root excision in wheat seedlings   总被引:6,自引:0,他引:6  
The excision of four out of five primary roots of wheat (Triticum durum Desf.) seedlings often leads to an enhanced rate of transpiration. Surprisingly this enhancement could be maintained for several hours after root excision and was particularly likely to occur at low irradiances or high atmospheric humidity. This long‐term enhancement could not be explained in terms of conventional hydropassive stomatal effects. Elevated rates of transpiration were associated with and possibly caused by increased cytokinin concentrations in shoots of plants with partially excised roots. The single root remaining after excision was able to maintain an adequate water uptake for the continued enhanced transpiration, after only a short transient reduction in leaf water content. The enhanced capacity for water uptake by the remaining root was confirmed by measuring the water flow from detached roots at negative hydrostatic pressure. Even without additional suction, flow from the reduced root system increased about 1.5 h after the start of treatment, suggesting an increase in membrane permeability for water. Although abscisic acid (ABA) concentrations in the roots increased after the root excision treatment, there was no evidence for any enhanced concentration in the xylem sap. The possible role that this accumulation of ABA in roots may have in the apparent increase in hydraulic conductivity after root excision is discussed.  相似文献   

14.
Decreased cytokinin (CK) export from roots in drying soil might provide a root-to-shoot signal impacting on shoot physiology. Although several studies show that soil drying decreases the CK concentration of xylem sap collected from the roots, it is not known whether this alters xylem CK concentration ([CK(xyl)]) in the leaves and bulk leaf CK concentration. Tomato (Solanum lycopersicum L.) plants were grown with roots split between two soil columns. During experiments, water was applied to both columns (well-watered; WW) or one (partial rootzone drying; PRD) column. Irrigation of WW plants aimed to replace transpirational losses every day, while PRD plants received half this amount. Xylem sap was collected by pressurizing detached leaves using a Scholander pressure chamber, and zeatin-type CKs were immunoassayed using specific antibodies raised against zeatin riboside after separating their different forms (free zeatin, its riboside, and nucleotide) by thin-layer chromatography. PRD decreased the whole plant transpiration rate by 22% and leaf water potential by 0.08 MPa, and increased xylem abscisic acid (ABA) concentration 2.5-fold. Although PRD caused no detectable change in [CK(xyl)], it decreased the CK concentration of fully expanded leaves by 46%. That [CK(xyl)] was maintained and not increased while transpiration decreased suggests that loading of CK into the xylem was also decreased as the soil dried. That leaf CK concentration did not decline proportionally with CK delivery suggests that other mechanisms such as CK metabolism influence leaf CK status of PRD plants. The causes and consequences of decreased shoot CK status are discussed.  相似文献   

15.
We investigated if concentrations of abscisic acid (ABA) andother solutes measured in the first few droplets of xylem sapfrom detopped root systems, are good estimates of those in thetranspiration stream as it enters the shoot-base of whole plants.Xylem sap from root systems of pot-grown tomato plants (Lycopersiconesculentum Mill., cv. Ailsa Craig), at the seven-leaf stage,was obtained by placing root systems in chambers pressurizedto 0.3 MPa with air. The first sample was taken from the cut-surfaceof the hypo-cotyl stump within 30 s of removing the shoot. ABA,sucrose and other osmolytes were more concentrated in the initial100–200 mm3 of xylem sap than in subsequent samples. Thissuggested the sap was contaminated and not unchanged transpirationfluid. The effect was reproduced on the same plant, severaltimes, by recutting the hypocotyl prior to reassembling thesap collecting set-up and repressurizing. Similar results werefound with castor-oil plants (Ricinus communis L., cv. Gibsonii).However, neither release of ABA from the cut surface of thehypocotyl stump, nor the effects of pressure to the roots causedthe contamination. Instead, small radial pressures exerted bya rubber sleeve attached to the hypocotyl stump, for collectingthe sap, were responsible. The effect was reproduced by lightlysqueezing the hypocotyl by hand. The possibility was examined that reliable estimates of ABAconcentrations in transpiration stream fluid may be obtainedfrom sap samples taken immediately after rejecting the initial,contaminated 200 mm3. However, ABA concentrations in these latersamples were also unsatisfactory since they changed with rateof sap flow. The problem may be overcome by analysing sap inducedto flow through detached root systems at rates close to thoseof whole-plant transpiration. Key words: Tomato, Lycopersicon esculentum Mill., Castor-oil plant, Ricinus communis L., roots, root to shoot communication, xylem sap, abscisic acid, sucrose, transpiration stream  相似文献   

16.
Cytokinins from the roots may be involved in regulating rose ( Rosa hybrida ) shoot growth and development. The objective of this study was to estimate the export of cytokinins from the roots and their degradation rate in the shoot, which were expected to be correlated with plant development. Hence, the total cytokinin content of the shoot, the concentration of zeatin riboside (ZR) in bleeding sap, and the transpiration rates in three stages of development were determined. The estimations performed are based on the assumption that the cytokinin concentration in bleeding sap is representative for the cytokinin concentration in xylem sap in situ. This was verified by comparing the ZR concentration in bleeding sap and in sap obtaíned after pressurizing the root system to a level equivalent to the leaf water potential; no significant differences could be found. The import of cytokinins could not be correlated with plant development, as it increased linearly with time. The estimated relative degradation rate of cytokinins in the shoot decreased as the plants matured. The half-life of cytokinins in the shoot was found to be approximately 1 day, indicating that cytokinins are rapidly metabolized in the shoot.  相似文献   

17.
Maize (Zea mays L.) was grown in quartz sand culture eitherwith a normal root system (controls) or with seminal roots only(‘single-rooted’). Development of adventitious rootswas prevented by using plants with an etiolated mesocotyl andthe stem base was positioned 5–8 cm above the sand. Eventhough the roots of the single-rooted plants were sufficientlysupplied with water and nutrients, the leaves experienced waterdeficits and showed decreased transpiration as trans plrationalwater flow was restricted by the constant number of xylem vesselspresent in the mesocotyl. As a consequence of this restriction,transpirational water flow velocities in the metaxylem vesselsreached mean values of 270 m h–1 and phloem transportvelocities of 5.2 m h–1. Despite limited xylem transportmineral nutrient concentrations in leaf tissues were not decreasedin single-rooted plants, but shoot and particularly stem developmentwas somewhat inhibited. Due to the lack of adventitious rootsthe shoot:root ratio was strongly increased in the single-rootedplants, but the seminal roots showed compensatory growth comparedto those in control plants. Consistent with decreased leaf conductance,ABA concentrations in leaves of single-rooted plants were elevatedup to 10-fold, but xylem sap ABA concentrations in these plantswere lower than in controls, in good agreement with the well-wateredconditions experienced by the seminal roots. Surprisingly, however,ABA concentrations in tissues of the seminal roots of the single-rooted plants were clearly increased compared to the controls,presumably due to increased ABA import via phloem from the water-stressedleaves. The results are discussed in relation to the role ofABA as a shoot to root signal. Key words: Zea mays, seminal roots, plant development, xylem transport, mineral nutrition, ABA, shoot-to-root signal  相似文献   

18.
We address the question of how soil flooding closes stomata of tomato (Lycopersicon esculentum Mill. cv Ailsa Craig) plants within a few hours in the absence of leaf water deficits. Three hypotheses to explain this were tested, namely that (a) flooding increases abscisic acid (ABA) export in xylem sap from roots, (b) flooding increases ABA synthesis and export from older to younger leaves, and (c) flooding promotes accumulation of ABA within foliage because of reduced export. Hypothesis a was rejected because delivery of ABA from flooded roots in xylem sap decreased. Hypothesis b was rejected because older leaves neither supplied younger leaves with ABA nor influenced their stomata. Limited support was obtained for hypothesis c. Heat girdling of petioles inhibited phloem export and mimicked flooding by decreasing export of [14C]sucrose, increasing bulk ABA, and closing stomata without leaf water deficits. However, in flooded plants bulk leaf ABA did not increase until after stomata began to close. Later, ABA declined, even though stomata remained closed. Commelina communis L. epidermal strip bioassays showed that xylem sap from roots of flooded tomato plants contained an unknown factor that promoted stomatal closure, but it was not ABA. This may be a root-sourced positive message that closes stomata in flooded tomato plants.  相似文献   

19.
Abstract. Maize seedlings ( Zea mays L. John Innes F1 hybrid) were grown in a greenhouse in l-m-long tubes of soil. When the plants were well established, water was withheld from half of the tubes. Control plants were watered every day during the 20-d experimental period. The soil drying treatment resulted in a substantial restriction of stomatal conductance and a limitation in shoot growth, even though there was no detectable difference in the water relations of watered and unwatered plants. From day 7 of the soil drying treatment, xylem ABA concentrations (measured using the sap exuded from detopped plants) were substantially increased in unwatered plants compared to values recorded with sap from plants watered every day. Measurements of water potential through the profile of unwatered soil suggest that xylem ABA concentrations reflects the extent of soil drying. Leaf ABA content was a much less sensitive indicator of the effect of soil drying and during the whole of experimental period there was no significant difference between ABA concentration in leaves of well watered and unwatered plants. In a second set of experiments, ABA was fed to part of the roots of potted maize plants to manipulate xylem ABA concentration. These manipulations suggested that the increases in ABA concentration in xylem sap, which resulted from soil drying, were adequate to explain the observed variation in stomatal conductance and might also explain the restriction in leaf growth rate. These results are discussed in the light of recent work which suggests that stomatal responses to soil drying are partly attributable to an as-yet unidentified inhibitor of stomatal opening.  相似文献   

20.
This paper is a continuation of our studies related to the response of two tomato cultivars: Robin and New Yorker to chilling: the later is more tolerant to chilling than the former one (Starck et al. 1994). The concentration of ABA in the xylem sap and ABA delivery rate (calculated as the amount of ABA exuded in 2h from the cut stump, following shoot removal) were estimated by ELISA. The relative water content (RWC) of the leaf blades and stomatal resistance (RS) were also measured. Tomato plants were grown in a greenhouse, under noncontrolled conditions. Before chilling some of the plants were drought hardened for 10 days (H). As an consequence of water deficit only New Yorker growth slightly decreased. Plants were chilled to 2–5 °C during three consecutive, 16-h nights, preceded by warm days, which caused a decrease in the RWC of leaf blades. Chilling did not decreased leaf blade hydration significantly, but drastically increased the concentration of ABA in the xylem sap in more chilling tolerant cv. New Yorker only. The delivery rate of ABA was markedly enhanced in both cultivars, but much more in New Yorker. Drought hardening increased ABA delivery rate in cv. Robin only, especially after chilling. The lack of correlation between changes in the RWC of leaf blades after low temperature treatment and the concentration of ABA in the xylem sap as well as its delivery rate suggest, that in both tomato cultivars chilling increased ABA level directly, not as an secondery effect of temperature-induced water deficit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号