首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Sitbon F  Jonsson L 《Planta》2001,212(4):568-572
Transgenic tobacco (Nicotiana tabacum L.) plants with altered sterol composition were generated by transformation with plant cDNAs encoding type-1 and type-2 sterol methyltransferases (SMTs; EC 2.1.1.41). For both SMT1 and SMT2 transformants, the transformation was associated with a reduction in the level of cholesterol, a non-alkylated sterol. In SMT1 transformants a corresponding increase of alkylated sterols, mainly 24-methyl cholesterol, was observed. On the other hand, in SMT2 transformants the level of 24-methyl cholesterol was reduced, whereas the level of sitosterol was raised. No appreciable alteration of total sterol content was observed for either genotype. The general phenotype of transformants was similar to that of controls, although SMT2 transformants displayed a reduced height at anthesis. The results show that plant sterol composition can be altered by transformation with an SMT1 cDNA without adverse effects on growth and development, and provide evidence, in planta, that SMT1 acts at the initial step in sterol alkylation. Received: 27 June 2000 / Accepted: 22 July 2000  相似文献   

2.
 Expression of Panicum miliaceum L. (proso millet) mitochondrial and cytosolic aspartate aminotransferase (mAspAT and cAspAT, respectively) genes in transgenic tobacco plants (Nicotiana tabacum) and their influences on protein synthesis were examined. The mAspAT- or cAspAT-transformed plants had about threefold or 3.5-fold higher AspAT activity in the leaf than non-transformed plants, respectively. Interestingly, the leaves of both transformed plants had increased levels of phosphoenolpyruvate carboxylase (PEPC) and transformed plants with cAspAT also had increased levels of mAspAT in the leaf. These results suggest that the increased expression of Panicum cAspAT in transgenic tobacco enhances the expression of its endogenous mAspAT and PEPC, and the increased expression of Panicum mAspAT enhances the expression of its endogenous PEPC. Received: 6 February 1998 / Revision received: 6 August 1999 · Accepted: 6 September 1999  相似文献   

3.
To study the function of xyloglucan endotransglycosylase (XET) in vivo we isolated, a tomato (Lycopersicon esculentum Mill.) XET cDNA (GenBank AA824986) from the homologous tobacco (Nicotiana tabacum L.) clone named NtXET-1 (Accession no. D86730). The expression pattern revealed highest levels of NtXET-1 mRNA in organs highly enriched in vascular tissue. The levels of NtXET-1 mRNA decreased in midribs with increasing age of leaves. Increasing leaf age was correlated with an increase in the average molecular weight (MW) of xyloglucan (XG) and a decrease in the relative growth rates of leaves. Transgenic tobacco plants with reduced levels of XET activity were created to further study the biochemical consequences of reduced levels of NtXET-1 expression. In two independent lines, total XET activity could be reduced by 56% and 37%, respectively, in midribs of tobacco plants transformed with an antisense construct. The decreased activity led to an increase in the average MW of XG by at least 20%. These two lines of evidence argue for NtXET-1 being involved in the incorporation of small XG molecules into the cell wall by transglycosylation. Reducing the incorporation of small XG molecules will result in a shift towards a higher average MW. The observed reduction in NtXET-1 expression and increase in the MW of XG in older leaves might be associated with strengthening of cell walls by reduced turnover and hydrolysis of XG. Received: 24 January 2000 / Accepted: 21 July 2000  相似文献   

4.
The patterns of secondary metabolites in leaves of yeast invertase-transgenic tobacco plants (Nicotiana tabacum L. cv. Samsun NN) were analyzed. Plants expressing cytosolic yeast-derived invertase (cytInv) or apoplastic (cell wall associated) yeast invertase (cwInv) showed a characteristic phytochemical phenotype compared to untransformed controls (wild-type plants). The level of phenylpropanoids decreased in the cytInv plants but increased in the cwInv plants, which showed an induced de novo synthesis of a caffeic acid amide, i.e. N-caffeoylputrescine. In addition, the level of the coumarin glucoside scopolin was markedly enhanced. Increased accumulation of scopolin in the cwInv plants is possibly correlated with the induction of defense reactions and the appearance of necrotic lesions similar to the hypersensitive response caused by avirulent pathogens. This is consistent with results from potato virus Y-infected plants. Whereas there was no additional increase in the coumarins in leaves following infection in cwInv plants, wild-type plants showed a slight increase and cytInc a marked increase.  相似文献   

5.
Transgenic tobacco plants (Nicotiana tabacum cv. SR1) expressing extracellular pancreatic ribonuclease from Bos taurus and characterized by an increased level of ribonuclease activity in leaf extracts were challenged with tobacco mosaic virus. The transgenic plants exhibited a significantly higher level of protection against the virus infection than the control non-transformed plants. The protection was evidenced by the absence (or significant delay) of the appearance of typical mosaic symptoms and the retarded accumulation of infectious virus and viral antigen. These results demonstrate that modulation of extracellular nuclease expression can be efficiently used in promoting protection against viral diseases.  相似文献   

6.
Theory predicts that, for growing plant cells isolated from a supply of water, stress relaxation of the cell wall should decrease cell turgor pressure (P) until the yield threshold for cell expansion is reached. This prediction was tested by direct P measurements of pea (Pisum sativum L.) stem cortical cells before and after excision of the growing region and isolation of the growing tissue from an external water supply. Cell P was measured with the micro-pressure probe under conditions which eliminated transpiration. Psychrometric measurements of water potential confirmed the pressureprobe measurements. Following excision, P of the growing cells decreased in 1 h by an average of 1.8 bar to a mean plateau value of 2.8 bar, and remained constant thereafter. Treatment with 10-5 M indole-3-acetic acid or 10-5 M fusicoccin (known growth stimulants) accelerated the rate of P relaxation, whereas various treatments which inhibit growth slowed down or completely stopped P relaxation in apical segments. In contrast, P of basal (nongrowing) segments gradually increased because of absorption of solutes from the cell-wall free space of the tissue. Such solute absorption also occurred in apical segments, but wall relaxation held P at the yield threshold in those segments which were isolated from an external water supply. These results provide a new and rapid method for measuring the yield threshold and they show that P in intact growing pea stems exceeds the yield threshold by about 2 bar. Wall relaxation is shown here to affect the water potential and turgor pressure of excised growing segments. In addition, solute release and absorption upon excision may influence the water potential and turgor pressure of nongrowing excised plant tissues.Abbreviations and symbols IAA indole-3-acetic acid - P turgor pressure - SE standard error of the mean - water potential  相似文献   

7.
The subcellular distribution of hexoses, sucrose and amino acids among the stromal, cytosolic and vacuolar compartments was analysed by a nonaqueous fractionation technique in leaves of tobacco (Nicotiana tabaccum L.) wild-type and transgenic plants expressing a yeast-derived invertase in the cytosolic, vacuolar or apoplasmic compartment. In the wild-type plants the amino acids were found to be located in the stroma and in the cytosol, sucrose mainly in the cytosol and up to 98% of the hexoses in the vacuole. In the leaves of the various transformants, where the contents of hexoses were greater than in wild-type plants, again 97–98% of these hexoses were found in the vacuoles. It is concluded that leaf vacuoles contain transporters for the active uptake of glucose and fructose against a high concentration gradient. A comparison of estimated metabolite concentrations in the subcellular compartments of wild-type and transformant plants indicated that the decreased photosynthetic capacity of the transformants is not due to an osmotic effect on photosynthesis, as was shown earlier to be the case in transformed potato leaves, but is the result of a long-term dedifferentiation of tobacco leaf cells to heterotrophic cells.Abbreviations apo-inv tobacco plant with yeast invertase in the apoplasm - Chl chlorophyll - cy-inv tobacco plant with yeast invertase in the cytosol - vac-inv tobacco plant with yeast invertase in the vacuole - WT wild-type tobacco plant The authors thank A. Großpietsch for her able technical assistance. This work has been supported by the Bundesminister für Forschung und Technologie.  相似文献   

8.
 Calli and cell suspensions were obtained from tobacco plants transformed with an endochitinase-encoding cDNA from the biocontrol fungus Trichoderma harzianum. Calli from four primary transformants had high levels of endochitinase activity, like the plants from which they were derived. Endochitinase activity was also detected in the medium surrounding the calli and in the medium from transgenic cell suspensions. Western blots demonstrated the presence of the expected 40-kDa T. harzianum protein in transgenic samples but not in controls. These results indicate that the fungal enzyme is secreted and that the fungal signal peptide in the cDNA construct functions in plant cells. A cell suspension medium in which the protein concentration was increased up to 34-fold by ammonium sulfate precipitation inhibited germination of Penicillium digitatum spores. Some inhibition of spore germination was also observed in concentrated medium from control suspensions, probably due to the secretion and concentration of endogenous enzymes. Received: 6 May 2000 / Revision received: 6 September 2000 · Accepted: 14 September 2000  相似文献   

9.
Bacterial levansucrase (EC 2.4.1.10) converts sucrose into non-linear levan consisting of long β(2,6)-linked fructosyl chains with β(2,1) branches. Bacterial levan has wide food and non-food applications, but its production in industrial reactors is costly and low yielding. Here, we report the constitutive expression of Gluconacetobacter diazotrophicus levansucrase (LsdA) fused to the vacuolar targeting pre-pro-peptide of onion sucrose:sucrose 1-fructosyltransferase (1-SST) in tobacco, a crop that does not naturally produce fructans. In the transgenic plants, levan with degree of polymerization above 104 fructosyl units was detected in leaves, stem, root, and flowers, but not in seeds. High levan accumulation in leaves led to gradual phenotypic alterations that increased with plant age through the flowering stage. In the transgenic lines, the fructan content in mature leaves varied from 10 to 70% of total dry weight. No oligofructans were stored in the plant organs, although the in vitro reaction of transgenic LsdA with sucrose yielded β(2,1)-linked FOS and levan. Transgenic lines with levan representing up to 30 mg g−1 of fresh leaf weight produced viable seeds and the polymer accumulation remained stable in the tested T1 and T2 progenies. The lsdA-expressing tobacco represents an alternative source of highly polymerized levan.  相似文献   

10.
The human lysozyme gene, which is assembled by the stepwise ligation of chemically synthesized oligonucleotides, was introduced into tobacco (Nicotiana tabacum cv `SR1') by the Agrobacterium-mediated method. The introduced human lysozyme gene was highly expressed under the control of the cauliflower mosaic virus 35S promoter, and the gene product accumulated in the transgenic tobacco plants. The transgenic tobacco plants showed enhanced resistance against the fungus Erysiphe cichoracearum – both conidia formation and mycelial growth were reduced, and the size of the colony was diminished. Microscopic observation revealed that the transgenic tobacco plants carried the resistant phenotype, analogous to that of the resistant cultivar `Kokubu' which had been selected by conventional breeding. Growth of the phytopathogenic bacterium Pseudomonas syringae pv. tabaci was also strongly retarded in the transgenic tobacco, and the chlorotic halo of the disease symptom was reduced to 17% of that observed in the wild-type tobacco. Thus, the introduction of a human lysozyme gene is an effective approach to protect crops against both fungal and bacterial diseases. Received: 9 September 1996 / Revision received: January 9 1997 / Accepted: 20 February 1997  相似文献   

11.
Summary. Following the establishment of a transgenic line of tobacco (B5H) expressing the trehalose-6-phosphate synthase (TPS) gene from Arabidopsis thaliana, a preliminary immunolocalization study was conducted using leaves of adequately watered B5H and wild-type plants. Immunocytochemical staining, followed by electron microscopy showed that the enzyme could be detected in both B5H and wild-type plants at two different levels. Quantification showed the signal to be two to three times higher in transgenic plants than in the wild type. This enzyme was markedly present in the vacuoles and the cell wall, and to a lesser extent in the cytosol. Moreover, a high profusion of gold particles was detected in adjacent cells and in the sieve elements. Occasional spots were also detected in chloroplasts and the nucleus, especially in the transgenic B5H line. No labeling signal was detected in mitochondria. Protein localization seems to confirm the important role of TPS in sugar metabolism and transport through the plant, which could explain its role in plant stress tolerance. Finally, it can be expected that TPS from tobacco has a relatively high similarity to the TPS of Arabidopsis thaliana. Correspondence and reprints: Laboratório de Biotecnologia de Células Vegetais, ITQB, Apartado 127, Avenida da República (E.A.N.), 2781-901 Oeiras, Portugal.  相似文献   

12.
Summary Cross protection of plant viruses is a phenomenon in which plants infected with one strain of a virus are protected from the effects of superinfection by other related strains. Recently, we have succeeded in the introduction and expression of a cDNA copy of the tobacco mosaic virus (TMV) genomic RNA in transgenic tobacco plants. Using this system, we introduced a cDNA copy of a mild strain of TMV into tobacco plants. The transgenic plants did not develop any severe symptoms upon inoculation with a virulent TMV strain, indicating that these transgenic plants were cross protected against TMV infection. The system described here can be a useful model system to study the mechanism(s) of cross protection.  相似文献   

13.
Potato (Solanum tuberosum cv. Désirée) plants expressing yeast invertase directed either to the apoplast, vacuole or cytosol were biochemically and physiologically characterised. All lines of transgenic plants showed similarities to plants growing under water stress. Transformants were retarded in growth, and accumulated hexoses and amino acids, especially proline, to levels up to 40-fold higher than those of the wild types. In all transformants rates of CO2 assimilation and leaf conductance were reduced. From the unchanged intercellular partial pressure of CO2 and apoplastic cis-abscisic acid (ABA) content of transformed leaves it was concluded that the reduced rate of CO2 assimilation was not caused by a limitation in the availability of CO2 for␣the ribulose-1,5-bisphosphate carboxylase-oxygenase (Rubisco). In the transformants the amount of Rubisco protein was not reduced, but both activation state and carboxylation efficiency of photosynthesis were lowered. In vacuolar and cytosolic transformants this inhibition of Rubisco might be caused by a changed ratio of organic bound and inorganic phosphate, as indicated by a doubling of phosphorylated intermediates. But in apoplastic transformants the pattern of phosphorylated intermediates resembled that of leaves of water-stressed potato plants, although the cause of inhibition of photosynthesis was not identical. Whereas in water-stressed plants increased contents of the phytohormone ABA are supposed to mediate the adaptation to water stress, no contribution of ABA to reduction of photosynthesis could be detected in invertase transformants. Received: 29 May 1996 / Accepted: 30 December 1996  相似文献   

14.
15.
Chimeric genes consisting of the coding sequence of the yeast invertase gene suc 2 and different N-terminal portions of the potato-derived vacuolar protein proteinase inhibitor II fused to the 35S CaMV promoter and the poly-A site of the octopine synthase gene were transferred into tobacco and Arabidopsis thaliana plants using Agrobacterium based systems. Regenerated transgenic plants display a 50- to 500-fold higher invertase activity compared to non-transformed control plants. This invertase is N-glycosylated and efficiently secreted from the plant cell leading to its apoplastic location. Whereas expression of the invertase does not lead to drastic changes in transgenic Arabidopsis thaliana plants, transgenic tobacco plants show dramatic changes with respect to development and phenotype. Expression of the invertase leads to stunted growth due to reduction of internodal distances, to development of bleached and/or necrotic regions in older leaves and to suppressed root formation. In mature leaves, high levels of soluble sugars and starch accumulate. These carbohydrates do not show a diurnal turnover. The accumulation of carbohydrate is accompanied by an inhibition of photosynthesis, and in tobacco, by an increase in the rate of respiration. Measurements in bleached versus green areas of the same leaf show that the bleached section contains high levels of carbohydrates and has lower photosynthesis and higher respiration than green sections. It is concluded that expression of invertase in the cell wall interrupts export and leads to an accumulation of carbohydrates and inhibition of photosynthesis.  相似文献   

16.
Tobacco plants expressing a transgene encoding the coat protein (CP) of a subgroup I strain of cucumber mosaic cucumovirus (CMV), I17F, were not resistant to strains of either subgroup I or II. In contrast, the expression of the CP of a subgroup II strain, R, conferred substantial resistance, but only towards strains of the same subgroup. When protection was observed, the levels of resistance were similar when plants were inoculated with either virions or viral RNA, but resistance was more effective when plants were inoculated with viruliferous aphids. Resistance was not dependent on inoculum strength and was expressed as a recovery phenotype not yet described for plants expressing a CMV CP gene. Recovery could be observed either early in infection (less than one week after inoculation) or later (4 to 5 weeks after inoculation). In plants showing early recovery, mild symptoms were observed on the inoculated leaves, and in some cases symptoms developed on certain lower systemically infected leaves, but the upper leaves were symptomless and virus-free. Late recovery corresponded to the absence of both symptoms and virus in the upper leaves of plants that were previously fully infected. Northern blot analyses of resistant plants suggested that a gene silencing mechanism was not involved in the resistance observed.  相似文献   

17.
Photosynthesis and transpiration rates of transgenic (expressing yeast-derived invertase targeted to the vacuole) tobacco (Nicotiana tabacum L.) leaves were, respectively, 50 and 70% of those of a wild type at 20°C, 350 cm3 m?3 CO2 concentration, 450 μmol (photons) m?2 s?1 of light intensity, and 70% relative air humidity. These differences could be attributed: (a) to changes in leaf anatomy and, consequently, to changes in gases diffusion between the cells' surfaces and the atmosphere; (b) to different stomatal apertures, and, for the photosynthesis rate, (c) to the altered CO2 assimilation rate. Our objective was to estimate the relative contributions of these three sources of difference. Measurements on the wild-type and the transgenic leaf cross-sections gave values for the cell area index (CAI, cell area surface per unit of leaf area surface) of 15.91 and 13.97, respectively. The two-dimensional model 2DLEAF for leaf gas exchange was used to estimate quantitatively anatomical, stomatal and biochemical components of these differences. Transpiration rate was equal to 0.9 for the wild-type and to 0.63 mmol m?2 s?1 for the transgenic leaf: 24.0% of the difference (0.066 mmol m?2 s?1 was caused by the greater cell area surface in the wild-type leaf, and 66.0% was caused by a smaller stomatal aperture in the transgenic leaf. Photosynthetic rate was 3.10 and 1.55 μmol m?2 s?1 for the wild-type and transgenic leaves, respectively. Only 10.3% of this difference (0.16 μmol m?2 s?1) was caused by the difference in CAI, and the remaining 89.7% was caused by altered CO2 assimilation rate.  相似文献   

18.
19.
To analyze the physiological role of dehydroascorbate reductase (DHAR, EC 1.8.5.1) catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, T1 transgenic tobacco (Nicotiana tabacum cv. Xanthi) plants expressing a human DHAR gene in chloroplasts were biochemically characterized and tested for responses to various stresses. Fully expanded leaves of transgenic plants had about 2.29 times higher DHAR activity (units/g fresh wt) than non-transgenic (NT) plants. Interestingly, transgenic plants also showed a 1.43 times higher glutathione reductase activity than NT plants. As a result, the ratio of AsA/DHA was changed from 0.21 to 0.48, even though total ascorbate content was not significantly changed. When tobacco leaf discs were subjected to methyl viologen (MV) at 5 mumol/L and hydrogen peroxide (H2O2) at 200 mmol/L, transgenic plants showed about a 40% and 25% reduction in membrane damage relative to NT plants, respectively. Furthermore, transgenic seedlings showed enhanced tolerance to low temperature (15 degrees C) and NaCl (100 mmol/L) compared to NT plants. These results suggest that a human derived DHAR properly works for the protection against oxidative stress in plants.  相似文献   

20.
Suo G  Chen B  Zhang J  Gao Y  Wang X  He Z  Dai J 《Plant cell reports》2006,25(12):1316-1324
Bone morphogenetic protein 2 (BMP2) is important for bone tissue repair. The goal of this research is to construct a high level human BMP2 (hBMP2) expression system using transgenic tobacco plants as a bioreactor. Cauliflower mosaic virus (CaMV) 35S promoter, alfalfa mosaic virus (AMV) enhancer, tobacco mosaic virus (TMV) enhancer, matrix attachment regions (MARs) sequence, and “Kozak” sequence were used to construct recombinant expression vectors and the high-expression vectors were screened out through GUS-fusions assay. The promoter is the most important factor; double-CaMV 35S promoter is more effective than single promoter. The AMV or TMV enhancer is able to promote the foreign protein expression. After four-step purification, the activated hBMP2 (0.02% total soluble protein) was obtained. Our results suggested that the transgenic tobacco has great potential to be used as a bioreactor to produce hBMP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号