首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Abstract: General anesthetic agents often affect the biochemical and physiologic changes triggered by cerebral ischemia. This study examined the regional activities of ornithine decarboxylase (ODC) in gerbils subjected to 5 min of bilateral carotid occlusion without anesthesia. At 2, 4, and 6 h of reperfusion, significant ODC activity was observed in both the cortex and the hippocampus. Pretreatment with α-difluoromethylornithine (DFMO) significantly blocked the ODC activity at 2, 4, and 6 h. Significant edema formation was found at 2, 4, and 6 h. At 2 h, edema formation was unaffected by administration of DFMO. However, DFMO treatment reduced later edema formation at 4 and 6 h. These results demonstrate that ODC activity and edema formation are delayed in gerbils after the induction of transient ischemia even with the removal of anesthetic agents and their potentially protective effects. These findings suggest that ODC activity and its induction of delayed cerebral edema are specific to cerebral ischemia and not to an anesthetic effect. DFMO treatment reduced both the ODC activity and edema formation, indicating a role for polyamines in postischemic edema formation.  相似文献   

2.
Putrescine, spermidine, and spermine levels were measured in the cortex, caudoputamen, and hippocampus of rats during 30 min of severe forebrain ischemia (induced by occlusion of both carotid and vertebral arteries) and subsequent recirculation. During ischemia, polyamine levels did not change significantly. During postischemic recirculation, however, putrescine levels dramatically increased whereas those of spermine and spermidine did not change, with the exception of the severely damaged caudoputamen, where the concentration declined after 24 h. The increase of putrescine is explained by postischemic activation of ornithine decarboxylase and inhibition of S-adenosylmethionine decarboxylase. It is suggested that the accumulation of putrescine during postischemic recirculation may be responsible for the delayed neuronal death occurring after ischemia.  相似文献   

3.
采用线栓法制备大鼠大脑中动脉栓塞(middlecerebralarteryocclusion,MCAO)模型,在额叶皮层用KCl诱导产生皮层扩散性抑制(corticalspreadingdepression,CSD)。MCAO4h后,利用550nm内源信号光学成像(opticalintrin-sicsignalimaging,OISI)监测局灶性脑缺血后大鼠顶-枕叶皮层内源光信号变化。成像1h内观测到一系列诱导CSD波(14±3次),CSD波局限于顶-枕叶皮层中央区域扩展,以光强的显著下降为特征;而旁侧区域光强无明显改变,不具备CSD波特征,表明CSD波未传播到该区域。随后TTC染色证明上述旁侧区域已经梗死。实验表明:MCAO后4h,皮层区域旁侧部分会梗死;CSD波的OIS变化可用来区分缺血梗死区和外周供血较为完整区域(未梗死区)。  相似文献   

4.
Di Giacomo  C.  Sorrenti  V.  Acquaviva  R.  Campisi  A.  Vanella  G.  Perez-Polo  J. R.  Vanella  A. 《Neurochemical research》1997,22(9):1145-1150
Excessive activation of glutamate receptors via the N-methyl-D-aspartate (NMDA) subtype appears to play a role in the sequence of cellular events which lead to irreversible ischemic damage to neurons. Furthermore, NMDA receptor activation induces a stimulation of ornithine decarboxylase (ODC), the rate-limiting enzyme for polyamine (PA) biosynthesis. In order to better understand the role of PA we have measured ODC activity and the effect of methionine sulfoximine (MSO), a molecule able to stimulate ODC, on a model of transient cerebral ischemia. There was a significant increase in ODC activity in the rat cerebral cortex during post-ischemic reperfusion. The treatment with MSO induced a significant decrease in cerebral glutamine synthetase activity accompained by a marked increase in ODC activity. In MSO-pretreated rats there was a significant decrease in the survival rate when compared to untreated ischemic rats.  相似文献   

5.
Detection of Ornithine Decarboxylase Antizyme in Mouse Brain   总被引:1,自引:4,他引:1  
Ornithine decarboxylase, the rate-limiting enzyme in polyamine synthesis, is known to be regulated by a macromolecular inhibitor, termed antizyme, in a number of cellular systems. The present results show that the antizyme is also a functional component of polyamine metabolism in the brain. It could be demonstrated both in normal randomly selected mice and in animals which had been subjected either to intracerebroventricular injection of saline, which is known to cause a transient activation of ornithine decarboxylase, or to 1,3-diamino-2-propanol, an antizyme-inducing agent. When compared to tissues or cell systems studied so far, the cytosol fraction from mouse brain homogenate appeared to contain an exceptionally high amount of antizyme, that was bound to some material other than active ornithine decarboxylase. This feature was seen in all the animal groups studied, being most prominent after saline injection, when the amount of dissociable antizyme exceeded 14-fold the corresponding released ornithine decarboxylase activity. In untreated animals the excess was about eightfold and after 1,3-diamino-2-propanol about fivefold.  相似文献   

6.
Regulation of Pyruvate Decarboxylase In Vitro and In Vivo   总被引:2,自引:0,他引:2  
Results presented in this paper strongly support the view thatregulation of the key enzyme of alcoholic fermentation, pyruvatedecarboxylase (PDC), is achieved in a number of ways, all associatedwith possible lowering of the cytoplasmic pH during anoxia.These mechanisms include not only the well-known acid pH optimumof PDC, but also long-term, reversible changes in characteristicsof the enzyme established both in vitro and in vivo. Following transfer of desalted extracts from pH 6.0 to 7.4,maximal activity of PDC was decreased, while there was a considerableincrease in the lag before maximal activity was reached. Similarchanges in enzyme characteristics were observed when wheat (Triticumaestivum L. cv. Gamenya) roots and rice (Oryza sativa L. cv.Calrose) coleoptiles were transferred from anoxic to aerobicsolutions, provided PDC was assayed within 10 min of the startof maceration. All of the above changes were usually readilyreversible when extracts were returned to pH 6.0, or when plantswere returned to anoxic solutions. Additional regulation of PDC would be achieved by the S0.5 forpyruvate which is 0.75 mol m–3 at pH 6.0, 1.0 mol m–3at pH 6.8, and 2.5 mol m–3 at pH 7.4; the latter is wellabove estimates for pyruvate concentrations in the cytoplasmof aerated tissues. We assess that the combined effects of the acid pH optimum,the high S0.5 at pH 7.4 and the long-term decreases in activityobserved during incubation at pH 7.4 would reduce PDC activityin aerobic cells to at most 7% of the activity in anoxic cells.Possible additional controls for the pathway of alcoholic fermentationare briefly considered. Key words: PDC, regulation, anoxia  相似文献   

7.
Chan PH 《Neurochemical research》2004,29(11):1943-1949
Apoptotic cell death pathways have been implicated in acute brain injuries, including cerebral ischemia, brain trauma, and spinal cord injury, and in chronic neurodegenerative diseases. Experimental ischemia and reperfusion models, such as transient focal/global ischemia in rodents, have been thoroughly studied and suggest the involvement of mitochondria and the cell survival/death signaling pathways in cell death/survival cascades. Recent studies have implicated mitochondria-dependent apoptosis involving pro- and anti-apoptotic protein binding, the release of cytochrome c and second mitochondria-derived activator of caspase, the activation of downstream caspases-9 and –3, and DNA fragmentation. Reactive oxygen species are known to be significantly generated in the mitochondrial electron transport chain in the dysfunctional mitochondria during reperfusion after ischemia, and are also implicated in the survival signaling pathway that involves phosphatidylinositol-3-kinase (PI3-K), Akt, and downstream signaling molecules, like Bad, 14-3-3, and the proline-rich Akt substrate (PRAS), and their bindings. Further studies of these survival pathways may provide novel therapeutic strategies for clinical stroke.Special issue dedicated to Lawrence F. Eng.  相似文献   

8.
Abstract: The time course of the decline in energy levels during an in vitro ischemia-like condition was compared with changes in intracellular Ca2+ concentration ([Ca2+]i) in subregions of the gerbil hippocampal slice [CA1, CA3, and the inner and outer portions of the dentate gyrus (DG)]. Hippocampal transverse slices were loaded with a fluorescent indicator, rhod-2. During the on-line monitoring of [Ca2+]i, the slices were perfused with an in vitro ischemia-like medium (33°C). The slices were collected at several experimental time points, frozen, dried, and dissected into subregions. The contents of adenine nucleotides (ATP, ADP, and AMP) and phosphocreatine (PCr) were measured by HPLC methods. Region-specific and acute [Ca2+]i elevations were observed in CA1 ~4 min after onset of the in vitro ischemia-like condition and also in the inner portion of the DG with a delay of 10–40 s. The change in ATP levels was related to the increase in [Ca2+]i. ATP levels in all subregions gradually decreased before the acute [Ca2+]i elevation. Concomitant with the acute [Ca2+]i elevation in CA1 and the inner portion of the DG, ATP levels in the subregions rapidly decreased, whereas declines in levels of high-energy-charge phosphates were gradual in CA3 and the outer portion of the DG, in which the remarkable [Ca2+]i elevation was not observed. These results suggest that ATP depletion observed in CA1 and the inner portion of the DG is due to the region-specific increase in [Ca2+]i, which activates a Ca2+-ATP-driven pump and produces a subsequent fall in neuronal ATP content.  相似文献   

9.
Abstract: Ornithine decarboxylase (ODC), the key enzyme for polyamine biosynthesis, dramatically decreases in activity during normal cerebellar development, in parallel with the progressive differentiation of granule neurons. We have studied whether a similar pattern is displayed by cerebellar granule neurons during survival and differentiation in culture. We report that when granule cells were kept in vitro under trophic conditions (high K+ concentration), ODC activity progressively decreased in parallel with neuronal differentiation. Under nontrophic conditions (cultures kept in low K+ concentration), the enzymatic activity dropped quickly in parallel with an increased apoptotic elimination of cells. Cultures kept in high K+ but chronically exposed to 10 m M lithium showed both an increased rate of apoptotic cell death at 2 and 4 days in vitro and a quicker drop of ODC activity and immunocytochemical staining. A short chronic treatment of rat pups with lithium also resulted in transient decrease of cerebellar ODC activity and increased programmed cell death, as revealed by in situ detection of apoptotic granule neurons. The present data indicate that a sustained ODC activity is associated with the phase of survival and differentiation of granule neurons and that, conversely, conditions that favor their apoptotic elimination are accompanied by a down-regulation of the enzymatic activity.  相似文献   

10.
The inflammatory response following ischemic stroke is dominated by innate immune cells: resident microglia and blood-derived macrophages. The ambivalent role of these cells in stroke outcome might be explained in part by the acquisition of distinct functional phenotypes: classically (M1) and alternatively activated (M2) macrophages. To shed light on the crosstalk between hypoxic neurons and macrophages, an in vitro model was set up in which bone marrow-derived macrophages were co-cultured with hippocampal slices subjected to oxygen and glucose deprivation. The results showed that macrophages provided potent protection against neuron cell loss through a paracrine mechanism, and that they expressed M2-type alternative polarization. These findings raised the possibility of using bone marrow-derived M2 macrophages in cellular therapy for stroke. Therefore, 2 million M2 macrophages (or vehicle) were intravenously administered during the subacute stage of ischemia (D4) in a model of transient middle cerebral artery occlusion. Functional neuroscores and magnetic resonance imaging endpoints (infarct volumes, blood-brain barrier integrity, phagocytic activity assessed by iron oxide uptake) were longitudinally monitored for 2 weeks. This cell-based treatment did not significantly improve any outcome measure compared with vehicle, suggesting that this strategy is not relevant to stroke therapy.  相似文献   

11.
Abstract: Neurons from cerebral cortex and hippocampal CA1 sector exhibit a striking difference in vulnerability to transient ischemia. To establish whether this difference is due to the inherent (pathoclitic) properties of these neurons, the ischemic susceptibility was studied in primary cortical and hippocampal cultures by using a new model of argon-induced in vitro ischemia. Neuronal cultures were exposed at 37°C for 10–30 min to argon-equilibrated glucose-free medium. During argon equilibration, P o 2 declined to <2.5 torr within 1 min and stabilized shortly later at ∼1.3 torr. After 30 min of in vitro ischemia, total adenylate was <45% and ATP content <15% of control in both types of culture. Cytosolic calcium activity increased from 15 to 50 n M . Reoxygenation of cultures after in vitro ischemia led to delayed neuronal death, the severity of which depended on the duration of in vitro ischemia but not on the type of neuronal cultures. Energy charge of adenylate transiently returned to ∼90% of control after 3 h, but ATP content recovered only to 40% and protein synthesis to <35%. Cytosolic calcium activity continued to rise after ischemia and reached values of ∼500 n M after 3 h. The new argon-induced in vitro ischemia model offers major advantages over previous methods, but despite this improvement it was not possible to replicate the differences in cortical and hippocampal vulnerability observed in vivo. Our study does not support the hypothesis that selective vulnerability is due to an inherent pathoclitic hypersensitivity.  相似文献   

12.
Abstract: Growth-promoting peptide hormones, including growth hormone and insulin, stimulate rat brain ornithine decarboxylase (ODC; EC 4.1.1.17) activity in vivo (Roger et al., 1974; Roger and Fellows, 1980). To determine if this is a result of a direct action on brain, we have investigated the effect of peptide hormones in primary cell cultures of brain from fetal rats of 20 days gestational age. Significant stimulation of ODC activity was observed 4 h after administration of porcine insulin and bovine growth hormone. On a molar basis, growth hormone was less potent than insulin. By contrast, glucagon, enkephalin, and angiotensin II did not stimulate ODC in this system. At 25 ng/ml, insulin stimulated ODC activity approximately threefold, with maximum stimulation of five- to sevenfold reached at 1 μg/ml. After a 1-h lag, insulin-stimulated ODC activity increased to a maximum between 5 h and 8 h and returned to basal levels by 24 h. The apparent Km of ODC, 5.66 ± 1.16μM, was not significantly altered by insulin treatment, nor was any enzyme activator found in mediating insulin actions. Additional evidence suggests that insulin stimulation of ODC activity involves both de novo synthesis of the enzyme and a prolongation of ODC half-life by 50%. These findings, implicating insulin as a regulator of ODC activity in brain cells, suggest the possible involvement of insulin or an insulin-like peptide in the control of growth and development of the CNS.  相似文献   

13.
Ornithine decarboxylase (ODC; EC 4.1.1.17) is a highly inducible, rate-limiting enzyme of the polyamine pathway. We have studied the mechanisms that lead to the induction of ODC activity in response to electrical stimulation in three brain regions. Hippocampal ODC activity was found to exhibit much larger elevations than that of the neocortex and the cerebellum. The levels of ODC gene expression were also followed to examine its relationship to the existing regional differences in ODC activity. In the neocortex, there was an elevation of both the ODC mRNA and enzyme activity. However, the hippocampal ODC mRNA level was not increased by electroconvulsive shock. Furthermore, the effects of hormonal changes and seizures on these regional differences in ODC induction were also examined. Adrenalectomy did not affect ODC activity, but pretreatment with the anticonvulsant MK-801 caused a depression of the induced levels of enzyme activity. Our data suggest that ODC activity in all the brain regions studied is directly elevated by electrically stimulated seizures. However, this induced ODC activity may or may not involve enhanced gene expression.  相似文献   

14.
Abstract: Heparin, a highly sulfated glycosaminoglycan, is known to be obligatory for long-term endothelial cell cultures; it potentiates the mitogenic activities of endothelial cell growth factors and prolongs the replicative life span of the cells. Here we have shown that besides its growth factor-supportive role, heparin exerts a specific action on cerebral capillary endothelial cells (cECs), unrelated to serum or growth factors, by increasing activity of ornithine decarboxylase (ODC; EC 4.1.1.17) in these cells. For our experiments we have used two different types of cloned cECs: type I cECs, grown in the presence of endothelial cell growth factor and heparin, and type II cECs, usually cultivated without growth factors. Heparin action on ODC activity was shown to be dose dependent within the range of 1–100 μg/ml. Increasing concentrations of or depletion of endothelial cell growth factor from type I cultures had no effect on ODC activity. The increase in enzyme activity was highest after 30 min to 1 h of heparin treatment. As evidenced by northern analysis, the heparin-mediated enhancement of ODC activity was not accompanied by changes of ODC mRNA levels. Studies of DNA replication revealed that in the absence of heparin-binding growth factors, heparin did not affect the proliferative activity of cloned cECs.  相似文献   

15.
Synapsins are phosphoproteins related to the anchorage of synaptic vesicles to the actin skeleton. Hypoxia-ischemia causes an increased calcium influx into neurons through ionic channels gated by activation of glutamate receptors. In this work seven-day-old Wistar rats were submitted to hypoxia-ischemia and sacrificed after 21 hours, 7, 30, or 90 days. Synaptosomal fractions were obtained by Percoll gradients and incubated with 32P (10Ci/g). Proteins were analysed by SDS-PAGE and radioactivity incorporated into synapsin 1 was counted by liquid scintillation. Twenty-one hours after hypoxia-ischemia we observed a reduction on the in vitro phosphorylation of synapsin 1, mainly due to hypoxia, rather than to ischemia; this effect was reversed at day 7 after the insult. There was another decrease in phosphorylation 30 days after the event interpreted as a late effect of hypoxia-ischemia. No changes were observed at day 90. Our results suggest that decreased phosphorylation of synapsin 1 could be related to neuronal death that follows hypoxia-ischemia.  相似文献   

16.
17.
Abstract: We have reported previously that posttreatment with N G-nitro-L-arginine methyl ester (L-NAME), an inhibitor of the nitric oxide synthase, reduced the volume of cortical and striatal infarct induced by middle cerebral artery occlusion in rats. In the present study, we investigated the mechanisms by which L-NAME (3 mg/kg i.p.) is neuroprotective in this model of cerebral ischemia. First, we have shown the reversal of the neuroprotective effect of L-NAME by a coinjection of L-arginine. Second, in order to determine by which mechanism nitric oxide exacerbates neuronal damage produced by focal cerebral ischemia, we studied the effect of the inhibition of nitric oxide synthase by L-NAME on the histological consequences of a focal injection of N -methyl-D-aspartate (NMDA) in the striatum, and on the striatal overflow of glutamate and aspartate induced either by K+ depolarization or by focal cerebral ischemia. We have found that L-NAME treatment reduced the excitotoxic damage produced by NMDA injection. By using microdialysis, we have shown that the K+- and the ischemia-induced glutamate efflux was reduced by 52 and 30%, respectively, after the L-NAME treatment. These results indicate that nitric oxide synthesis induced by the NMDA receptor overstimulation is one of the major events leading to neuronal damage. One possible mechanism by which nitric oxide may contribute to the excitotoxic process is by facilitating the ischemia-induced glutamate overflow.  相似文献   

18.
Abstract: S -Adenosyl- l -methionine decarboxylase (SAMdc) and l -ornithine decarboxylase (ODC) are major enzymes regulating polyamine synthesis. Following ischemia, putrescine content increases as a result of post-traumatic activation of ODC and inhibition of SAMdc. These alterations are thought to mediate edema and cell death. The purpose of this study was to quantify SAMdc activity and edema in the brain following controlled cortical impact injury. Anesthetized adult male rats underwent a right parietal craniectomy and were subjected to cortical impact injury. Tissues were obtained from three bilateral regions: parietal cortex, motor area (CPm); parietal cortex, somatosensory area (CPs); and the pyriform cortex (CPF). SAMdc activity was determined in the postmitochondrial fraction from homogenates of fresh, unfrozen tissues by measuring the decarboxylation of S -adenosyl- l -[ carboxyl -14C]methionine. Basal SAMdc activity was determined in unoperated rats, and regional differences were noted: Activity was lower in the CPF than in the CPm and CPs. SAMdc activity decreased to the greatest extent in the ipsilateral CPm (impact site) from 1 to 72 h following traumatic brain injury. Significant edema was found in the ipsilateral CPm 1, 8, 16, 24, and 48 h after injury. Decreased SAMdc activity impairs the conversion of putrescine to polyamines and may contribute to delayed pathological changes in the brain after traumatic injury.  相似文献   

19.
This study addresses the possible involvement of an agonist-induced postischemic hyperactivity in the delayed neuronal death of the CA1 hippocampus in the rat. In two sets of experiments, dialytrodes were implanted into the CA1 either acutely or chronically (24 h of recovery). During 20 min of cerebral ischemia (four-vessel occlusion model) and 8 h of reflow, we followed extracellular amino acids and multiple-unit activity. Multiple-unit activity ceased within 20 sec of ischemia and remained zero during the ischemic insult and for the following 1 h of reflow. During ischemia, extracellular aspartate, glutamate, taurine, and gamma-aminobutyric acid increased in both acute and chronic experiments (seven- to 26-fold). Multiple-unit activity recovered to preischemic levels following 4-6 h of reflow. In the group with dialytrodes implanted acutely, the continuous increase in multiple-unit activity reached 110% of basal at 8 h of reflow. In the group with dialytrodes implanted chronically, multiple-unit activity recovered faster and reached 140% of control at 8 h, paralleled by an increase in extracellular aspartate (5.5-fold) and glutamate (twofold). In conclusion, the postischemic increase of excitatory amino acids and the recovery of the neuronal activity may stress the CA1 pyramidal cells, which could be detrimental in combination with, e.g., postsynaptic impairments.  相似文献   

20.
The blood-brain barrier permeability of the competitive N-methyl-D-aspartate receptor antagonist CGS-19755 [cis-4-(phosphonomethyl)-2-piperidine carboxylic acid] was assessed in normal and ischemic rat brain. The brain uptake index of CGS-19755 relative to iodoantipyrine was assessed using the Oldendorf technique in normal brain. The average brain uptake index in brain regions supplied by the middle cerebral artery was 0.15 +/- 0.35% (mean +/- SEM). The unidirectional clearance of CGS-19755 from plasma across the blood-brain barrier was determined from measurements of the volume of distribution of CGS-19755 in brain. These studies were performed in normal rats and in rats with focal cerebral ischemia produced by combined occlusion of the proximal middle cerebral artery and ipsilateral common carotid artery. In normal rats the regional plasma clearance across the blood-brain barrier was low, averaging 0.015 ml 100 g-1 min-1. In ischemic rats this clearance value averaged 0.019 ml 100 g-1 min-1 in the ischemic hemisphere and 0.009 ml 100 g-1 min-1 in the nonischemic hemisphere. No significant regional differences in plasma clearance of CGS-19755 were observed in either normal or ischemic rats except in cortex injured by electrocautery where a 14-fold increase in clearance across the blood-brain barrier was measured. We conclude that CGS-19755 crosses the blood-brain barrier very slowly, even in acutely ischemic tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号