首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Selenium is an essential trace element for mammals. Through selenoproteins, this mineral participates in various biological processes such as antioxidant defence, thyroid hormone production, and immune responses. Some reports indicate that a human organism deficient in selenium may be prone to certain diseases. Adverse health effects following selenium overexposure, although very rare, have been found in animals and people. Contrary to selenium, arsenic and cadmium are regarded as toxic elements. Both are environmental and industrial pollutants, and exposure to excessive amounts of arsenic or cadmium can pose a threat to many people’s health, especially those living in polluted regions. Two other elements, vanadium and chromium(III) in trace amounts are believed to play essential physiological functions in mammals. This review summarizes recent studies on selenium interactions with arsenic and cadmium and selenium interactions with vanadium and chromium in mammals. Human studies have demonstrated that selenium may reduce arsenic accumulation in the organism and protect against arsenic-related skin lesions. Selenium was found to antagonise the prooxidant and genotoxic effects of arsenic in rodents and cell cultures. Also, studies on selenium effects against oxidative stress induced by cadmium in various animal tissues produced promising results. Reports suggest that selenium protection against toxicity of arsenic and cadmium is mediated via sequestration of these elements into biologically inert conjugates. Selenium-dependent antioxidant enzymes probably play a secondary role in arsenic and cadmium detoxification. So far, few studies have evaluated selenium effects on chromium(III) and vanadium actions in mammals. Still, they show that selenium may interact with these minerals. Taken together, the recent findings regarding selenium interaction with other elements extend our understanding of selenium biological functions and highlight selenium as a potential countermeasure against toxicity induced by arsenic and cadmium.  相似文献   

2.
Reactive oxygen species (ROS) are derived from cellular oxygen metabolism and from exogenous sources. An excess of ROS results in oxidative stress and may eventually cause cell death. ROS levels within cells and in extracellular body fluids are controlled by concerted action of enzymatic and non-enzymatic antioxidants. The essential trace element selenium exerts its antioxidant function mainly in the form of selenocysteine residues as an integral constituent of ROS-detoxifying selenoenzymes such as glutathione peroxidases (GPx), thioredoxin reductases (TrxR) and possibly selenoprotein P (SeP). In particular, the dual role of selenoprotein P as selenium transporter and antioxidant enzyme is highlighted herein. A cytoprotective effect of selenium supplementation has been demonstrated for various cell types including neurons and astrocytes as well as endothelial cells. Maintenance of full GPx and TrxR activity by adequate dietary selenium supply has been proposed to be useful for the prevention of several cardiovascular and neurological disorders. On the other hand, selenium supplementation at supranutritional levels has been utilised for cancer prevention: antioxidant selenoenzymes as well as prooxidant effects of selenocompounds on tumor cells are thought to be involved in the anti-carcinogenic action of selenium.  相似文献   

3.
An analysis of cancer prevention by selenium   总被引:14,自引:0,他引:14  
The nutritional functions of selenium (Se) are recognized as being due to a number of Se-containing proteins. It is not clear, however, whether any of these function in the anti-tumorigenic effects of Se most of which have been demonstrated for Se exposures greater than those required for selenoprotein expression. Indeed, other anti-tumorigenic mechanisms have been demonstrated for certain Se-metabolites. The Nutritional Prevention of Cancer Trial found supplemental Se (200 microg/day, as Se-enriched yeast) to be associated with significant reductions in cancer risks in subjects with pre-treatment plasma Se concentrations below ca. 120 ng/ml (1.5 nmoles/ml), which level would appear to require food-Se intakes of ca. 1.5 microg/kg body weight/day. However, the putative anti-carcinogenic Se-metabolite(s) should be more relevant than total plasma Se as a supplementation target for cancer prevention. These may be components of the non-protein-bound fraction of Se in plasma, which constitutes 2-4% of total plasma Se.  相似文献   

4.
Although arsenic toxicity is well known, little is known of how it exerts its effects at the proteome level. Protein phosphorylation is an important post-translational modification in the regulation of cell signaling. Despite the importance of protein phosphorylation, the identification and characterization of phosphorylated proteins, as influenced by interaction between arsenic and selenium species have not been fully studied. The aim of this study is to identify phosphorylation in arsenic toxified cells, with and without selenium present. Here, we identify the phosphorylated proteins related to post translational modifications (PTMs) after inorganic arsenic (iAs) and selenomethionine (SeMet) were inoculated together with HEK293 human kidney cells. In this study, using TiO(2)-based nanoLC-phosphochip? coupled to ESI-MS we observed phosphorylated peptide enrichment and significant reduction in sample complexity. The identification of phosphorylated proteins in highly complex digests of cell lysate were markedly different with As toxification only, or when in the presence of SeMet. Several phosphorylation sites and proteins are identified using Spectrum Mill and Mascot protein data base search engines. Cytotoxicity studies showed that SeMet significantly reduces the cytotoxic effect of iAs in HEK293 cells, while inorganic selenium did not.  相似文献   

5.
Several authors have demonstrated the chemoprotective and anti-carcinogenic role of selenium. However, the therapeutic potential of selenium in myelodysplastic syndrome (MDS) as single agent and as co-adjuvant of the current therapies has not been previously studied. Sodium selenite and selenomethionine, alone and in combination with cytarabine, induce a decrease in cell viability in a time-, dose- and administration-dependent manner inducing cell death by apoptosis in F36P cells (MDS cell line). These compounds increased superoxide production and induced mitochondrial membrane depolarization. The increase in BAX/BCL-2 ratio and in the activated caspase 3 expression levels, the decrease in mitochondria membrane potential, as well as the increase in superoxide production, supports the mitochondria contribution on selenium-induced apoptosis. These findings suggest that selenium may offer a new therapeutic approach in myelodysplastic syndrome in monotherapy and/or as co-adjuvant therapy to conventional anti-carcinogenic.  相似文献   

6.
Abstract: Microbial formation and transformation of organometallic and organometalloid compounds comprise significant components of biogeochemical cycles for the metals mercury, lead and tin and the metalloids arsenic, selenium, tellurium and germanium. Methylated derivatives of such elements can arise as a result of chemical and biological mechanisms and this frequently results in altered volatility, solubility, toxicity and mobility. The major microbial methylating agents are methylcobalamin (CH3CoB12), involved in the methylation of mercury, tin and lead, and S -adenosylmethionine (SAM), involved in the methylation of arsenic and selenium. Evidence for the methylation of other toxic metal(loid)s is sparse. Biomethylation may result in metal(loid) detoxification since methylated derivatives may be excreted readily from cells, are often volatile and may be less toxic, e.g. organoarsenicals. However, for mercury, low yields of methylated derivatives and the existence of more efficient resistance mechanisms, e.g. reduction of Hg2+ to Hg0, suggest a lower significance in detoxification. Bioalkylation has only been characterised in detail for arsenic. Microorganisms can accumulate organometal(loid)s, a phenomenon relevant to toxicant transfer to higher organisms. As well as bioaccumulation, many microorganisms are capable of the degradation and detoxification of organometal(loid) compounds by, e.g. demethylation and dealkylation. Several organometal(loid) transformations have potential for environmental bioremediation.  相似文献   

7.
Selenium is an essential mineral element with important biological functions for the whole body through incorporation into selenoproteins. This element is highly concentrated in the thyroid gland. Selenoproteins provide antioxidant protection for this tissue against the oxidative stress caused by free radicals and contribute, via iodothyronine deiodinases, to the metabolism of thyroid hormones. It is known that oxidative stress plays a major role in carcinogenesis and that in recent decades there has been an increase in the incidence of thyroid cancer. The anti-carcinogenic action of selenium, although not fully understood, is mainly attributable to selenoproteins antioxidant properties, and to the ability to modulate cell proliferation (cell cycle and apoptosis), energy metabolism, and cellular immune response, significantly altered during tumorigenesis. Researchers have suggested that different forms of selenium supplementation may be beneficial in the prevention and treatment of thyroid cancer; however, the studies have several methodological limitations. This review is a summary of the current knowledge on how selenium and selenoproteins related to thyroid cancer.  相似文献   

8.
Interaction between some common genotoxic agents   总被引:4,自引:0,他引:4  
The clastogenic effects of arsenic, lead and sulphur dioxide and the protective effect of selenium were studied in short-term lymphocyte cultures. The three agents selected are the major toxic substances in emissions from copper smelters. Cells from non-smoking, healthy individuals were exposed to individual agents and combinations of the four agents (sodium arsenite, lead acetate, sodium sulphite and sodium selenite) and the cells were analysed for chromosome aberrations and sister chromatide exchanges. Selenium showed an antagonistic (protective) effect against the other agents. No synergistic effects were found, and the interactions between arsenic, lead and sulphur dioxide were mainly antagonistic. These rather unexpected findings indicate that mixed exposure from copper smelters, and other mixed exposures where arsenic, lead and sulphur dioxide are involved, may cause less genetic damage than expected and that an adequate dietary supplement of selenium may reduce the genotoxic effects of these agents.  相似文献   

9.
Metalloids represent a wide range of elements with intermediate physiochemical properties between metals and non-metals. Many of the metalloids, like boron, selenium, and silicon are known to be essential or quasi-essential for plant growth. In contrast, metalloids viz. arsenic and germanium are toxic to plant growth. The toxicity of metalloids largely depends on their concentration within the living cells. Some elements, at low concentration, may be beneficial for plant growth and development; however, when present at high concentration, they often exert negative effects. In this regard, understanding the molecular mechanisms involved in the uptake of metalloids by roots, their subsequent transport to different tissues and inter/intra-cellular redistribution has great importance. The mechanisms of metalloids' uptake have been well studied in plants. Also, various transporters, as well as membrane channels involved in these processes, have been identified. In this review, we have discussed in detail the aspects concerning the positive/negative effects of different metalloids on plants. We have also provided a thorough account of the uptake, transport, and accumulation, along with the molecular mechanisms underlying the response of plants to these metalloids. Additionally, we have brought up the previous theories and debates about the role and effects of metalloids in plants with insightful discussions based on the current knowledge.  相似文献   

10.
Arsenic-binding proteins are under continuous research. Their identification and the elucidation of arsenic/protein interaction mechanisms are important because the biological effects of these complexes may be related not only to arsenic but also to the arsenic/protein structure. Although many proteins bearing a CXXC motif have been found to bind arsenic in vivo, new tools are necessary to identify new arsenic targets and allow research on protein/arsenic complexes. In this work, we analyzed the performance of the fluorescent compound APAO-FITC (synthesized from p-aminophenylarsenoxide, APAO, and fluorescein isothiocyanate, FITC) in arsenic/protein binding assays using thioredoxin 1 (Trx) as an arsenic-binding protein model. The Trx-APAO-FITC complex was studied through different spectroscopic techniques involving UV?CVis, fluorescence, atomic absorption, infrared and circular dichroism. Our results show that APAO-FITC binds efficiently and specifically to the Trx binding site, labeling the protein fluorescently, without altering its structure and activity. In summary, we were able to study a protein/arsenic complex model, using APAO-FITC as a labeling probe. The use of APAO-FITC in the identification of different protein and cell targets, as well as in in vivo biodistribution studies, conformational studies of arsenic-binding proteins, and studies for the design of drug delivery systems for arsenic anti-cancer therapies, is highly promising.  相似文献   

11.
Bioremediation is gaining a lot of importance in recent times as an alternate technology for removal of elemental pollutants in soil and water, which require effective methods of decontamination. Phytoremediation--the use of green plants to remove, contain or render harmless environmental pollutants--may offer an effective, environmentally nondestructive and cheap remediation method. The use of genetic engineering to modify plants for metal uptake, transport and sequestration may open up new avenues for enhancing efficiency of phytoremediation. Metal chelator, metal transporter, metallothionein (MT), and phytochelatin (PC) genes have been transferred to plants for improved metal uptake and sequestration. Transgenic plants, which detoxify/accumulate cadmium, lead, mercury, arsenic and selenium have been developed. A better understanding of the mechanisms of rhizosphere interaction, uptake, transport and sequestration of metals in hyperaccumulator plants will lead to designing novel transgenic plants with improved remediation traits. As more genes related to metal metabolism are discovered, facilitated by the genome sequencing projects, new vistas will be opened up for development of efficient transgenic plants for phytoremediation.  相似文献   

12.
Microbial transformation of elements: the case of arsenic and selenium   总被引:3,自引:0,他引:3  
Microbial activity is responsible for the transformation of at least one third of the elements in the periodic table. These transformations are the result of assimilatory, dissimilatory, or detoxification processes and form the cornerstones of many biogeochemical cycles. Arsenic and selenium are two elements whose roles in microbial ecology have only recently been recognized. Known as "essential toxins", they are required in trace amounts for growth and metabolism but are toxic at elevated concentrations. Arsenic is used as an osmolite in some marine organisms while selenium is required as selenocysteine (i.e. the twenty-first amino acid) or as a ligand to metal in some enzymes (e.g. FeNiSe hydrogenase). Arsenic resistance involves a small-molecular-weight arsenate reductase (ArsC). The use of arsenic and selenium oxyanions for energy is widespread in prokaryotes with representative organisms from the Crenarchaeota, thermophilic bacteria, low and high G+C gram-positive bacteria, and Proteobacteria. Recent studies have shown that both elements are actively cycled and play a significant role in carbon mineralization in certain environments. The occurrence of multiple mechanisms involving different enzymes for arsenic and selenium transformation indicates several different evolutionary pathways (e.g. convergence and lateral gene transfer) and underscores the environmental significance and selective impact in microbial evolution of these two elements. Electronic Publication  相似文献   

13.
Arsenic contamination has increased due to several environmental and anthropogenic activities. It is considered a carcinogen by the International Agency for Research on Cancer. It affects human health and causes various ailments and nervous system disorders. An environmental concern arises as arsenic enters the food chain through consumption of crops grown in arsenic affected areas. It has been observed that uptake of arsenic in plant parts is affected by the concentration of nutrients. Addition of nutrients either enhances the uptake of arsenic or the uptake of arsenic is reduced. Arsenic influences the nutrient uptake and distribution of nutrients in plants by either competing directly with nutrients and/or altering metabolic processes. The role played by nutrients has a direct bearing on the arsenic remediation of the crops and hence, it will be of significance to crop growers in reducing the arsenic content in crops. This review reports about the mobility, bioavailability and plant response to the presence of nutrients and their effect on arsenic phytoremediation. In this review, major emphasis has been made to contemplate the effects of nutrients like phosphorus, nitrogen, ferrous, calcium, potassium, sulphur and selenium in arsenic phytoremediation.  相似文献   

14.
It is likely that several of the biological effects of selenium are due to its effects on selenoprotein activity. While the effects of the anti-oxidant selenoprotein glutathione peroxidase (GPx) on inhibiting HIV activation have been well documented, it is clear that increased expression of this enzyme can stimulate the replication and subsequent appearance of cytopathic effects associated with an acutely spreading HIV infection. The effects of GPx on both phases of the viral life cycle are likely mediated via its influence on signaling molecules that use reactive oxygen species, and similar influences on signaling pathways may account for some of the anti-cancer effects of selenium. Similarly, selenium can alter mutagenesis rates in both viral genomes and the DNA of mammalian cells exposed to carcinogens. Comparisons between the effects of selenium and selenoproteins on viral infections and carcinogenesis may yield new insights into the mechanisms of action of this element.  相似文献   

15.
Interrelationships of selenium with other trace elements.   总被引:7,自引:0,他引:7  
C H Hill 《Federation proceedings》1975,34(11):2096-2100
Biological interactions between selenium and a number of other elements occur that render selenium much less toxic than when it is present alone. These elements are arsenic, mercury, cadmium, and copper. Furthermore, the presence of selenium reduces the toxicity of mercury and cadmium. These are general biological interactions and have been found to occur in a number of animal species under a variety of conditions. It has been shown that the reaction products of selenium with mercury and cadmium are less toxic than an equal amount of selenium fed alone to chicks. The presence of arsenic shifts the excretion of selenium to the bile. There is no conclusive evidence that the presence of other elements reduces the absorption or retention of selenium. It is possible that some of the interactions are caused by the formation of a compound by selenium and other elements which has less affinity for active groups on biologically active compounds.--Hill, C.H. Interrelationships of selenium with other trace elements.  相似文献   

16.
Arsenic metabolism and thioarsenicals   总被引:1,自引:0,他引:1  
Arsenic has received considerable attention in the world, since it can lead to a multitude of toxic effects and has been recognized as a human carcinogen causing cancers. Here, we focus on the current state of knowledge regarding the proposed mechanisms of arsenic biotransformation, with a little about cellular uptake, toxicity and clinical utilization of arsenicals. Since pentavalent methylated metabolites were found in animal urine after exposure to iAs(III), methylation was considered to be a detoxification process, but the discovery of methylated trivalent intermediates and thioarsenicals in urine has diverted the view and gained much interest regarding arsenic biotransformation. To further investigate the partially understood phenomena relating to arsenic toxicity and the uses of arsenic as a drug, it is important to elucidate the exact pathways involved in metabolism of this metalloid, as the toxicity and the clinical uses of arsenic can be best recognized in context of its biotransformation. Thereby, in this perspective, we have focused on arsenic metabolic pathways including three proposed mechanisms: a classic pathway by Challenger in 1945, followed by a new metabolic pathway proposed by Hayakawa in 2005 involving arsenic-glutathione complexes, while the third is a new reductive methylation pathway that is proposed by our group involving As-protein complexes. According to previous and present in vivo and in vitro experiments, we conclude that the methylation reaction takes place with simultaneous reductive rather than stepwise oxidative methylation. In addition, production of pentavalent methylated arsenic metabolites are suggested to be as the end product of metabolism, rather than intermediates.  相似文献   

17.
As many individuals worlwide are exposed to arsenic, it is necessary to unravel the role of arsenic in the risk of obesity and diabetes. Therefore, the present study reviewed the effects of arsenic exposure on the risk and potential etiologic mechanisms of obesity and diabetes. It has been suggested that inflammation, oxidative stress, and apoptosis contribute to the pathogenesis of arsenic-induced diabetes and obesity. Though arsenic is known to cause diabetes through different mechanisms, the role of adipose tissue in diabetes is still unclear. This review exhibited the effects of arsenic on the metabolism and signaling pathways within adipose tissue (such as sirtuin 3 [SIRT3]- forkhead box O3 [FOXO3a], mitogen-activated protein kinase [MAPK], phosphoinositide-dependant kinase-1 [PDK-1], unfolded protein response, and C/EBP homologous protein [CHOP10]). Different types of adipokines involved in arsenic-induced diabetes are yet to be elucidated. Arsenic exerts negative effects on the white adipose tissue by decreasing adipogenesis and enhancing lipolysis. Some epidemiological studies have shown that arsenic can promote obesity. Nevertheless, few studies have indicated that arsenic may induce lipodystrophy. Arsenic multifactorial effects include accelerating birth and postnatal weight gains, elevated body fat content, glucose intolerance, insulin resistance, and increased serum lipid profile. Arsenic also elevated cord blood and placental, as well as postnatal serum leptin levels. The data from human studies indicate an association between inorganic arsenic exposure and the risk of diabetes and obesity. However, the currently available evidence is insufficient to conclude that low-moderate dose arsenic is associated with diabetes or obesity development. Therefore, more investigations are needed to determine biological mechanisms linking arsenic exposure to obesity and diabetes.  相似文献   

18.
Interaction between selenium and arsenic has been used to protect against the genotoxic effects of sodium arsenite through dietary intervention by an equivalent amount (1/10 LD50) of sodium selenite. The two salts were administered by gavaging to laboratory bred Swiss albino mice sequentially and in combination. Cytogenetic endpoints, including chromosomal aberrations (CA) and damaged cells (DC) were recorded 24 h after exposure from chromosome spreads in bone marrow cells. Administration of sodium selenite 1 h before sodium arsenite reduced the clastogenic effects of the latter significantly. The protection was less when the salts were given together and negative when arsenite was given before selenite. Histological changes were recorded. Such reduction of arsenic toxicity through dietary intervention by selenium is of significance in protecting against the widespread toxicity observed in human populations exposed to arsenic through drinking water from contaminated deep tubewells in West Bengal and Bangladesh.  相似文献   

19.
Role of arsenic and its resistance in nature   总被引:1,自引:0,他引:1  
  相似文献   

20.
Selenium   总被引:2,自引:0,他引:2  
Selenium is increasingly recognized as a versatile anticarcinogenic agent. Its protective functions cannot be solely attributed to the action of glutathione peroxidase. Instead, selenium appears to operate by several mechanisms, depending on dosage and chemical form of selenium and the nature of the carcinogenic stress. In a major protective function, selenium is proposed to prevent the malignant transformation of cells by acting as a “redox switch” in the activation-inactivation of cellular growth factors and other functional proteins through the catalysis of oxidation-reduction reactions of critical SH groups or SS bonds. The growth-modulatory effects of selenium are dependent on the levels of intracellular GSH and the oxygen supply. In general, growth inhibition is achieved by the Se-mediated stimulation of cellular respiration. Selenium appears to inhibit the replication of tumor viruses and the activation of oncogenes by similar mechanisms. However, it may also alter carcinogen metabolism and protect DNA against carcinogen-induced damage. In additional functions of relevance to its anticarcinogenic activity, selenium acts as an acceptor of biogenic methyl groups, and is involved in the detoxification of metals and of certain xenobiotics. In its interactions with transformed cells at higher concentrations, it may induce effects ranging from metabolic and phenotypical changes, and partial renormalization to selective cytotoxicity owing to reversible or irreversible inhibition of protein and DNA synthesis. Selenium also has immunopotentiating properties. It is required for optimal macrophage and NK cell function. Its protective effects are influenced by synergistic and antagonistic dietary and environmental factors. The latter include a variety of toxic heavy metals and xenobiotic compounds, but they are also influenced by essential elements, such as zinc. The exposure to antagonistic factors must be minimized for the full expression of its anticarcinogenic potential.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号