首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An isotope scrambling method is described for the detection of transient [Enz:ADP:P-X] formation from [18O]ATP in ATP-coupled enzyme reactions. The method makes use of torsional symmetry of the newly formed (see article) group in ADP. [18 O]ATP labeled in the betagama bridge oxygen was incubated with enzyme and reversible cleavage of the PbetaO -- Pgamma bond was detected by the appearance of 18O in the beta nonbridge oxygens of the ATP pool. Experiments with sheep brain and Escherichia coli glutamine synthetases show that cleavage of ATP of enzyme-bound ADP and P-X requires glutamate. The exchange catalyzed by the E. coli enzyme with glutamate occurs in the absence of ammonia and is partially inhibited by added NH4Cl, as expected if the exchange is in the mechanistic pathway for glutamine synthesis. The results provide kinetic support for a two-step mechanism where phosphoryl transfer from ATP to glutamate precedes reaction with ammonia.  相似文献   

2.
Kinetic isotope effects have been measured for the estrogen sulfotransferase-catalyzed sulfuryl (SO3) transfer from p-nitrophenyl sulfate to the 5'-phosphoryl group of 3'-phosphoadenosine 5'-phosphate. 18(V/K)nonbridge = 1.0016 +/- 0.0005, 18(V/K)bridge = 1.0280 +/- 0.0006, and 15(V/K) = 1.0014 +/- 0.0004. (15(V/K) refers to the nitro group in p-nitrophenyl sulfate). The kinetic isotope effects indicate substantial S O bond fission in the transition state, with partial charge neutralization of the leaving group. The small kinetic isotope effect in the nonbridging sulfuryl oxygen atoms suggests no significant change in bond orders of these atoms occurs, consistent with modest nucleophilic involvement. A comparison of the data for enzymatic and uncatalyzed sulfuryl transfer reactions suggests that both proceed through very similar transition states.  相似文献   

3.
The primary and secondary 18O isotope effects for the alkaline (KOH) and enzymatic (phosphotriesterase) hydrolysis of two phosphotriesters, O,O-diethyl p-nitrophenyl phosphate (I) and O,O-diethyl O-(4-carbamoylphenyl) phosphate (II), are consistent with an associative mechanism with significant changes in bond order to both the phosphoryl and phenolic leaving group oxygens in the transition state. The synthesis of [15N, phosphoryl-18O]-, [15N, phenolic-18O]-, and [15N]-O,O-diethyl p-nitrophenyl phosphate and O,O-diethyl O-(4-carbamoylphenyl)phosphate is described. The primary and secondary 18O isotope effects for the alkaline hydrolysis of compound I are 1.0060 and 1.0063 +/- 0.0001, whereas for compound II they are 1.027 +/- 0.002 and 1.025 +/- 0.002, respectively. These isotope effects are consistent with the rate-limiting addition of hydroxide and provide evidence for a SN2-like transition state with the absence of a stable phosphorane intermediate. For the enzymatic hydrolysis of compound I, the primary and secondary 18O isotope effects are very small, 1.0020 and 1.0021 +/- 0.0004, respectively, and indicate that the chemical step in the enzymatic mechanism is not rate-limiting. The 18O isotope effects for the enzymatic hydrolysis of compound II are 1.036 +/- 0.001 and 1.0181 +/- 0.0007, respectively, and are comparable in magnitude to the isotope effects for alkaline hydrolysis, suggesting that the chemical step is rate-limiting. The relative magnitude of the primary 18O isotope effects for the alkaline and enzymatic hydrolysis of compound II reflect a transition state that is more progressed for the enzymatic reaction.  相似文献   

4.
J P Jones  P M Weiss  W W Cleland 《Biochemistry》1991,30(15):3634-3639
Secondary 18O isotope effects in the gamma-position of ATP have been measured on phosphoryl transfer catalyzed by yeast hexokinase in an effort to deduce the structure of the transition state. The isotope effects were measured by the remote-label method with the exocyclic amino group of adenine as the remote label. With glucose as substrate, the secondary 18O isotope effect per 18O was 0.9987 at pH 8.2 and 0.9965 at pH 5.3, which is below the pK of 6.15 seen in the V/K profile for MgATP. With the slow substrate 1,5-anhydro-D-glucitol, the value was 0.9976 at pH 8.2. While part of the inverse nature of the isotope effect may result from an isotope effect on binding, the more inverse values when catalysis is made more rate limiting by decreasing the pH or switching to a slower substrate suggest a dissociative transition state for phosphoryl transfer, in agreement with predictions from model chemistry. The 18O equilibrium isotope effect for deprotonation of HATP3- is 1.0156, while Mg2+ coordination to ATP4- does not appear to be accompanied by an 18O isotope effect larger than 1.001.  相似文献   

5.
Rigas JD  Hoff RH  Rice AE  Hengge AC  Denu JM 《Biochemistry》2001,40(14):4398-4406
Dual-specificity phosphatase MKP3 down-regulates mitogenic signaling through dephosphorylation of extracellular regulated kinase (ERK). Unlike a simple substrate-enzyme interaction, the noncatalytic, amino-terminal domain of MKP3 can bind efficiently to ERK, leading to activation of the phosphatase catalytic domain by as much as 100-fold toward exogenous substrates. It has been suggested that ERK activates MKP3 through the stabilization of the active phosphatase conformation, enabling general acid catalysis. Here, we investigated whether Asp-262 of MKP3 is the bona fide general acid and evaluated its contribution to the catalytic steps activated by ERK. Using site-directed mutagenesis, pH rate and Br?nsted analyses, kinetic isotope effects, and steady-state and rapid reaction kinetics, Asp-262 was identified as the authentic general acid catalyst, donating a proton to the leaving group oxygen during P-O bond cleavage. Kinetic isotope effects [(18)(V/K)(bridge), (18)(V/K)(nonbridge), and (15)(V/K)] were evaluated for the effect of ERK and of the D262N mutation on the transition state of the phosphoryl transfer reaction. The patterns of the three isotope effects for the reaction with native MKP3 in the presence of ERK are indicative of a reaction where the leaving group is protonated in the transition state, whereas in the D262N mutant, the leaving group departs as the anion. Even without general acid catalysis, the D262N mutant reaction is activated by ERK through increased phosphate affinity ( approximately 8-fold) and the partial stabilization of the transition state for phospho-enzyme intermediate formation ( approximately 4-fold). Based on these analyses, we estimate that dephosphorylation of phosphorylated ERK by the D262N mutant is >1000-fold lower than by native, activated MKP3. Also, the kinetic results suggest that Asp-262 functions as a general base during thiol-phosphate intermediate hydrolysis.  相似文献   

6.
McCain DF  Grzyska PK  Wu L  Hengge AC  Zhang ZY 《Biochemistry》2004,43(25):8256-8264
Protein tyrosine phosphatases (PTPs) constitute a large family of signaling enzymes that include both tyrosine specific and dual-specificity phosphatases that hydrolyze pSer/Thr in addition to pTyr. Previous mechanistic studies of PTPs have relied on the highly activated substrate p-nitrophenyl phosphate (pNPP), an aryl phosphate with a leaving group pK(a) of 7. In the study presented here, we employ m-nitrobenzyl phosphate (mNBP), an alkyl phosphate with a leaving group pK(a) of 14.9, which mimics the physiological substrates of the PTPs. We have carried out pH dependence and kinetic isotope effect measurements to characterize the mechanism of two important members of the PTP superfamily: Yersinia PTP (YopH) and Cdc25A. Both YopH and Cdc25A exhibit bell-shaped pH-rate profiles for the hydrolysis of mNBP, consistent with general acid catalysis. The slightly inverse (18)(V/K)(nonbridge) isotope effects (0.9999 for YopH and 0.9983 for Cdc25A) indicate a loose transition state with little nucleophilic participation for both enzymes. The smaller (18)(V/K)(bridge) primary isotope effects (0.9995 for YopH and 1.0012 for Cdc25A) relative to the corresponding isotope effects for pNPP hydrolysis suggest that protonation of the leaving group oxygen at the transition state by the general acid is ahead of P-O bond fission with the alkyl substrate, while general acid catalysis of pNPP by YopH is more synchronous with P-O bond fission. The isotope effect data also confirm findings from previous studies that Cdc25A utilizes general acid catalysis for substrates with a leaving group pK(a) of >8, but not for pNPP. Interestingly, the difference in the kinetic isotope effects for the reactions of aryl phosphate pNPP and alkyl phosphate mNBP by the PTPs parallels what is observed in the uncatalyzed reactions of their monoanions. In these reactions, the leaving group is protonated in the transition state, as is the case in PTP-catalyzed reactions. Also, the phosphoryl group in the transition states of the enzymatic reactions does not differ substantially from those of the uncatalyzed reactions. These results provide further evidence that these enzymes do not change the transition state but simply stabilize it.  相似文献   

7.
Liu Y  Gregersen BA  Hengge A  York DM 《Biochemistry》2006,45(33):10043-10053
Primary and secondary kinetic and equilibrium isotope effects are calculated with density-functional methods for the in-line dianionic methanolysis of the native (unsubstituted) and thio-substituted cyclic phosphates. These reactions represent reverse reaction models for RNA transesterification under alkaline conditions. The effect of solvent is treated with explicit (single and double) water molecules and self-consistently with an implicit (continuum) solvation model. Singly substituted reactions at the nonbridging O(P1) position and bridging O(2)('), O(3)('), and O(5)(') positions and a doubly substituted reaction at the O(P1) and O(P2) positions were considered. Aqueous free energy barriers are calculated, and the structures and bond orders of the rate-controlling transition states are characterized. The results are consistent with available experimental data and provide useful information for the interpretation of measured isotope and thio effects used to probe mechanism in phosphoryl transfer reactions catalyzed by enzymes and ribozymes.  相似文献   

8.
Martin BL  Jurado LA  Hengge AC 《Biochemistry》1999,38(11):3386-3392
Activation of calcineurin by Mn2+ and Mg2+ was compared using a heavy atom isotope analogue of the substrate p-nitrophenyl phosphate (pNPP). Heavy atom isotope effects were measured for Mg2+ activation and compared to published results of the isotope effects with Mn2+ as the activating metal. Isotope effects were measured for the kinetic parameter Vmax/Km at the nonbridging oxygen atoms [18(V/K)nonbridge]; at the position of bond cleavage in the bridging oxygen atom [18(V/K)bridge]; and at the nitrogen atom in the nitrophenol leaving group [15(V/K)]. The isotope effects increased in magnitude upon changing from an optimal pH to a nonoptimal pH; the 18(V/K)bridge effect increased from 1.0154 (+/-0.0007) to 1.0198 (+/-0.0002), and the 15(V/K) effect increased from 1.0018 (+/-0. 0002) to 1.0021 (+/-0.0003). The value for 18(V/K)nonbridge is 0. 9910 (+/-0.0003) at pH 7.0. As with Mn2+, the 18(V/K)nonbridge isotope effect indicated that the dianion was the substrate for catalysis, and that a dissociative transition state was operative for the phosphoryl transfer. Comparison to results for Mn2+ activation suggested that chemistry was more rate-limiting with Mg2+ than with Mn2+. Changing the activating metal concentration showed opposite trends with increasing Mg2+ increasing the commitment factor and seemingly making the chemistry less rate-limiting. The influence of viscosity was evaluated as well to gauge the role of chemistry. The activation of calcineurin-catalyzed hydrolysis of pNPP1 by Mg2+ or Mn2+ at pH 7.0 was compared in the presence of viscogens, glycerol and poly(ethylene glycol). Increasing glycerol caused different effects with the two activators. With Mn2+ as the activator, calcineurin activity showed a normal response with kcat and kcat/Km decreasing with viscosity. There was an inverse response with Mg2+ as the activator as values of kcat/Km increased with viscosity. From values of the normalized kcat/Km with Mn2+, the chemistry was found to be partially rate-limiting, consistent with previous heavy atom isotope studies (22). The effect observed for Mg2+ seems consistent with a change in the rate-limiting step for the two different metals at pH 7.0.  相似文献   

9.
Grzyska PK  Kim Y  Jackson MD  Hengge AC  Denu JM 《Biochemistry》2004,43(27):8807-8814
Dual-specificity phosphatases (DSPs) belong to the large family of protein tyrosine phosphatases that contain the active-site motif (H/V)CxxGxxR(S/T), but unlike the tyrosine-specific enzymes, DSPs are able to catalyze the efficient hydrolysis of both phosphotyrosine and phosphoserine/threonine found on signaling proteins, as well as a variety of small-molecule aryl and alkyl phosphates. It is unclear how DSPs accomplish similar reaction rates for phosphoesters, whose reactivity (i.e., pK(a) of the leaving group) can vary by more than 10(8). Here, we utilize the alkyl phosphate m-nitrobenzyl phosphate (mNBP), leaving-group pK(a) = 14.9, as a physiological substrate mimic to probe the mechanism and transition state of the DSP, Vaccinia H1-related (VHR). Detailed pH and kinetic isotope effects of the V/K value for mNBP indicates that VHR reacts with the phosphate dianion of mNBP and that the nonbridge phosphate oxygen atoms are unprotonated in the transition state. (18)O and solvent isotope effects indicate differences in the respective timing of the proton transfer to the leaving group and P-O fission; with the alkyl ester substrate, protonation is ahead of P-O fission, while with the aryl substrate, the two processes are more synchronous. Kinetic analysis of the general-acid mutant D92N with mNBP was consistent with the requirement of Asp-92 in protonating the ester oxygen, either in a step prior to significant P-O bond cleavage or in a concerted but asynchronous mechanism in which protonation is ahead of P-O bond fission. Collectively, the data indicate that VHR and likely all DSPs can match leaving-group potential with the timing of the proton transfer to the ester oxygen, such that diverse aryl and alkyl phosphoesters are turned over with similar catalytic efficiency.  相似文献   

10.
The hydrolysis of O-arylphosphorothioates by protein-tyrosine phosphatases (PTPases) was studied with the aim of providing a mechanistic framework for the reactions of this important class of substrate analogues. O-arylphosphorothioates are hydrolyzed 2 to 3 orders of magnitude slower than O-aryl phosphates by PTPases. This is in contrast to the solution reaction where phosphorothioates display 10-60-fold higher reactivity than the corresponding oxygen analogues. Kinetic analyses suggest that PTPases utilize the same active site and similar kinetic and chemical mechanisms for the hydrolysis of O-arylphosphorothioates and O-aryl phosphates. Thio substitution has no effect on the affinity of substrate or product for the PTPases. Bronsted analyses suggest that like the PTPase-catalyzed phosphoryl transfer reaction the transition state for the PTPase-catalyzed thiophosphoryl transfer is highly dissociative, similar to that of the corresponding solution reaction. The side chain of the active-site Arg residue forms a bidentate hydrogen bond with two of the terminal phosphate oxygens in the ground state and two of the equatorial oxygens in a transition state analog complex with vanadate [Denu et al. (1996) Proc. Natl. Acad. Sci. USA 93, 2493-2498; Zhang, M. et al. (1997) Biochemistry 36, 15-23; Pannifer et al. (1998) J. Biol. Chem. 273, 10454-10462]. Replacement of the active-site Arg409 in the Yersinia PTPase by a Lys reduces the thio effect by 54-fold, consistent with direct interaction and demonstrating strong energetic coupling between Arg409 and the phosphoryl oxygens in the transition state. These results suggest that the large thio effect observed in the PTPase reaction is the result of inability to achieve precise transition state complementarity in the enzyme active site with the larger sulfur substitution.  相似文献   

11.
The mechanism of the galactosyltransferase-catalyzed reaction was probed using positional isotope exchange, alpha-secondary deuterium isotope effects, and inhibition studies with potential transition state analogs. Incubation of [beta-18O2, alpha beta-18O]UDP-galactose and alpha-lactalbumin with galactosyltransferase from bovine milk did not result in any positional isotope exchange. The addition of 4-deoxy-4-fluoroglucose as a dead-end inhibitor did not induce any detectable positional isotope exchange. alpha-Secondary deuterium isotope effects of 1.21 +/- 0.04 on Vmax and 1.05 +/- 0.04 on Vmax/KM were observed for [1-2H]-UDP-galactose. D-Glucono-1,5-lactone, D-galactono-1,4-lactone, D-galactono-1,5-lactone, nojirimycin, and deoxynojirimycin, did not inhibit the galactosyl transfer reaction at concentrations less than 1.0 mM. The magnitude of the secondary deuterium isotope effect supports a mechanism in which the anomeric carbon of the galactosyl moiety has substantial sp2 character in the transition state. Therefore, the cleavage of the bond between the galactose and UDP moieties in the transition state has proceeded to a much greater extent than the formation of the bond between the galactose and the incoming glucose. The lack of a positional isotope exchange reaction indicates that the beta-phosphoryl group of the UDP is not free to rotate in the absence of an acceptor substrate.  相似文献   

12.
S P Williams  W A Bridger 《Biochemistry》1987,26(14):4483-4487
Succinyl-CoA synthetase of Escherichia coli has an alpha 2 beta 2 subunit structure. The enzyme shows strict half-sites reactivity with respect to the phosphorylation of a histidine residue in the alpha subunit that represents a step in catalysis. Several lines of evidence indicate that this behavior may result from cooperative interactions between alternatingly functional active sites, so that subsequent steps in catalysis at one site may be promoted by phosphoryl transfer to the site on the neighboring half of the molecule. This study is directed toward learning more about the nature of these cooperative interactions. Here we have used positional isotope exchange (i.e., exchange of 18O between the beta, gamma bridge and the beta nonbridge position of ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was ATP) as a test for transient bisphosphorylation. Succinyl-CoA synthetase was prepared in which one of the two active sites was thiophosphorylated; this species thus has one of its two active-site histidine residues occupied and unavailable for further reaction with ATP. Treatment of this monothiophosphorylated enzyme with [beta, gamma-18O]ATP resulted in no significant scrambling of isotope into the nonbridge position, clearly indicating that the enzyme does not undergo even transient bisphosphorylation. We interpret the results in terms of a model of catalysis in which phosphoryl transfer to the second site occurs in concerted fashion with transfer from the first.  相似文献   

13.
Steady state kinetics and (15)N isotope effects have been used to study the cyclization reaction of uridine 3'-p-nitrophenyl phosphate. The cyclization reaction is catalyzed by transition metal ions and lanthanides, as are substitution reactions of many phosphate esters. Kinetic analysis reveals that the erbium-catalyzed cyclization reaction involves the concerted deprotonation of the 2'-OH group and departure of the leaving group. The transition state is very late, with a very large degree of bond cleavage to the leaving group, which could be due to a large degree of polarization of the P&bond;O bonds by erbium. Copyright 2000 Academic Press.  相似文献   

14.
M D Tsai 《Biochemistry》1979,18(8):1468-1472
Adenosine 5'-(thiophosphate) AMPS) contains a prochiral phosphorus center. Differentiation of the two diastereotopic oxygens would allow elucidation of the stereochemical course of biological adenylyl transfer reactions. A general method was developed to distinguish between the "pro-R" and "pro-S" oxygens. When we converted the AMPS to the isomer A of adenosine 5'-(1-thiotriphosphate) (ATPalphaS), which is known to have S configuration at Palpha, the pro-R oxygen is incorporated into the bridge position, whereas the pro-S oxygen is located at the nonbridge position. The 31P NMR spectra of the 17O-enriched compounds were used to distinguish between the bridge and nonbridge oxygens based on the decrease in the peak intensity of 31P NMR signals caused by the directly bound 17O isotope. The method was used to elucidate the stereochemical course of acetate activation catalyzed by yeast acetyl coenzyme A (CoA) synthetase. The results indicate that yeast acetyl-CoA synthetase is specific for the isomer B of ATPalphaS and that the nucleophilic displacement proceeds with net inversion of configuration at Palpha of ATPalphaS (B), supporting the "in-line" mechanism.  相似文献   

15.
Phosphoenolpyruvate when heated in acidic solution exchanges its phosphoryl and carboxyl oxygens rapidly and its enolic oxygen much more slowly with oxygens from water. The incorporation of 18O into phosphoenolpyruvate was measured by gas chromatography-mass spectrometry and phosphorus-31 nuclear magnetic resonance after heating in H218O at 98 degrees C. The rates of exchange of all six oxygens of phosphoenolpyruvate with water increase with increasing acidity, and the phosphoryl oxygens exchange more rapidly than the carboxyl oxygens. The rate of exchange of each oxygen of the phosphoryl group is 16-fold greater than the hydrolysis rate at 1 N HCl. This provides a simple and useful method for the synthesis of [18O]phosphoenolpyruvate highly enriched in its phosphoryl-group oxygens. An enrichment of 89% was obtained with a 50% yield. The [18O]-phosphoenolpyruvate showed a binomial distribution of 18O in the phosphoryl-group oxygens. The exchange may be explained by the reversible formation of a transient cyclic phosphate and, for exchange of the enolic oxygen, a transient acyl phosphate. Preparation of [18O]phosphoenolypyruvate from [18O]Pi by a chemical synthesis from beta-chlorolactate was not satisfactory because of drastic loss of 18O during the procedures used. Some loss of 18O also occurred during an enzymic synthesis with KCNO, [18O]Pi, carbamate kinase, and pyruvate kinase.  相似文献   

16.
Gerratana B  Frey PA  Cleland WW 《Biochemistry》2001,40(9):2972-2977
The transition-state structure for the reaction catalyzed by kanamycin nucleotidyltransferase has been determined from kinetic isotope effects. The primary (18)O isotope effects at pH 5.7 (close to the optimum pH) and at pH 7.7 (away from the optimum pH) are respectively 1.016 +/- 0.003 and 1.014 +/- 0.002. Secondary (18)O isotope effects of 1.0033 +/- 0.0004 and 1.0024 +/- 0.0002 for both nonbridge oxygen atoms were measured respectively at pH 5.7 and 7.7. These isotope effects are consistent with a concerted reaction with a slightly associative transition-state structure.  相似文献   

17.
A previously determined crystal structure of the ternary complex of trehalose-6-phosphate synthase identified a putative transition state-like arrangement based on validoxylamine A 6'-O-phosphate and uridine diphosphate in the active site. Here linear free energy relationships confirm that these inhibitors are synergistic transition state mimics, supporting front-face nucleophilic attack involving hydrogen bonding between leaving group and nucleophile. Kinetic isotope effects indicate a highly dissociative oxocarbenium ion-like transition state. Leaving group (18)O effects identified isotopically sensitive bond cleavages and support the existence of a hydrogen bond between the nucleophile and departing group. Br?nsted analysis of nucleophiles and Taft analysis highlight participation of the nucleophile in the transition state, also consistent with a front-face mechanism. Together, these comprehensive, quantitative data substantiate this unusual enzymatic reaction mechanism. Its discovery should prompt useful reassessment of many biocatalysts and their substrates and inhibitors.  相似文献   

18.
The reactions of a ribonuclease model substrate, the compound uridine-3'-p-nitrophenyl phosphate, have been examined using heavy-atom isotope effects and stereochemical analysis. The cyclization of this compound is subject to catalysis by general base (by imidazole buffer), specific base (by carbonate buffer), and by acid. All three reactions proceed by the same mechanistic sequence, via cyclization to cUMP, which is stable under basic conditions but which is rapidly hydrolyzed to a mixture of 2'- and 3'-UMP under acid conditions. The isotope effects indicate that the specific base-catalyzed reaction exhibits an earlier transition state with respect to bond cleavage to the leaving group compared to the general base-catalyzed reaction. Stereochemical analysis indicates that both of the base-catalyzed reactions proceed with the same stereochemical outcome. It is concluded that the difference in the nucleophile in the two base-catalyzed reactions results in a difference in the transition state structure but both reactions are most likely concerted, with no phosphorane intermediate. The (15)N isotope effects were also measured for the reaction of the substrate with ribonuclease A. The results indicate that considerably less negative charge develops on the leaving group in the transition state than for the general base-catalyzed reaction in solution. Copyright 2000 Academic Press.  相似文献   

19.
The prephenate dehydrogenase activity of the bifunctional enzyme chorismate mutase-prephenate dehydrogenase from Escherichia coli catalyzes the oxidative decarboxylation of both prephenate and deoxoprephenate, which lacks the keto group in the side chain (V 78% and V/K 18% those of prephenate). Hydride transfer is to the B side of NAD, and the acetylpyridine and pyridinecarboxaldehyde analogues of NAD have V/K values 40 and 9% and V values 107 and 13% those of NAD. Since the 13C isotope effect on the decarboxylation is 1.0103 with deuterated and 1.0033 with unlabeled deoxoprephenate (the deuterium isotope effect on V/K is 2.34), the mechanism is concerted, and if CO2 has no reverse commitment, the intrinsic 13C and deuterium isotope effects are 1.0155 (corresponding to a very early transition state for C-C bond cleavage) and 7.3, and the forward commitment is 3.7. With deoxodihydroprephenate (lacking one double bond in the ring), oxidation occurs without decarboxylation, and one enantiomer has a V/K value 23-fold higher than the other (deuterium isotope effects are 3.6 and 4.1 for fast and slow isomers; V for the fast isomer is 5% and V/K 0.7% those of prephenate). The fully saturated analogue of deoxoprephenate is a very slow substrate (V 0.07% and V/K approximately 10(-5%) those of prephenate). pH profiles show a group with pK = 8.3 that must be protonated for substrate binding and a catalytic group with pK = 6.5 that is a cationic acid (likely histidine). This group facilitates hydride transfer by beginning to accept the proton from the 4-hydroxyl group of prephenate prior to the beginning of C-C cleavage (or fully accepting it in the oxidation of the analogues with only one double bond or none in the ring). In contrast with the enzymatic reaction, the acid-catalyzed decarboxylation of prephenate and deoxoprephenate (t1/2 of 3.7 min at low pH) is a stepwise reaction with a carbonium ion intermediate, since 18O is incorporated into substrate and its epi isomer during reaction in H218O. pH profiles show that the hydroxyl group must be protonated and the carboxyl (pK approximately 4.2) ionized for carbonium ion formation. The carbonium ion formed from prephenate decarboxylates 1.75 times faster than it reacts with water (giving 1.8 times as much prephenate as epi isomer). The observed 13C isotope effect of 1.0082 thus corresponds to an intrinsic isotope effect of 1.023, indicating an early transition state for the decarboxylation step. epi-Prephenate is at least 20 times more stable to acid than prephenate because it exists largely as an internal hemiketal.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

20.
B J Bahnson  V E Anderson 《Biochemistry》1989,28(10):4173-4181
The primary, alpha-secondary, beta-secondary, and beta'-secondary deuterium and primary 18O kinetic isotope effects on V/K for the dehydration of [(3S)-3-hydroxybutyryl]pantetheine by bovine liver crotonase (enoyl-CoA hydratase, EC 4.2.1.17) have been determined by the equilibrium perturbation method. The primary deuterium and 18O kinetic isotope effects are 1.61 and 1.051, respectively. The secondary deuterium effects at C-2, C-3, and C-4 are 1.12, 1.13, and 1.00 per H, respectively. The large 18O isotope effect suggests C-O bond cleavage is largely rate determining but is consistent with either an E1cb or E2 mechanism with a large amount of carbanion character. The beta-secondary effect is a factor of 1.05 greater than the equilibrium isotope effect, indicating that this C-H bond is less stiff in the affected transition state or that its motion is coupled to the reaction coordinate motion. Analytical solutions to the differential equations describing uni-uni equilibrium perturbations are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号