首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analysed the publicly available expressed sequence tag (EST) collections for the genus Populus to examine whether evidence can be found for large-scale gene-duplication events in the evolutionary past of this genus. The ESTs were clustered into unigenes for each poplar species examined. Gene families were constructed for all proteins deduced from these unigenes, and K(S) dating was performed on all paralogs within a gene family. The fraction of paralogs was then plotted against the K(S) values, which resulted in a distribution reflecting the age of duplicated genes in poplar. Sufficient EST data were available for seven different poplar species spanning four of the six sections of the genus Populus. For all these species, there was evidence that a large-scale gene-duplication event had occurred. From our analysis it is clear that all poplar species have shared the same large-scale gene-duplication event, suggesting that this event must have occurred in the ancestor of poplar, or at least very early in the evolution of the Populus genus.  相似文献   

2.
3.
Thellungiella salsuginea (also known as T. halophila) is a close relative of Arabidopsis that is very tolerant of drought, freezing, and salinity and may be an appropriate model to identify the molecular mechanisms underlying abiotic stress tolerance in plants. We produced 6578 ESTs, which represented 3628 unique genes (unigenes), from cDNA libraries of cold-, drought-, and salinity-stressed plants from the Yukon ecotype of Thellungiella. Among the unigenes, 94.1% encoded products that were most similar in amino acid sequence to Arabidopsis and 1.5% had no match with a member of the family Brassicaceae. Unigenes from the cold library were more similar to Arabidopsis sequences than either drought- or salinity-induced sequences, indicating that latter responses may be more divergent between Thellungiella and Arabidopsis. Analysis of gene ontology using the best matched Arabidopsis locus showed that the Thellungiella unigenes represented all biological processes and all cellular components, with the highest number of sequences attributed to the chloroplast and mitochondria. Only 140 of the unigenes were found in all three abiotic stress cDNA libraries. Of these common unigenes, 70% have no known function, which demonstrates that Thellungiella can be a rich resource of genetic information about environmental responses. Some of the ESTs in this collection have low sequence similarity with those in Genbank suggesting that they may encode functions that may contribute to Thellungiella’s high degree of stress tolerance when compared with Arabidopsis. Moreover, Thellungiella is a closer relative of agriculturally important Brassica spp. than Arabidopsis, which may prove valuable in transferring information to crop improvement programs.  相似文献   

4.
5.
6.
Dinoflagellates of the genus Alexandrium are photosynthetic microalgae that have an extreme importance due to the impact of some toxic species on shellfish aquaculture industry. Alexandrium catenella is the species responsible for the production of paralytic shellfish poisoning in Chile and other geographical areas. We have constructed a cDNA library from midexponential cells of A. catenella grown in culture free of associated bacteria and sequenced 10,850 expressed sequence tags (ESTs) that were assembled into 1,021 contigs and 5,475 singletons for a total of 6,496 unigenes. Approximately 41.6% of the unigenes showed similarity to genes with predicted function. A significant number of unigenes showed similarity with genes from other dinoflagellates, plants, and other protists. Among the identified genes, the most expressed correspond to those coding for proteins of luminescence, carbohydrate metabolism, and photosynthesis. The sequences of 9,847 ESTs have been deposited in Gene Bank (accession numbers EX 454357–464203).  相似文献   

7.
8.
Calcium serves as a second messenger in various signal transduction pathways in plants. CBL-interacting protein kinases (CIPKs), which have a variety of functions, are involved in calcium signal transduction. Previous, the studies on CIPK family members focused on Arabidopsis and rice. Here, we present a comparative genomic analysis of the CIPK gene family in Arabidopsis and poplar, a model tree species. Twenty-seven potential CIPKs were identified from poplar using genome-wide analysis. Like the CIPK gene family from Arabidopsis, CIPK genes from poplar were also divided into intron-free and intron-harboring groups. In the intron-harboring group, the intron distribution of CIPKs is rather conserved during the genome evolutionary process. Many homologous gene pairs were found in the CIPK gene family, indicating duplication events might contribute to the amplification of this gene family. The phylogenetic comparison of CIPKs in combination with intron distribution analysis revealed that CIPK genes from both Arabidopsis and poplar might have an ancient origin, which formed earlier than the separation of these two eudicot species. Our genomic and bioinformatic analysis will provide an important foundation for further functional dissection of the CBL-CIPK signaling network in poplars. Electronic Supplementary Material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

9.
Most annexins are calcium-dependent, phospholipid-binding proteins with suggested functions in response to environmental stresses and signaling during plant growth and development. They have previously been identified and characterized in Arabidopsis and rice, and constitute a multigene family in plants. In this study, we performed a comparative analysis of annexin gene families in the sequenced genomes of Viridiplantae ranging from unicellular green algae to multicellular plants, and identified 149 genes. Phylogenetic studies of these deduced annexins classified them into nine different arbitrary groups. The occurrence and distribution of bona fide type II calcium binding sites within the four annexin domains were found to be different in each of these groups. Analysis of chromosomal distribution of annexin genes in rice, Arabidopsis and poplar revealed their localization on various chromosomes with some members also found on duplicated chromosomal segments leading to gene family expansion. Analysis of gene structure suggests sequential or differential loss of introns during the evolution of land plant annexin genes. Intron positions and phases are well conserved in annexin genes from representative genomes ranging from Physcomitrella to higher plants. The occurrence of alternative motifs such as K/R/HGD was found to be overlapping or at the mutated regions of the type II calcium binding sites indicating potential functional divergence in certain plant annexins. This study provides a basis for further functional analysis and characterization of annexin multigene families in the plant lineage.  相似文献   

10.
11.
12.
Herbaceous model species, especially Arabidopsis has provided a wealth of information about the genes involved in floral induction and development of inflorescences and flowers. While the genus Populus is an important model system for the molecular biology of woody plant. These two genuses differ in many ways. This study was designed to improve understanding of flower development in poplar at a system level, as its regulatory pathway to a large extent remains poorly known, owing to the presently limited mutant pool. To address this issue, a poplar GeneChip was employed to detect genes expressed during the whole floral developmental process. Using the expressed floral genes, a systematic gene network was constructed with the aid of functional association with Arabidopsis. The results suggested that autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways are involved in poplar flowering. Modularity analysis revealed several pathways in common with Arabidopsis, such as autonomous, gibberellin, vernalization and photoperiod pathways. In addition, brassinosteroid, stress-induced and floral suppression pathways were implicated as additional novel pathways. Notably, a difference in vernalization between Arabidopsis and poplar was revealed. Autonomous, gibberellin, vernalization, photoperiod, ethylene, brassinosteroid, stress-induced and floral suppression pathways integrated into a systematic gene network in floral development of poplar. Compared to Arabidopsis, brassinosteroid, stress-induced and floral suppression pathways are additional in poplar, and FLC is absent in vernalization pathway in poplar. Preliminary conclusions drawn here provide a basis for both identification of key genes and elucidation of molecular mechanisms involved in poplar floral development.  相似文献   

13.
To rapidly and cost-effectively generate gene expression data, we developed an annotated unigene database of common bean (Phaseolus vulgaris L.). In this study, 3 cDNA libraries were constructed from the bean breeding line SEL1308, 1 from young leaf and 2 from seedlings inoculated or not inoculated with the fungal pathogen Colletotrichum lindemuthianum (Sacc. & Magnus) Briosi & Cavara, which causes anthracnose in common bean. To this date, 5255 single-pass sequences have been included in the database after selection based on sequence quality. These ESTs were trimmed and clustered using the computer programs Phred and CAP3 to form a unigene collection of 3126 unique sequences. Within clusters, 318 single nucleotide polymorphisms (SNPs) and 68 insertions-deletions (indels) were found, indicating the presence of paralogous gene families in our database. Each unigene sequence was analyzed for possible function using their similarity to known genes represented in the GenBank database and classified into 14 categories. Only 314 unigenes showed significant similarities to Phaseolus genomic sequences and P. vulgaris ESTs, which indicates that 90% (2818 unigenes) of our database represent newly discovered common bean genes. In addition, 12% (387 unigenes) were shown to be specific to common bean. This study represents a first step towards the discovery of novel genes in beans and a valuable source of molecular markers for expressed gene tagging and mapping.  相似文献   

14.

Background

Brassica napus is the third leading source of vegetable oil in the world after soybean and oil palm. The accumulation of gene sequences, especially expressed sequence tags (ESTs) from plant cDNA libraries, has provided a rich resource for genes discovery including potential antimicrobial peptides (AMPs). In this study, we used ESTs including those generated from B. napus cDNA libraries of seeds, pathogen-challenged leaves and deposited in the public databases, as a model, to perform in silico identification and consequently in vitro confirmation of putative AMP activities through a highly efficient system of recombinant AMP prokaryotic expression.

Results

In total, 35,788 were generated from cDNA libraries of pathogen-challenged leaves and 187,272 ESTs from seeds of B. napus, and the 644,998 ESTs of B. napus were downloaded from the EST database of PlantGDB. They formed 201,200 unigenes. First, all the known AMPs from the AMP databank (APD2 database) were individually queried against all the unigenes using the BLASTX program. A total of 972 unigenes that matched the 27 known AMP sequences in APD2 database were extracted and annotated using Blast2GO program. Among these unigenes, 237 unigenes from B. napus pathogen-challenged leaves had the highest ratio (1.15 %) in this unigene dataset, which is 13 times that of the unigene datasets of B. napus seeds (0.09 %) and 2.3 times that of the public EST dataset. About 87 % of each EST library was lipid-transfer protein (LTP) (32 % of total unigenes), defensin, histone, endochitinase, and gibberellin-regulated proteins. The most abundant unigenes in the leaf library were endochitinase and defensin, and LTP and histone in the pub EST library. After masking of the repeat sequence, 606 peptides that were orthologous matched to different AMP families were found. The phylogeny and conserved structural motifs of seven AMPs families were also analysed. To investigate the antimicrobial activities of the predicted peptides, 31 potential AMP genes belonging to different AMP families were selected to test their antimicrobial activities after bioinformatics identification. The AMP genes were all optimized according to Escherichia coli codon usage and synthetized through one-step polymerase chain reaction method. The results showed that 28 recombinant AMPs displayed expected antimicrobial activities against E. coli and Micrococcus luteus and Sclerotinia sclerotiorum strains.

Conclusion

The study not only significantly expanded the number of known/predicted peptides, but also contributed to long-term plant genetic improvement for increased resistance to diverse pathogens of B.napus. These results proved that the high-throughput method developed that combined an in silico procedure with a recombinant AMP prokaryotic expression system is considerably efficient for identification of new AMPs from genome or EST sequence databases.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1849-x) contains supplementary material, which is available to authorized users.  相似文献   

15.
Laccases are copper-containing glycoproteins, which are widespread in higher plants as multigene families. To gain more insight in the function of laccases in plants, especially potential role in lignification, we produced transgenic poplar plants overexpressing a cotton laccase cDNA (GaLAC1) under the control of the cauliflower mosaic virus 35S promoter. As compared with untransformed control plants, transgenic plants exhibited a 2.1- to 13.2-fold increased laccase activity, whereas plant growth rate and morphological characters remained similar to control plants. A 2.1–19.6% increase in total lignin content of the stem was found in transgenic plants. Moreover, transgenic plants showed a dramatically accelerated oxidation rate of phenolics, without obvious change in total phenolic content. Our data suggested that GaLAC1 may participate in lignin synthesis and phenolic metabolism in plants. The present work provided a new genetic evidence for the involvement of plant laccases in lignification.  相似文献   

16.
Integrative approaches to determining Csl function   总被引:16,自引:0,他引:16  
While there is an ever-increasing amount of information regarding cellulose synthase catalytic subunits (CesA) and their role in the formation of the cell wall, the remainder of the enzymes that synthesize structural cell wall polysaccharides are unknown. The completion of the Arabidopsis genome and the wealth of the sequence information from other plant genome projects provide a rich resource for determining the identity of these enzymes. Arabidopsis contains six families of genes related to cellulose synthase, the cellulose synthase-like (Csl) genes. Our laboratory is taking a multidisciplinary approach to determine the function of the Csl genes, incorporating genomic, genetic and biochemical data. Information from expressed sequence tag (EST) projects has revealed the presence of Csl genes in all plant species with a significant number of ESTs. Certain Csl families appear to be missing from some species. For example, no examples of CslG ESTs have been found in rice or maize. Microarray data and reporter constructs are being used to determine the expression pattern of the CesA and Csl genes in Arabidopsis. Mutations and insertion events have been identified in a majority of the genes in the Arabidopsis CesA superfamily and are being characterized by phenotypic and biochemical analysis. While we cannot yet link the function of any of the Csl genes to their respective products, the expression and localization of these genes is consistent with the expected expression pattern of polysaccharide synthases that contribute to the primary cell wall.  相似文献   

17.
18.
The Arabidopsis Genome Initiative has released up to now more than 80% of the genome sequence of Arabidopsis thaliana. About 70% of the identified genes have at least one paralogue. In order to understand the biological function of individual genes, it is essential to study the structure, expression and organization of the entire multigene family. A systematic analysis of multigene families, made possible by the amount of genomic sequence data available, provides important clues for the understanding of genome evolution and plasticity. In this paper, four multigene families of A. thaliana are characterized, namely LCAD, HD-GL2, LGT and MYST. Members of HD-GL2 and LCAD have already been reported in plants. The LGT genes specify proteins containing motifs of glycosyl transferase. No plant genes similar to the LGT genes have been reported to date. The novel MYST family, most likely plant-specific, encodes proteins with no identified function. Sequencing and in silico analysis led to the characterization of 29 novel genes belonging to these four gene families. The organization, structure and evolution of all the members of the four families are discussed, as well as their chromosome location. Expression data of some of the paralogues of each family are also presented.  相似文献   

19.
20.
Genetically transformed lombardy poplar (Po-pulus nigra L. var. italica Koehne) plants were regenerated after co-cultivation of stem segments with Agrobacterium tumefaciens strain LBA4404 that harbored a binary vector which included the rice gene for a homeodomain protein (OSH1) and a gene for neomycin phosphotransferase. The expression of the OSH1 gene under control of the cauliflower mosaic virus 35S promoter induced morphological abnormalities in the leaves and stems of the newly generated transgenic poplar plants. This result suggests that OSH1 can function as a regulator of morphogenesis in transgenic poplar, as it does in transgenic rice, Arabidopsis, and tobacco plants. Received: 16 October 1998 / Revision received: 27 November 1998 / Accepted: 12 December 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号