首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
The gene smu.1475c encodes a putative protein of 211 residues in Streptococcus mutans, a primary pathogen for human dental caries. In this work, smu.1475c was cloned into pET28a and expressed in good amount from the E. coli strain BL21 (DE3). Smu.1475c protein was purified to homogeneity in a two-step procedure of Ni2+ chelating and size exclusion chromatography. Crystals were obtained by hanging-drop vapor-diffusion method and diffracted to 2.7 angstroms resolution. The crystal belongs to orthorhombic space group P2(1)2(1)2(1) with cell dimension of a = 68.3 angstroms, b = 105.9 angstroms, c = 136.2 angstroms. The asymmetric unit is expected to contain four molecules with solvent content of 49.4%.  相似文献   

2.
Centrins are four-EF-hand Ca(2+)-binding proteins, which belong to the CaM super family. The centrin from ciliate Euplotes Octocarinatus has been expressed in Escherichia coli, purified and crystallized using the hanging-drop method. Rod-like crystals were grown and diffracted to 2.0 angstroms. The crystals belong to space group P2(1)2(1)2(1) and the unit-cell parameters are a=34.442 angstroms, b=48.954 angstroms, c=72.583 angstroms.  相似文献   

3.
A new Schiff base copper(II) complex, Cu(o-VANAHE)(2) (o-VANAHE = 2-(o-vanillinamino)-1-hydroxyethane), has been synthesized and characterized. Single crystal X-ray diffraction results suggest that this complex structure belongs to triclinic crystal system, space group P1 with the following crystallographic parameters: a = 8.819(4) angstroms, b = 10.794(5) angstroms, c = 11.350(5) angstroms, alpha = 70.262(6) degrees, beta = 70.816(6) degrees, gamma = 78.360(6) degrees, V = 955.4(7) angstroms3, Z = 2, D(c) = 1.571 Mg x m(-3), and the final R1 = 0.0393, wR2 = 0.0994 for the observed reflections 2620(I > 2sigma(I)). The molecular geometry is almost coplanar. Viscosity, fluorescence spectroscopy and cyclic voltammetry have been conducted to assess their interaction between this complex and DNA. Results showed that the copper(II) complex can increase DNA's relative viscosity and quench the fluorescence intensity of EB bound to DNA. The adding of DNA to the solution of Cu(o-VANAHE)2 causes a slight decrease in the voltammetric current, as well as a slight shift in the E(1/2) to less negative potential. The interaction between the complex and DNA has also been investigated by submarine gel electrophoresis, interestingly, we found that the copper(II) complex can cleave circular plasmid pBR322 DNA to nicked and linear forms.  相似文献   

4.
The alpha-subunit of Escherichia coli tryptophan synthase (aTS), a component of the tryptophan synthase alpha2beta2 complex, is a monomeric 268-residues protein (Mr = 28,600). alphaTS by itself catalyzes the cleavage of indole-3-glycerol phosphate to glyceraldehyde-3-phosphate and indole, which is converted to tryptophan in tryptophan biosynthesis. Wild-type and P28L/Y173F double mutant alpha-subunits were overexpressed in E. coli and crystallized at 298 K by the hanging-drop vapor-diffusion method. X-ray diffraction data were collected to 2.5 angstroms resolution from the wild-type crystals and to 1.8 angstroms from the crystals of the double mutant, since the latter produced better quality diffraction data. The wild-type crystals belonged to the monoclinic space group C2 (a = 155.64 angstroms, b = 44.54 angstroms, c = 71.53 angstroms and beta = 96.39 degrees) and the P28L/Y173F crystals to the monoclinic space group P21 (a = 71.09 angstroms, b = 52.70, c = 71.52 angstroms, and beta = 91.49 degrees). The asymmetric unit of both structures contained two molecules of aTS. Crystal volume per protein mass (V(m)) and solvent content were 2.15 angstroms3 Da(-1) and 42.95% for the wild-type and 2.34 angstroms3 Da(-1) and 47.52% for the double mutant.  相似文献   

5.
Suramin is a highly charged polysulfonated napthylurea that interferes in a number of physiologically relevant processes such as myotoxicity, blood coagulation and several kinds of cancers. This synthetic compound was complexed with a myotoxic Lys49 PLA(2) from Bothrops asper venom and crystallized by the hanging-drop vapor diffusion method at 18 degrees C. The crystals belong to the orthorhombic space group P2(1)2(1)2(1), with unit cell parameters a=49.05, b=63.84 and c=85.67 angstroms. Diffraction data was collected to 1.78 angstroms.  相似文献   

6.
ZBP1 is involved in host responses against cellular stresses, including tumorigenesis and viral infection. Structurally, it harbors two copies of the Zalpha domain containing the Zalpha motif, at its N terminus. Here, we attempted to characterize the Z-DNA binding activities of two Zalpha domains in the human ZBP1, hZalpha(ZBP1) and hZbeta(ZBP1), using circular dichroism (CD). Our results indicated that both hZalpha(ZBP1) and hZbeta(ZBP1) are viable Z-DNA binders, and their binding activities are comparable to those of previously-established Zalpha domains. Additionally, we crystallized hZbeta(ZBP1) in a complex with Z-DNA, d(TCGCGCG)2. The crystal diffracted to 1.45 angstroms, and belongs to the P2(1)2(1)2(1) space group, with the unit-cell parameters: a = 29.53 angstroms, b = 58.25 angstroms, and c = 88.61 angstroms. The delineation of this structure will provide insight into the manner in which diverse Zalpha motifs recognize Z-DNA.  相似文献   

7.
Karle IL  Urry DW 《Biopolymers》2005,77(4):198-204
Tropoelastin is a complex polymeric protein composed primarily of repeating segments of Val-Pro-Gly-Gly, Val-Pro-Gly-Val-Gly, and Ala-Pro-Gly-Val-Gly-Val that occurs in connective tissue and arteries. It has rubber-like extensible properties. A synthetic cyclic dodecapeptide, with a double repeat of the hexapeptide sequence, has been shown to undergo a reversible inverse temperature transition; that is, crystals grow at 60 degrees C and dissolve in the mother liquor upon cooling. An x-ray crystal structure analysis established that the cyclic backbone formed an elongated loop with a Pro-Gly, type II beta turn at both ends. Six internal cross strand NH...OC hydrogen bonds form between six NH donors and four O=C acceptors where two of the carbonyl O atoms are bifurcated acceptors. As a result, the molecule is pulled up into a corrugated profile. The corrugated loops form extended beta-sheets by additional intermolecular hydrogen bonds. An analysis of the dome region in a corrugated sheet suggests a reversible mechanism for extending and contracting the length of the whole molecule, akin to the motion of opening and closing an umbrella, caused by the motion of a water molecule with its associated hydrogen bonds acting as spokes. Crystal parameters: C44H72N12O12.3H2O, sp. gr. P2(1)2(1)2(1), a = 9.212 angstroms, b = 19.055 angstroms, c = 32.247 angstroms, d = 1.157 g/cm3.  相似文献   

8.
A new ligand L, 1-[3-(2-pyridyl)pyrazol-1-ylmethyl]naphthalene, and its two metal complexes, [Cu(L)3](ClO4)2 (1) and [Zn(L)3](ClO4)2(H2O)2 (2), have been synthesized and characterized. The crystal structure of complex 1 was determined by single crystal X-ray diffraction, which crystallized in monoclinic, space group P2(1)/n with unit cell parameters, a = 12.710(4) angstroms, b = 12.135(3) angstroms, c = 33.450(9) angstroms, beta = 93.281(5) degrees and Z = 4. The Cu atom was six-coordinated to N(1), N(2), N(4), N(5), N(7) and N(8) from three L ligands and formed a slightly distorted octahedral geometry. Complexes 1 and 2, and ligand L were subjected to biological tests in vitro using three different cancer cell lines (HL-60, BGC-823 and MDA-MB-435). Complex 1 showed significant cytotoxic activity against three cancer cell lines. The interactions of complexes 1 and 2, and ligand L with calf thymus DNA were then investigated by thermal denaturation, viscosity measurements and spectrophotometric methods. The experimental results indicated that complexes 1 and 2 bound to DNA by intercalative mode via the ligand L. The intrinsic binding constants of complexes 1 and 2, and ligand L with DNA were 1.8 x 10(4), 5.4 x 10(3) and 2.76 x 10(3) M(-1), respectively.  相似文献   

9.
The X-ray crystal structure of a human copper/zinc superoxide dismutase mutant (G37R CuZnSOD) found in some patients with the inherited form of Lou Gehrig's disease (FALS) has been determined to 1.9 angstroms resolution. The two SOD subunits have distinct environments in the crystal and are different in structure at their copper binding sites. One subunit (subunit[intact]) shows a four-coordinate ligand geometry of the copper ion, whereas the other subunit (subunit[broken]) shows a three-coordinate geometry of the copper ion. Also, subunit(intact) displays higher atomic displacement parameters for backbone atoms ((B) = 30 +/- 10 angstroms2) than subunit(broken) ((B) = 24 +/- 11 angstroms2). This structure is the first CuZnSOD to show large differences between the two subunits. Factors that may contribute to these differences are discussed and a possible link of a looser structure to FALS is suggested.  相似文献   

10.
Two different natural protease inhibitors, the squash inhibitor MCEI III and the third domain of turkey ovomucoid inhibitor OMTKY3, were crystallized in complexes with porcine pancreatic elastase (PPE). About 700 conditions were screened altogether. Crystals of the complex between MCEI III and PPE were grown in citrate buffer with and without ammonium acetate. X-ray diffraction data were collected to 1.9 angstroms resolution at room temperature using synchrotron radiation. The crystals belong to space group P2(1), with unit-cell parameters a = 49.17, b = 44.59, c = 67.08 angstroms, beta = 110.97 degrees. Crystals of the OMTKY3/PPE complex were obtained in the presence of ammonium sulfate, MES buffer and polyethylene glycol monomethylether (PEG). These crystals of this complex diffracted to 2.1 angstroms resolution and belongs to space group I222, with unit-cell parameters a = 84.58, b = 84.61, c = 89.92 angstroms and diffracted to 2.2 angstroms resolution. The diffraction data were collected using a conventional rotating anode X-ray generator at room temperature. In both cases the presence of inhibitor in the crystals was confirmed by crystallography.  相似文献   

11.
Phycoerythrin 545 from the cryptomonad alga, Rhodomonas lens, has been crystallized under a wide variety of conditions. Although this type of photosynthetic light-harvesting protein is water soluble, detergents were always required for crystallization. The crystals were typically poorly ordered, or ordered in only two dimensions. However, crystals that were well-ordered in three dimensions could be obtained under two different conditions. Both used polyethylene glycol as precipitant and the detergent lauryldimethylaminoxide, but the additives that were critical for obtaining well-ordered crystals were propionamide in one case and Cs+/Br- in the other. Crystals obtained in the presence of propionamide have the space group P2(1)2(1)2(1), with cell constants of a = 85.6 angstroms, b = 108.2 angstroms, and c = 131.0 angstroms, and contain two dimers [i.e., 2 x (alpha2beta2)] in the asymmetric unit. They show diffraction to at least 3.0 angstroms resolution. The crystals grown with Cs+/Br- are nearly isomorphous. Both types of crystals show intense, strongly polarized fluorescence, suggesting that energy transfer in the crystals is highly efficient. This should provide a basis for quantitative investigation of the role of exciton interactions in energy transfer in cryptomonad phycobiliproteins.  相似文献   

12.
13.
Guo J  Zhang X 《Carbohydrate research》2004,339(8):1421-1426
The single-crystal structure of SrCl2 x 2C6H12O6 x 3H2O was determined with Mr = 572.88, a = 16.252, b = 7.941(2), c = 10.751(3) angstroms, beta = 127.652(4) degrees, V = 1098.5(6) angstroms3, C2, Z = 2, mu = 0.71073 angstroms and R = 0.0296 for 1998 observed reflections. The fructose moiety of the complex exists as a beta-d-pyranose. The strontium atom is surrounded by eight oxygen atoms, which are arranged in symmetry-related pairs that are derived from four sugar and two water molecules. Three nonvicinal hydroxyl groups of fructose are involved in strontium binding. All the hydroxyl groups and water molecules are involved in forming an extensive hydrogen-bond network. The Sr-fructose complex is isostructural with the Ca-fructose complex, and the crystal structures and FTIR spectra of the two complexes are compared in this article. The O-H, C-O, and C-O-H vibrations are shifted, and the relative intensities changed in the complexes IR spectra, which indicate sugar metalation. By studying the metal-binding properties of fructose, it is hoped that such would aid in the understanding of the structural chemistry of metal ions interacting with saccharides, as an actual biological system, and thereby aid in the interpretation of some particular biological processes.  相似文献   

14.
Structure-based inhibitor design has led to the discovery of a number of potent inhibitors of glycogen phosphorylase b (GPb), N-acyl derivatives of beta-D-glucopyranosylamine, that bind at the catalytic site of the enzyme. The first good inhibitor in this class of compounds, N-acetyl-beta-D-glucopyranosylamine (NAG) (K(i) = 32 microM), has been previously characterized by biochemical, biological and crystallographic experiments at 2.3 angstroms resolution. Bioisosteric replacement of the acetyl group by trifluoroacetyl group resulted in an inhibitor, N-trifluoroacetyl-beta-D-glucopyranosylamine (NFAG), with a K(i) = 75 microM. To elucidate the structural basis of its reduced potency, we determined the ligand structure in complex with GPb at 1.8 angstroms resolution. To compare the binding mode of N-trifluoroacetyl derivative with that of the lead molecule, we also determined the structure of GPb-NAG complex at a higher resolution (1.9 angstroms). NFAG can be accommodated in the catalytic site of T-state GPb at approximately the same position as that of NAG and stabilize the T-state conformation of the 280 s loop by making several favourable contacts to Asn284 of this loop. The difference observed in the K(i) values of the two analogues can be interpreted in terms of subtle conformational changes of protein residues and shifts of water molecules in the vicinity of the catalytic site, variations in van der Waals interaction, and desolvation effects.  相似文献   

15.
We explore the binding sites for mAbs to the alpha I domain of the integrin alphaLbeta2 that can competitively inhibit, allosterically inhibit, or activate binding to the ligand ICAM-1. Ten mAbs, some of them clinically important, were mapped to species-specific residues. The results are interpreted with independent structures of the alphaL I domain determined in seven different crystal lattices and in solution, and which are present in three conformational states that differ in affinity for ligand. Six mAbs bind to adjacent regions of the beta1-alpha1 and alpha3-alpha4 loops, which show only small (mean, 0.8 angstroms; maximum, 1.8 angstroms) displacements among the eight I domain structures. Proximity to the ligand binding site and to noncontacting portions of the ICAM-1 molecule explains competitive inhibition by these mAbs. Three mAbs bind to a segment of seven residues in the beta5-alpha6 loop and alpha6 helix, in similar proximity to the ligand binding site, but on the side opposite from the beta1-alpha1/alpha3-alpha4 epitopes, and far from noncontacting portions of ICAM-1. These residues show large displacements among the eight structures in response to lattice contacts (mean, 3.6 angstroms; maximum, 9.4 angstroms), and movement of a buried Phe in the beta5-alpha6 loop is partially correlated with affinity change at the ligand binding site. Together with a lack of proximity to noncontacting portions of ICAM-1, these observations explain variation among this group of mAbs, which can either act as competitive or allosteric antagonists. One agonistic mAb binds distant from the ligand binding site of the I domain, to residues that show little movement (mean, 0.5 angstroms; maximum, 1.0 angstroms). Agonism by this mAb is thus likely to result from altering the orientation of the I domain with respect to other domains within an intact integrin alphaLbeta2 heterodimer.  相似文献   

16.
The angle dependencies of diffuse x-ray scattering intensities were studied in a wide range of angles from 3 to 80 degrees for water-soluble and membrane proteins with a different structural organization: alpha-helical protein myoglobin, alpha-helical protein serum albumen, alpha + beta protein lysozyme, and transmembrane proteins of photosynthetic reaction centers (RC) from purple bacteria Rhodobacter sphaeroides, and Blastochlorii (Rhodopseudomonas) viridis containing cytocrome c, situated out side the membrane, and for H and L+M subunits of membrane protein of reaction center from Rb. sphaeroides for various hydration degrees. The hydration/dehydration process was studied for water-soluble proteins (within hydration range from h = 0.05 to h = 1). The hydration/dehydration process appears to be reversible. All water-soluble proteins show a 10 angstroms peak, and proteins of reaction center do not show this peak. A quantitative comparable study of the behaviour for of the 10 angstroms peak different proteins the degree of lysozyme hydration increases from h = 0.05 to h = 0.45, the protein structure slightly changes (most probably the motifoffolding), the structure of myoglobin in solution is slightly different from the structure in crystal. By taking into account the changes in the shape and intensity of the 10 angstroms peak only, it is impossible to make the conclusion about structural changes in other proteins studied. A correlation between the structural changes observed and dynamic and functional properties of proteins is discussed.  相似文献   

17.
Class I release factors 1 and 2 (RF1 and RF2) terminate protein synthesis by recognizing stop codons on the mRNA via their conserved amino acid motifs (NIKS in eRF1 and SPF in RF2) and by the conserved tripeptide (GGQ) interactions with the ribosomal peptidyltransferase center. Crystal structures of eRF1 and RF2 do not fit their ribosomal binding pocket (approximately 73 angstroms). Cryoelectron microscopy indicates large conformational changes in the ribosome-bound RF2. Here, we investigate the conformational dynamics of the eRF1 and RF2 using molecular dynamics simulation, structural alignment, and electrostatic analysis of domain interactions. We show that relaxed eRF1 has a shape remarkably similar to the ribosome-bound RF2 observed by cryoelectron microscopy. The similarity between the two release factors is as good as between elongation factor G and elongation factor Tu-guanosine-5'(beta,gamma-imido)triphosphate-tRNA. Further, the conformational transitions and dynamics of eRF1 and RF2 between the free and ribosome-bound states are most likely controlled by protonation of conserved histidines. For eRF1, the distance between the NIKS and GGQ motifs shrinks from 97.5 angstroms in the crystal to 70-80 angstroms. For RF2, the separation between SPF and GGQ elongates from 32 angstroms in the crystal to 50 angstroms. Coulombic interaction strongly favors the open conformation of eRF1; however, solvation and histidine protonation modulate the domain interactions, making the closed conformation of eRF1 more accessible. Thus, RF1 and RF2 function like molecular machines, most likely fueled by histidine protonation. The unified conformational control and the shapes of eRF1 and RF2 support the proposition that the termination of protein synthesis involves similar mechanisms across species.  相似文献   

18.
The inner pore of voltage-gated Ca2+ channels (VGCCs) is functionally important, but little is known about the architecture of this region. In K+ channels, this part of the pore is formed by the S6/M2 transmembrane segments from four symmetrically arranged subunits. The Ca2+ channel pore, however, is formed by four asymmetric domains of the same (alpha1) subunit. Here we investigated the architecture of the inner pore of P/Q-type Ca2+ channels using the substituted-cysteine accessibility method. Many positions in the S6 segments of all four repeats of the alpha1 subunit (Ca(v)2.1) were modified by internal methanethiosulfonate ethyltrimethylammonium (MTSET). However, the pattern of modification does not fit any known sequence alignment with K+ channels. In IIS6, five consecutive positions showed clear modification, suggesting a likely aqueous crevice and a loose packing between S6 and S5 segments, a notion further supported by the observation that some S5 positions were also accessible to internal MTSET. These results indicate that the inner pore of VGCCs is indeed formed by the S6 segments but is different from that of K+ channels. Interestingly some residues in IIIS6 and IVS6 whose mutations in L-type Ca2+ channels affect the binding of dihydropyridines and phenylalkylamines and are thought to face the pore appeared not to react with internal MTSET. Probing with qBBr, a rigid thiol-reactive agent with a dimension of 12 angstroms x 10 angstroms x 6 angstroms suggests that the inner pore can open to >10 angstroms. This work provides an impetus for future studies on ion permeation, gating, and drug binding of VGCCs.  相似文献   

19.
The OprM lipoprotein of Pseudomonas aeruginosa is a member of the MexAB-OprM xenobiotic-antibiotic transporter subunits that is assumed to serve as the drug discharge duct across the outer membrane. The channel structure must differ from that of the porin-type open pore because the protein facilitates the exit of antibiotics but not the entry. For better understanding of the structure-function linkage of this important pump subunit, we studied the x-ray crystallographic structure of OprM at the 2.56-angstroms resolution. The overall structure exhibited trimeric assembly of the OprM monomer that consisted mainly of two domains: the membrane-anchoring beta-barrel and the cavity-forming alpha-barrel. OprM anchors the outer membrane by two modes of membrane insertions. One is via the covalently attached NH(2)-terminal fatty acids and the other is the beta-barrel structure consensus on the outer membrane-spanning proteins. The beta-barrel had a pore opening with a diameter of about 6-8 angstroms, which is not large enough to accommodate the exit of any antibiotics. The periplasmic alpha-barrel was about 100 angstroms long formed mainly by a bundle of alpha-helices that formed a solvent-filled cavity of about 25,000 angstroms(3). The proximal end of the cavity was tightly sealed, thereby not permitting the entry of any molecule. The result of this structure was that the resting state of OprM had a small outer membrane pore and a tightly closed periplasmic end, which sounds plausible because the protein should not allow free access of antibiotics. However, these observations raised another unsolved problem about the mechanism of opening of the OprM cavity ends. The crystal structure offers possible mechanisms of pore opening and pump assembly.  相似文献   

20.
Snake venom PLA(2)s have been extensively studied due to their role in mediating and disrupting physiological processes such as coagulation, platelet aggregation and myotoxicity. The Ca(2+) ion bound to the putative calcium-binding loop is essential for hydrolytic activity. We report the crystallization in the presence and absence of Ca(2+) and X-ray diffraction data collection at 1.60 angstroms (with Ca(2+)) and 1.36 angstroms (without Ca(2+)) of an Asp49 PLA(2) from Bothrops jararacussu venom. The crystals belong to orthorhombic space group C222(1). Initial refinement and electron density analysis indicate significant conformational changes upon Ca(2+) binding.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号