首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Actin (thin) filament length regulation and stability are essential for striated muscle function. To determine the role of the actin filament pointed end capping protein, tropomodulin1 (Tmod1), with tropomyosin, we generated monoclonal antibodies (mAb17 and mAb8) against Tmod1 that specifically disrupted its interaction with tropomyosin in vitro. Microinjection of mAb17 or mAb8 into chick cardiac myocytes caused a dramatic loss of the thin filaments, as revealed by immunofluorescence deconvolution microscopy. Real-time imaging of live myocytes expressing green fluorescent protein-alpha-tropomyosin and microinjected with mAb17 revealed that the thin filaments depolymerized from their pointed ends. In a thin filament reconstitution assay, stabilization of the filaments before the addition of mAb17 prevented the loss of thin filaments. These studies indicate that the interaction of Tmod1 with tropomyosin is critical for thin filament stability. These data, together with previous studies, indicate that Tmod1 is a multifunctional protein: its actin filament capping activity prevents thin filament elongation, whereas its interaction with tropomyosin prevents thin filament depolymerization.  相似文献   

2.
Regulation of actin filament dynamics underlies many cellular functions. Tropomodulin together with tropomyosin can cap the pointed, slowly polymerizing, filament end, inhibiting addition or loss of actin monomers. Tropomodulin has an unstructured N-terminal region that binds tropomyosin and a folded C-terminal domain with six leucine-rich repeats. Of tropomodulin 1's 359 amino acids, an N-terminal fragment (Tmod1(1)(-)(92)) suffices for in vitro function, even though the C-terminal domain can weakly cap filaments independent of tropomyosin. Except for one short alpha-helix with coiled coil propensity (residues 24-35), the Tmod1(1)(-)(92) solution structure shows that the fragment is disordered and highly flexible. On the basis of the solution structure and predicted secondary structure, we have introduced a series of mutations to determine the structural requirements for tropomyosin binding (using native gels and CD) and filament capping (by measuring actin polymerization using pyrene fluorescence). Tmod1(1)(-)(92) fragments with mutations of an interface hydrophobic residue, L27G and L27E, designed to destroy the alpha-helix or coiled coil propensity, lost binding ability to tropomyosin but retained partial capping function in the presence of tropomyosin. Replacement of a flexible region with alpha-helical residues (residues 59-61 mutated to Ala) had no effect on tropomyosin binding but inhibited the capping function. A mutation in a region predicted to be an amphipathic helix (residues 65-75), L71D, destroyed the capping function. The results suggest that molecular flexibility and binding to actin via an amphipathic helix are both required for tropomyosin-dependent capping of the pointed end of the actin filament.  相似文献   

3.
Bacterially expressed alpha-tropomyosin lacks the amino-terminal acetylation present in muscle tropomyosin and binds poorly to actin (Hitchcock-DeGregori, S. E., and Heald, R. W. (1987) J. Biol. Chem. 262, 9730-9735). Using a linear lattice model, we determined the affinity (Ko) of unacetylated tropomyosin or troponin-unacetylated tropomyosin for an isolated site on the actin filament and the fold increase in affinity (y) when binding is to an adjacent site. The absence of tropomyosin acetylation decreased Ko 2 orders of magnitude in the absence of troponin. Tropomyosin acetylation also enhanced troponin-tropomyosin binding to actin, not by increasing cooperativity (y), but rather by increasing Ko. These results suggest that the amino-terminal region of tropomyosin is a crucial actin binding site. Troponin promoted unacetylated tropomyosin binding to actin, increasing Ko more than 1,000-fold. Troponin70-259, which lacks the troponin T peptide (1-69) spanning the overlap between adjacent tropomyosins, behaved similarly to intact troponin. Cooperative interactions between adjacent troponin-tropomyosin complexes remained strong despite the use of a nonpolymerizable tropomyosin and a troponin unable to bridge neighboring tropomyosins physically. The Ko for troponin70-259-unacetylated tropomyosin was 500-fold greater than for troponin159-259-unacetylated tropomyosin, indicating that troponin T residues 70-158 are critical for anchoring troponin-tropomyosin to F-actin. The mechanism of cooperative thin filament assembly is discussed.  相似文献   

4.
Localization of troponin in thin filament and tropomyosin paracrystal   总被引:1,自引:0,他引:1  
  相似文献   

5.
Anti-troponin formed 25 to 29 striations with a period of 38 nm along the whole length of thin filaments in chick embryonic breast muscle, in contrast with the uniform formation of 24 striations in adult muscle. This indicates that the thin filament in embryonic breast muscle is longer than that in the adult muscle.  相似文献   

6.
Recessive mutant gene c in Ambystoma mexicanum embryos causes a failure of the heart to function even though initial heart development appears normal. An analysis of the constituent proteins of normal and mutant hearts by SDS-poly-acrylamide gel electrophoresis shows that actin (43,000 daltons) is present in almost normal amounts, while myosin heavy chain (200,000 daltons) is somewhat reduced in mutants. Both SDS-polyacrylamide gel electrophoresis and immunofluorescence studies reveal that tropomyosin is abundant in normal hearts, but very much reduced in mutants. Electron microscope studies of normal hearts show numerous well-organized myofibrils. Although mutant cardiomyocytes contain a few 60- and 150-A filaments, organized sacromeres are absent. Instead, amorphous proteinaceous collections are prominent. Previously reported heavy meromyosin (HMM)-binding experiments on glycerinated hearts demonstrate that most of the actin is contained within the amorphous collections in a nonfilamentous state, and the addition of HMM causes polymerization into F actin (Lemanski et al., 1976, J. Cell. Biol. 68:375-388). In the present study, glycerol-extracted hearts are incubated with tropomyosin, purified from rabbit or chicken skeletal muscle. This treatment causes the amorphous collections to disappear, and large numbers of distinct thin actin (60- to 80-A) filaments are seen in their place. Negative staining experiments corroborate this observation. These results suggest that the nonfilamentous actin located in the amorphous collections of mutant heart cells is induced to form into filaments with the addition of tropomyosin.  相似文献   

7.
Chen Y  Lehrer SS 《Biochemistry》2004,43(36):11491-11499
To obtain information about the interaction of tropomyosin (Tm) with actin associated with the regulatory states of the muscle thin filament, we used luminescence resonance energy transfer (LRET) between Tb(3+) as a donor and rhodamine as an acceptor. A novel Tb(3+) chelator, S-(2-nitro-5-thiobenzoate)cysteaminyl-DTPA-Cs124, was synthesized, which specifically labels Cys groups in proteins. With the Tb chelate as the donor and tetramethylrhodamine-5-maleimide as the acceptor, both bound to specific Cys groups of Tm, we obtained 67 A as the distance between Tm's across the actin filament, a much shorter value than that obtained from structural studies (72-86 A). The difference appears to be due to submillisecond motion associated with Tm flexibility, which brings the probes closer during the millisecond lifetime of the donor. Ca(2+) did not change the energy transfer with the reconstituted thin filament, but myosin subfragment 1 decreased the transfer, consistent with either a 5-6 A increase in distance or, more likely, a decrease in flexibility.  相似文献   

8.
Striated muscle tropomyosin spans seven actin monomers and contains seven quasi-repeating regions with loose sequence similarity. Each region contains a hypothesized actin binding motif. To examine the functions of these regions, full-length tropomyosin was compared with tropomyosin internal deletion mutants spanning either five or four actins. Actin-troponin-tropomyosin filaments lacking tropomyosin regions 2-3 exhibited calcium-sensitive regulation in in vitro motility and myosin S1 ATP hydrolysis experiments, similar to filaments with full-length tropomyosin. In contrast, filaments lacking tropomyosin regions 3-4 were inhibitory to these myosin functions. Deletion of regions 2-4, 3-5, or 4-6 had little effect on tropomyosin binding to actin in the presence of troponin or troponin-Ca(2+), or in the absence of troponin. However, all of these mutants inhibited myosin cycling. Deletion of the quasi-repeating regions diminished the prominent effect of myosin S1 on tropomyosin-actin binding. Interruption of this cooperative, myosin-tropomyosin interaction was least severe for the mutant lacking regions 2-3 and therefore correlated with inhibition of myosin cycling. Regions 3, 4, and 5 each contributed about 1.5 kcal/mol to this process, whereas regions 2 and 6 contributed much less. We suggest that a myosin-induced conformational change in actin facilitates the azimuthal repositioning of tropomyosin which is an essential part of regulation.  相似文献   

9.
Myosin binding-induced activation of the thin filament was examined in isolated cardiac myocytes and single slow and fast skeletal muscle fibers. The number of cross-bridge attachments was increased by stepwise lowering of the [MgATP] in the Ca(2+)-free solution bathing the preparations. The extent of thin filament activation was determined by monitoring steadystate isometric tension at each MgATP concentration. As pMgATP (where pMgATP is -log [MgATP]) was increased from 3.0 to 8.0, isometric tension increased to a peak value in the pMgATP range of 5.0-5.4. The steepness of the tension-pMgATP relationship, between the region of the curve where tension was zero and the peak tension, is hypothesized to be due to myosin-induced cooperative activation of the thin filament. Results showed that the steepness of the tension-pMgATP relationship was markedly greater in cardiac as compared with either slow or fast skeletal muscle fibers. The steeper slope in cardiac myocytes provides evidence of greater myosin binding-induced cooperative activation of the thin filament in cardiac as compared with skeletal muscle, at least under these experimental conditions of nominal free Ca2+. Cooperative activation is also evident in the tension-pCa relation, and is dependent upon thin filament molecular interactions, which require the presence of troponin C. Thus, it was determined whether myosin-based cooperative activation of the thin filament also requires troponin C. Partial extraction of troponin C reduced the steepness of the tension-pMgATP relationship, with the effect being significantly greater in cardiac than in skeletal muscle. After partial extraction of troponin C, muscle type differences in the steepness of the tension-pMgATP relationship were no longer apparent, and reconstitution with purified troponin C restored the muscle lineage differences. These results suggest that, in the absence of Ca2+, myosin-mediated activation of the thin filament is greater in cardiac than in skeletal muscle, and this apparent cooperativity requires the presence of troponin C on thin filament regulatory strands.  相似文献   

10.
Tropomodulin and tropomyosin are important components of sarcomeric thin filaments in striated muscles. Tropomyosin decorates the side of actin filaments and enhances tropomodulin capping at the pointed ends of the filaments. Their functional relationship has been extensively characterized in vitro, but in vivo and cellular studies in mammals are often complicated by the presence of functionally redundant isoforms. Here, we used the nematode Caenorhabditis elegans, which has a relatively simple composition of tropomodulin and tropomyosin genes, and demonstrated that tropomodulin (unc-94) and tropomyosin (lev-11) are mutually dependent on each other in their sarcomere localization and regulation of sarcomeric actin assembly. Mutation of tropomodulin caused sarcomere disorganization with formation of actin aggregates. However, the actin aggregation was suppressed when tropomyosin was depleted in the tropomodulin mutant. Tropomyosin was mislocalized to the actin aggregates in the tropomodulin mutants, while sarcomere localization of tropomodulin was lost when tropomyosin was depleted. These results indicate that tropomodulin and tropomyosin are interdependent in the regulation of organized sarcomeric assembly of actin filaments in vivo.  相似文献   

11.
Bovine aortic tropomyosin has been isolated by DEAE-Sepharose chromatography following isoelectric precipitation and ammonium sulfate fractionation. A single polypeptide [Mr 36 000 on a sodium dodecyl sulfate (SDS)-polyacrylamide gel] was obtained under different electrophoretic conditions. The amino acid composition of bovine tropomyosin was very similar to that of rabbit skeletal muscle; the amino-terminal residue is blocked. The molecular weight of the native tropomyosin (76 000), which is twice that calculated from the SDS-polyacrylamide gel, suggests that the molecule is a dimer. The diffusion coefficient of 3.4 X 10(-7) cm2 s-1 and the frictional coefficient of 1.7 indicate that the molecule is asymmetric. Comparative high-pressure liquid chromatography peptide mapping of rabbit skeletal and bovine aortic tropomyosins shows primary structure variation. Bovine aortic tropomyosin binds calcium under physiological conditions of pH and ionic strength (22 mol of Ca2+/mol of tropomyosin with a Kd of 1.4 mM). Such a property is not shared by skeletal tropomyosin. In low Mg2+ concentration, both skeletal and aortic actin activations of the skeletal myosin ATPase activity are calcium independent. Addition of aortic tropomyosin to a hybrid actomyosin (aortic actin, skeletal myosin) yields an enhancement of the actin activation of the myosin ATPase activity, but the addition of skeletal tropomyosin yields a decrease of this activity. However, both the enhancement and decrease are calcium dependent. Addition of skeletal or aortic tropomyosin to an actomyosin system, where both actin and myosin come from skeletal muscle, yields only an enhancement of the actin activation of the myosin ATPase activity.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

12.
To identify interaction sites we measured the rotational motion of a spin label covalently bound to the side chain of a cysteine genetically incorporated into rabbit skeletal muscle tropomyosin (Tm) at positions 13, 36, 146, 160, 174, 190, 209, 230, 271, and 279. Upon the addition of F-actin, the mobility of all the spin labels, especially at position 13, 271, or 279, of Tm was inhibited significantly. Slow spin-label motion at the C-terminus (at the 230th and 271st residues) was observed upon addition of troponin. The binding of myosin-head S1 fragments without troponin immobilized Tm residues at 146, 160, 190, 209, 230, 271, and 279, suggesting that these residues are involved in a direct interaction between Tm and actin in its open state. As immobilization occurred at substoichiometric amounts of S1 binding to actin (a 1:7 molar ratio), the structural changes induced by S1 binding to one actin subunit must have propagated and influenced interaction sites over seven actin subunits.  相似文献   

13.
Chick embryo skull bones incorporated radioactive proline and cystein into procollagen in short term organ culture. Pulse-chase experiments showed that individual precursor chains (pro-alpha1 and pro-alpha2) were formed first and that these were subsequently linked by disulfide bounds into trimers. Radioautography showed that labeled material was secreted 30 min after adding label to the cells, and electrophoretic analyses showed that after this time completed labeled collagen molecules appeared. Conversion from disulfide-linked procollagen to collagen proceeded in more than one step. An intermediate form consisting of shorter chains, which were still trimerically linked, was found.  相似文献   

14.
Summary Using the patch-clamp technique, we recorded whole-cell calcium current from isolated cardiac myocytes dissociated from the apical ventricles of 7-day and 14-day chick embryos. In 70% of 14-day cells after 24 hr in culture, two component currents could be separated from totalI Ca activated from a holding potential (V h) of –80 mV. L-type current (I L) was activated by depolarizing steps fromV h –30 or –40 mV. The difference current (I T) was obtained by subtractingI L, fromI Ca.I T could also be distinguished pharmacologically fromI L in these cells.I T was selectively blocked by 40–160 m Ni2+, whereasI L was suppressed by 1 m D600 or 2 m nifedipine. The Ni2+-resistant and D600-resistant currents had activation thresholds and peak voltages that were near those ofI T andI L defined by voltage threshold, and resembled those in adult mammalian heart. In 7-day cells,I T andI L could be distinguished by voltage threshold in 45% (S cells), while an additional 45% of 7-day cells were nonseparable (NS) by activation voltage threshold. Nonetheless, in mostNS cells,I Ca was partly blocked by Ni2+ and by D600 given separately, and the effects were additive when these agents were given together. Differences among the cells in the ability to separateI T andI L by voltage threshold resulted largely from differences in the position of the steady-state inactivation and activation curves along the voltage axis. In all cells at both ages in which the steady-state inactivation relation was determined with a double-pulse protocol, the half-inactivation potential (V 1/2) of the Ni2+-resistant currentI L averaged –18 mV. In contrast,V 1/2 of the Ni2+-sensitiveI T was –60 mV in 14-day cells, –52 mV in 7-dayS cells, and –43 mV in 7-day NS cells. The half-activation potential was near –2 mV forI L at both ages, but that ofI T was –38 mV in 14-day and –29 mV in 7-day cells. Maximal current density was highly variable from cell to cell, but showed no systematic differences between 7-day and 14-day cells. These results indicate that the main developmental change that occurs in the components ofI Ca is a negative shift with, embryonic age in the activation and inactivation relationships ofI T along the voltage axis.  相似文献   

15.
Summary T-type calcium channels (I T channels) were studied in cell-attached patch electrode recordings from the ventricular cell membrane of 14-day embryonic chick heart. All experiments were performed in the absence of Ca2+ with Na+ (120mm) as the charge carrier.I T channels were distinguished from L-type calcium channels (I L) by their more negative activation and inactivation potential ranges; their smaller unitary slope conductance (26 pS), and their insensitivity to isoproterenol or D600. Inactivation kinetics were voltage dependent. The time constant of inactivation was 37 msec when the membrane potential was depolarized 40 mV from rest (R+40 mV), and 20 msec atR+60 mV. The frequency histogram of channel open times 0 was fit by a single-exponential curve while that of closed times c was biexponeintial. o was the same atR+40 mV andR+60 mV whereas c was shortened atR+60 mV. The open-state probability (P o) increased with depolarization: 0.35 atR+40 mV, 0.8 atR+60 mV and 0.88 atR+80 mV. This increase inP o at depolarized potentials could be accounted for by the decrease in c.  相似文献   

16.
The relationship of nascent myofibrils with the accumulation of adhesion plaque proteins and the formation of focal cell contacts was studied in embryonic chick cardiac myocytes in vitro. The cultures were double-stained with various combinations of the specific antiactin drug phalloidin and antibodies against vinculin, alpha-actinin, connectin (titin), myosin heavy chain, fibronectin, and desmin and examined under fluorescence and interference reflection microscopy. In the areas of myofibril assembly, vinculin and alpha-actinin plaques were formed at the ventral sarcolemmae. These areas overlapped with the sites of cell-to-substrate focal contacts and extracellular fibronectin. Because the myofibrils always ran in a straight line between these sites, polarized lines appeared to be generated within the cells in response to their physical (e.g., stress) and/or biochemical environment (e.g., adhesion plaque proteins). The possible presence of other factors cannot be ruled out for the proper alignment of myofibrils. As soon as myofibrils came to span between these adhesion sites, they exhibited typically mature cross-striated characteristics. Thus, the formation of these inferred lines has some relation to, or is in fact necessary for, the maturation of myofibrils, in addition to the directional arrangement of sarcomeric proteins. Additionally, synthesis and distribution of myosin and connectin were tightly linked during early developmental (premyofibril and myofibril) stages. The spatial deployment of desmin was not coupled with vinculin. Thus, connectin and desmin do not appear to form the initial scaffold of sarcomeres.  相似文献   

17.
Striated muscle contraction is regulated by Ca2+ binding to troponin, which has a globular domain and an elongated tail attributable to the NH2-terminal portion of the bovine cardiac troponin T (TnT) subunit. Truncation of the bovine cardiac troponin tail was investigated using recombinant TnT fragments and subunits TnI and TnC. Progressive truncation of the troponin tail caused progressively weaker binding of troponin-tropomyosin to actin and of troponin to actin-tropomyosin. A sharp drop-off in affinity occurred with NH2-terminal deletion of 119 rather than 94 residues. Deletion of 94 residues had no effect on Ca2+-activation of the myosin subfragment 1-thin filament MgATPase rate and did not eliminate cooperative effects of Ca2+ binding. Troponin tail peptide TnT1-153 strongly promoted tropomyosin binding to actin in the absence of TnI or TnC. The results show that the anchoring function of the troponin tail involves interactions with actin as well as with tropomyosin and has comparable importance in the presence or absence of Ca2+. Residues 95-153 are particularly important for anchoring, and residues 95-119 are crucial for function or local folding. Because striated muscle regulation involves switching among the conformational states of the thin filament, regulatory significance for the troponin tail may arise from its prominent contribution to the protein-protein interactions within these conformations.  相似文献   

18.
The Ca2+-regulatory tropomyosin-troponin complex was purified from chick embryonic muscles by a combination of DEAE-cellulose chromatography and (NH4)2SO4 fractionation. The embryonic complex was very similar to that obtained from adult chicken muscles with respect to stoichiometry of components and biological activity. Tropomyosin of embryonic skeletal muscles contains both α and β subunits, the β form being the major species. In the adult stage the β form is decreased with a concomitant increase in the α form. These results indicate that i) the Ca2+-regulatory proteins are not deficient in early embryonic muscles as previously thought (Hitchcock, S.E., Develop. Biol. 23, 399, 1970), and ii) different structural genes coding for tropomyosin subunits are expressed differentially in embryonic and adult muscle fibers.  相似文献   

19.
Duchenne muscular dystrophy (DMD) induces sarcolemmal mechanical instability and rupture, hyperactivity of intracellular calpains, and proteolytic breakdown of muscle structural proteins. Here we identify the two sarcomeric tropomodulin (Tmod) isoforms, Tmod1 and Tmod4, as novel proteolytic targets of m-calpain, with Tmod1 exhibiting ∼10-fold greater sensitivity to calpain-mediated cleavage than Tmod4 in situ. In mdx mice, increased m-calpain levels in dystrophic soleus muscle are associated with loss of Tmod1 from the thin filament pointed ends, resulting in ∼11% increase in thin filament lengths. In mdx/mTR mice, a more severe model of DMD, Tmod1 disappears from the thin filament pointed ends in both tibialis anterior (TA) and soleus muscles, whereas Tmod4 additionally disappears from soleus muscle, resulting in thin filament length increases of ∼10 and ∼12% in TA and soleus muscles, respectively. In both mdx and mdx/mTR mice, both TA and soleus muscles exhibit normal localization of α-actinin, the nebulin M1M2M3 domain, Tmod3, and cytoplasmic γ-actin, indicating that m-calpain does not cause wholesale proteolysis of other sarcomeric and actin cytoskeletal proteins in dystrophic skeletal muscle. These results implicate Tmod proteolysis and resultant thin filament length misspecification as novel mechanisms that may contribute to DMD pathology, affecting muscles in a use- and disease severity–dependent manner.  相似文献   

20.
Whole-cell voltage-clamp experiments were performed to examine the underlying currents flowing during the pacemaker potential of spontaneously-beating embryonic chick ventricles. The holding potential was -30 mV. Long-duration (3 s) hyperpolarizing pulses were applied to -40 to -120 mV, in increments of 10 mV. A marked hyperpolarization-activated inward current (If) was produced. In cells from 3-day-old hearts, the threshold potential for the inward current was -50 to -60 mV. In 17-day-old cells, there was almost no If current. At -120 mV, the inward current was -93.8 +/- 6.3 pA (n = 5) in 3-day-old cells and -15.7 +/- 2.8 pA (n = 5) in 17-day-old cells. The average capacitances were 10.1 +/- 2.0 pF (n = 17) in 3-day-old cells, and 6.9 +/- 1.2 pF (n = 14) in 17-day-old cells. The reduction of If paralleled the decrease in spontaneous activity. In the presence of 3 mM CsCl, the inward current was blocked completely, and the tail current was reduced. In addition, 3 mM CsCl depressed the spontaneous action potentials and had a negative chronotropic effect. These results indicate that the hyperpolarization-activated inward If current exists in young embryonic chick heart cells, and decreases during development. This If current may contribute somewhat to the electrogenesis of the pacemaker potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号