首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
M Chance  L Powers  T Poulos  B Chance 《Biochemistry》1986,25(6):1266-1270
X-ray absorption studies of compound ES of cytochrome c peroxidase show a short iron-oxygen distance of 1.67 +/- 0.04 A, an iron-histamine distance of 1.91 +/- 0.03 A, and an iron-pyrrole nitrogen average distance of 2.02 +/- 0.02 A. This is identical within the error with the reported structure of horseradish peroxidase compound I [Chance, B., Powers, L., Ching, Y., Poulos, T., Yamazaki, I., & Paul, K. G. (1984) Arch. Biochem. Biophys. 235, 596-611]. Comparisons of the structures of myoglobin peroxide [Chance, M., Powers, L., Kumar, C., & Chance, B. (1986) Biochemistry (preceding paper in this issue)], compound ES, and the intermediates of horseradish peroxidase reveal the possible mechanisms for the stabilization of the free radical species generated during catalysis. The proximal histidine regulates the structure and function of the pyrrole nitrogens and the heme, allowing for the formation and maintenance of the characteristic intermediates.  相似文献   

2.
A basic heme peroxidase isoenzyme (AKPC) has been purified to homogeneity from artichoke flowers (Cynara scolymus L.). The enzyme was shown to be a monomeric glycoprotein, M(r)=42300+/-1000, (mean+/-S.D.) with an isoelectric point >9. The native enzyme exhibits a typical peroxidase ultraviolet-visible spectrum with a Soret peak at 404 nm (epsilon=137,000+/-3000 M(-1) cm(-1)) and a Reinheitzahl (Rz) value (A(404nm)/A(280nm)) of 3.8+/-0.2. The ultraviolet-visible absorption spectra of compounds I, II and III were typical of class III plant peroxidases but unlike horseradish peroxidase isoenzyme C, compound I was unstable. Resonance Raman and UV-Vis spectra of the ferric form show that between pH 5.0 and 7.0 the protein is mainly 6 coordinate high spin with a water molecule as the sixth ligand. The substrate-specificity of AKPC is characteristic of class III (guaiacol-type) peroxidases with chlorogenic and caffeic acids, that are abundant in artichoke flowers, as particularly good substrates at pH 4.5. Ferric AKPC reacts with hydrogen peroxide to yield compound I with a second-order rate constant (k(+1)) of 7.4 x 10(5) M(-1) s(-1) which is significantly slower than that reported for most other class III peroxidases. The reaction of ferric and ferrous AKPC with nitric oxide showed a potential use of this enzyme for quantitative spectrophotometric determination of NO and as a component of novel NO sensitive electrodes.  相似文献   

3.
Anionic Arabidopsis thaliana peroxidase ATP A2 was expressed in Escherichia coli and used as a model for the 95% identical commercially available horseradish peroxidase HRP A2. The crystal structure of ATP A2 at 1.45 A resolution at 100 K showed a water molecule only 2.1 A from heme iron [Ostergaard, L., et al. (2000) Plant Mol. Biol. 44, 231-243], whereas spectroscopic studies of HRP A2 in solution at room temperature [Feis, A., et al. (1998) J. Raman Spectrosc. 29, 933-938] showed five-coordinated heme iron, which is common in peroxidases. Presented here, the X-ray crystallographic, single-crystal, and solution resonance Raman studies at room temperature confirmed that the sixth coordination position of heme iron of ATP A2 is essentially vacant. Furthermore, electronic absorption and resonance Raman spectroscopy showed that the heme environments of recombinant ATP A2 and glycosylated plant HRP A2 are indistinguishable at neutral and alkaline pH, from room temperature to 12 K, and are highly flexible compared with other plant peroxidases. Ostergaard et al. (2000) also demonstrated that ATP A2 expression and lignin formation coincide in Arabidopsis tissues, and docking of lignin precursors into the substrate binding site of ATP A2 predicted that coniferyl and p-coumaryl alcohols were good substrates. In contrast, the additional methoxy group of the sinapyl moiety gave rise to steric hindrance, not only in A2 type peroxidases but also in all peroxidases. We confirm these predictions for ATP A2, HRP A2, and HRP C. The specific activity of ATP A2 was lower than that of HRP A2 (pH 4-8), although a steady-state study at pH 5 demonstrated very little difference in their rate constants for reaction with H2O2 (k1 = 1.0 microM(-1) x s(-1). The oxidation of coniferyl alcohol, ferulic, p-coumaric, and sinapic acids by HRP A2, and ATP A2, however, gave modest but significantly different k3 rate constants of 8.7 +/- 0.3, 4.0 +/- 0.2, 0.70 +/- 0.03, and 0.04 +/- 0.2 microM(-1) x s(-1) for HRP A2, respectively, and 4.6 +/- 0.2, 2.3 +/- 0.1, 0.25 +/- 0.01, and 0.01 +/- 0.004 microM(-1) x s(-1) for ATP A2, respectively. The structural origin of the differential reactivity is discussed in relation to glycosylation and amino acid substitutions. The results are of general importance to the use of homologous models and structure determination at low temperatures.  相似文献   

4.
Carp Hb undergoes a well known change in kinetics over the pH range 6-9. X-ray absorption spectroscopy, in conjunction with refined data analysis procedures, shows no difference in iron-ligand distances when carp HbCO is switched from R (high affinity) to T (low affinity) states. These distances are 2.015 +/- 0.015 A for the average iron-pyrrole nitrogen distance, 2.14 +/- 0.04 A for the iron-nitrogen (of histidine) distance, and 1.89 +/- 0.05 A for the Fe-C (of CO) distance. Examination of the region from 30 to 100 eV above the threshold, called the ligand field indicator region, reveals spectral differences, which when compared to model compounds suggest that the iron and the heme are less coplanar in the T-like forms. These results are consistent with the iron being 0.1 A more out of the mean heme plane in both carp HbCO and carp Hb T states, relative to the R forms, and that the change in iron position on ligation to either T or R state is four times larger than that occurring with the quaternary switch.  相似文献   

5.
With the exception of catalase-peroxidases, heme peroxidases show no significant ability to oxidize hydrogen peroxide and are trapped and inactivated in the compound III form by H2O2 in the absence of one-electron donors. Interestingly, some KatG variants, which lost the catalatic activity, form compound III easily. Here, we compared the kinetics of interconversion of ferrous enzymes, compound II and compound III of wild-type Synechocystis KatG, the variant Y249F, and horseradish peroxidase (HRP). It is shown that dioxygen binding to ferrous KatG and Y249F is reversible and monophasic with apparent bimolecular rate constants of (1.2 +/- 0.3) x 10(5) M(-1) s(-1) and (1.6 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C), similar to HRP. The dissociation constants (KD) of the ferrous-dioxygen were calculated to be 84 microm (wild-type KatG) and 129 microm (Y249F), higher than that in HRP (1.9 microm). Ferrous Y249F and HRP can also heterolytically cleave hydrogen peroxide, forming water and an oxoferryl-type compound II at similar rates ((2.4 +/- 0.3) x 10(5) M(-1) s(-1) and (1.1 +/- 0.2) x 10(5) M(-1) s(-1) (pH 7, 25 degrees C)). Significant differences were observed in the H2O2-mediated conversion of compound II to compound III as well as in the spectral features of compound II. When compared with HRP and other heme peroxidases, in Y249F, this reaction is significantly faster ((1.2 +/- 0.2) x 10(4) M(-1) s(-1))). Ferrous wild-type KatG was also rapidly converted by hydrogen peroxide in a two-phasic reaction via compound II to compound III (approximately 2.0 x 10(5) M(-1) s(-1)), the latter being also efficiently transformed to ferric KatG. These findings are discussed with respect to a proposed mechanism for the catalatic activity.  相似文献   

6.
Elementary steps or geminate states in the reaction of gaseous ligands with transport proteins delineate the trajectory of the ligand and its rebinding to the heme. By use of kinetic studies of the 765-nm optical "conformation" band, three geminate states were identified for temperatures less than approximately 100 K. MbCO, which is accumulated by photolysis between 1.2 and approximately 10 K, was characterized by our previous optical and X-ray absorption studies [Chance, B., Fischetti, R., & Powers, L. (1983) Biochemistry 22, 3820-3829]. Between 10 and approximately 100 K, geminate states that are also identified that have recombination rates of approximately 10(3) s-1 and approximately 10(-5) s-1 (40 K). Thus, it is possible to maintain a steady-state nearly homogeneous population of the slowest recombining geminate state, Mb, by regulated continuous illumination (optical pumping). Both X-ray absorption and resonance Raman studies under similar conditions of optical pumping show that the heme structure around the iron in Mb is similar to that of MbCO. In both geminate states, the iron-proximal histidine distance remains unchanged (+/- 0.02 A) from that of MbCO while the iron to pyrrole nitrogen average distance has not fully relaxed to that of the deoxy state. In MbCO the CO remains close to iron but not bound, and the Fe...CO angle, which is bent in MbCO (127 +/- 4 degrees C), is decreased by approximately 15 degrees [Powers, L., Sessler, J. L., Woolery, G. L., & Chance, B. (1984) Biochemistry 23, 5519-5523]. The CO molecule in Mb, however, has moved approximately 0.7 A further from iron. Computer graphics modeling of the crystal structure of MbCO places the CO in a crevice in the heme pocket that is just large enough for the CO molecule end-on. Above approximately 100 K resonance Raman studies show that this structure relaxes to the deoxy state.  相似文献   

7.
The reactions of the fungal enzymes Arthromyces ramosus peroxidase (ARP) and Phanerochaete chrysosporium lignin peroxidase (LiP) with hydrogen peroxide (H(2)O(2)) have been studied. Both enzymes exhibited catalase activity with hyperbolic H(2)O(2) concentration dependence (K(m) approximately 8-10 mm, k(cat) approximately 1-3 s(-1)). The catalase and peroxidase activities of LiP were inhibited within 10 min and those of ARP in 1 h. The inactivation constants were calculated using two independent methods; LiP, k(i) approximately 19 x 10(-3) s(-1); ARP, k(i) approximately 1.6 x 10(-3) s(-1). Compound III (oxyperoxidase) was detected as the majority species after the addition of H(2)O(2) to LiP or ARP, and its formation was accompanied by loss of enzyme activity. A reaction scheme is presented which rationalizes the turnover and inactivation of LiP and ARP with H(2)O(2). A similar model is applicable to horseradish peroxidase. The scheme links catalase and compound III forming catalytic pathways and inactivation at the level of the [compound I.H(2)O(2)] complex. Inactivation does not occur from compound III. All peroxidases studied to date are sensitive to inactivation by H(2)O(2), and it is suggested that the model will be generally applicable to peroxidases of the plant, fungal, and prokaryotic superfamily.  相似文献   

8.
J S Vincent  H Kon  I W Levin 《Biochemistry》1987,26(8):2312-2314
The electron paramagnetic resonance spectrum of the ferricytochrome c complex with cardiolipin was observed at temperatures below 20 K. For the low-spin iron(III) heme system complexed with the negatively charged lipid, the tetragonal and rhombic ligand field parameters (delta/lambda = 3.58, V/lambda = 1.82) differ significantly from those (delta/lambda = 2.53, V/lambda = 1.49) of the free ferricytochrome c sample. The g values of the complex (gx = 1.54 +/- 0.02, gy = 2.26 +/- 0.01, gz = 3.02 +/- 0.01) are compared to the values for free ferricytochrome c (gx = 1.25 +/- 0.02, gy = 2.25 +/- 0.01, gz = 3.04 +/- 0.01). Spectral alterations are interpreted in terms of the ligand field changes induced within the heme group by association with the negatively charged phosphoglyceride.  相似文献   

9.
L Powers  M A Griep 《Biochemistry》1999,38(23):7413-7420
The ligation state of the single zinc site in primase from Escherichia coli changes when various substrates and cofactors are added alone or in combination as determined by X-ray absorption spectroscopy. X-ray absorption spectroscopy (XAS) provides information about the local structure (approximately 5 A) of atoms surrounding the metal and has been widely used to characterize metalloproteins. The zinc site in native primase and in primase bound to low (30 mM) magnesium acetate was found to be tetrahedrally ligated by three sulfurs at an average distance of 2.36 +/- 0.02 A and one histidine nitrogen located at a distance of 2.15 +/- 0.03 A. When ATP, ATP and (dT)17, or ATP, low magnesium acetate and (dT)17 was added to primase, one (or two) additional nitrogen/oxygen ligands were coordinated to the zinc together with the histidine nitrogen at an average distance of 2.15 +/- 0.03 A. These additional ligands are likely from adjacent phosphates from ATP. Another structure was observed for the primase-(dT)17 complex in which an additional nitrogen/oxygen ligand likely from the phosphate backbone together with the histidine nitrogen was located at a significantly shorter average distance of 2.05 +/- 0.03 A. High magnesium acetate (300 mM) completely inactivates primase in a reversible manner such that the region near the zinc ligands becomes accessible to proteolytic digestion [Urlacher, T. M., and Griep, M. A. (1995) Biochemistry 34, 16708-16714]. In this inactive complex, additional oxygen/nitrogen ligands from acetate as well as the histidine nitrogen are located at a distance of 2.20 +/- 0.03 A from the zinc site. To test whether the catalytic magnesium was binding within approximately 5 A of the zinc, we incubated primase with high (300 mM) manganese acetate. The functional properties of magnesium and manganese are similar, but the larger atomic number of manganese enhances the X-ray backscattering, making it possible to identify. Since no significant difference was observed from the manganese-incubated sample, the catalytic metal-binding site is likely located >5 A from the zinc. These studies clearly show that primase zinc ligation changes upon binding substrates.  相似文献   

10.
Cyanide ion has been utilized to probe the heme environment of the ferric states of horseradish peroxidase, lactoperoxidase and chloroperoxidase. The 15N-NMR signal for cyanide bound to these enzymes is located in the downfield region from 578 to 412 ppm (with respect to the nitrate ion reference). The corresponding signal for met-forms of hemoglobin, myoglobin and cytochrome c is much further downfield in the 1047-847 ppm region. The signal position for peroxidases is quite invariant with pH in the physiological ranges. The upfield bias for peroxidase chemical shifts must reflect unique trans iron(III) ligand types and/or proximal-group hydrogen bonding or steric effects. Model compound studies reveal a significant upfield cyanide 15N shift with addition of agents capable of hydrogen-bonding to the coordinated cyanide ion. An even more striking upfield shift of 277 ppm is associated with deprotonation of a trans imidazole residue. The distinctive chemical shifts observed for the cyano ligand in peroxidases support the hypothesis that a distal hydrogen-bonding network and perhaps a polar, basic trans ligand are essential for O-O bond activation by peroxidases.  相似文献   

11.
A basic heme peroxidase has been isolated from cucumber (Cucumis sativus) peelings and characterized through electronic and (1)H NMR spectra from pH 3 to 11. The protein, as isolated, contains a high-spin ferriheme which in the low pH region is sensitive to two acid-base equilibria with apparent pK(a) values of approximately 5 and 3.6, assigned to the distal histidine and to a heme propionate, respectively. At high pH, a new low-spin species develops with an apparent pK(a) of 11, likely due to the binding of an hydroxide ion to the sixth (axial) coordination position of the Fe(III). A number of acid-base equilibria involving heme propionates and residues in the distal cavity also affect the binding of inorganic anions such as cyanide, azide, and fluoride to the ferriheme, as well as the catalytic activity. The reduction potentials of the native protein and of its cyanide derivative, determined through UV-Vis spectroelectrochemistry, result to be -0.320+/-0.015 and -0.412+/-0.010V, respectively. Overall, the reactivity of this protein parallels those of other plant peroxidases, especially horseradish peroxidase. However, some differences exist in the acid-base equilibria affecting its reactivity and in the reduction potential, likely as a result of small structural differences in the heme distal and proximal cavities.  相似文献   

12.
The present study characterizes the serial reactions of H2O2 with compounds I and II of lignin peroxidase isozyme H1. These two reactions constitute part of the pathway leading to formation of the oxy complex (compound III) from the ferric enzyme. Compounds II and III are the only complexes observed; no compound III* is observed. Compound III* is proposed to be an adduct of compound III with H2O2, formed from the complexation of compound III with H2O2 (Wariishi, H., and Gold, M. H. (1990) J. Biol. Chem. 265, 2070-2077). We provide evidence that demonstrates that the spectral data, on which the formation of compound III* is based, are merely an artifact caused by enzyme instability and, therefore, rule out the existence of compound III*. The reactions of compounds II and III with H2O2 are pH-dependent, similar to that observed for reactions of compounds I and II with the reducing substrate veratryl alcohol. The spontaneous decay of the compound III of lignin peroxidase results in the reduction of ferric cytochrome c. The reduction is inhibited by superoxide dismutase, indicating that superoxide is released during the decay. Therefore, the lignin peroxidase compound III decays to the ferric enzyme through the dissociation of superoxide. This mechanism is identical with that observed with oxymyoglobin and oxyhemoglobin but different from that for horseradish peroxidase. Compound III is capable of reacting with small molecules, such as tetranitromethane (a superoxide scavenger) and fluoride (a ligand for the ferric enzyme), resulting in ferric enzyme and fluoride complex formation, respectively.  相似文献   

13.
The structures of the enzyme-substrate compounds of peroxidases and catalase determined by X-ray absorption spectroscopy are presented. The valence state of the iron in Compounds I and II is determined from the edge to be higher than Fe+3. A short Fe-Ne (proximal histidine) distance is observed in all forms except Compound II, forcing the Fe-Np average distance to be long, a result which differentiates the peroxidases from the oxygen transport hemoproteins and plays a pivotal role in the mechanism. A correlation is shown between the ratio of peaks in the low k (ligand field indicator ratio) region, the Fe-Np (heme pyrrole nitrogen) average distance, and the magnetic susceptibility, which provides a sensitive indicator of spin state. The mechanism of H2O2 reduction is shown by analysis of the structural changes observed in the intermediates. Possible relationship of these compounds to that of the peroxidatic form of cytochrome oxidase is suggested by these results.  相似文献   

14.
X-ray edge absorption of copper and extended fine structure studies of both copper and iron centers have been made of cytochrome oxidase from beef heart, Paracoccus dentrificans, and HB-8 thermophilic bacteria (1-2.5 mM in heme). The desired redox state (fully oxidized, reduced CO, mixed valence formate and CO) in the x-ray beam was controlled by low temperature (-140 degrees C) and was continuously monitored by simultaneous optical spectroscopy and by electron paramagnetic resonance (EPR) monitoring every 30 min of x-ray exposure. The structure of the active site, a cytochrome a3-copper pair in fully oxidized and in mixed valence formate states where they are spin coupled, contains a sulphur bridge with three ligands 2.60 +/- 0.03 A from Fea3 and 2.18 +/- 0.03 A from Cua3. The distance between Fea3 and Cua3 is 3.75 +/- 0.05 A, making the sulphur bond angle 103 degrees reasonable for sp3 sulphur bonding. The Fea3 first shell has four typical heme nitrogens (2.01 +/- 0.03 A) with a proximal nitrogen at 2.14 +/- 0.03 A. The sixth ligand is the bridging sulphur. The Cua3 first shell is identical to oxidized stellacyanin containing two nitrogens and a bridging sulphur. Upon reduction with CO, the active site is identical to reduced stellacyanin for the Cua3 first shell and contains the sulphur that forms the bridge in fully oxidized and mixed valence formate states. The Fea3 first shell is identical to oxyhemoglobin but has CO instead of O2. The other redox centers, Fea and the other "EPR detectable" Cu are not observed in higher shells of Fea3. Fea has six equidistant nitrogens and Cua has one (or two) nitrogens and three (or two) sulphurs with typical distances; these ligands change only slight on reduction. These structures afford the basis for an oxygen reduction mechanism involving oxy- and peroxy intermediates.  相似文献   

15.
On the basis of amino acid sequences and crystal structures of similar enzymes, it is proposed that Met95 of the heme-regulated phosphodiesterase from Escherichia coli (Ec DOS) acts as a heme axial ligand. In accordance with this proposal, the Soret and visible optical absorption and magnetic circular dichroism spectra of the Fe(II) complexes of the Met95Ala and Met95Leu mutant proteins indicate that these complexes are five-coordinated high-spin, suggesting that Met95 is an axial ligand for the Fe(II) complex. However, the Fe(III) complexes of these mutants are six-coordinated low-spin, like the wild-type enzyme. The latter spectral findings are inconsistent with the proposal that the axial ligand to the Fe(III) heme is Met95. To determine the possibility of a redox-dependent ligand switch in Ec DOS, we further analyzed Soret CD spectra and redox potentials, which provide direct evidence on the environmental structure of the heme protein. CD spectra of Fe(III) Met95 mutants were all different from those of the wild-type protein, suggesting indirect coordination of Met95 to the Fe(III) wild-type heme. The redox potentials of the Met95Leu, Met95Ala and Met95His mutants were considerably lower than that of the wild-type enzyme (+70 mV) at -1, -26, and -122 mV vs. SHE, respectively. Thus, it is reasonable to speculate that water (or hydroxy anion) interacting with Met95, rather than Met95 itself, is the axial ligand to the Fe(III) heme.  相似文献   

16.
Myeloperoxidase is very susceptible to reducing radicals because the reduction potential of the ferric/ferrous redox couple is much higher compared with other peroxidases. Semiquinone radicals are known to reduce heme proteins. Therefore, the kinetics and spectra of the reactions of p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone with compounds I and II were investigated using both sequential-mixing stopped-flow techniques and conventional spectrophotometric measurements. At pH 7 and 15 degrees C the rate constants for compound I reacting with p-hydroquinone, 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone were determined to be 5.6+/-0.4 x 10(7) M(-1)s(-1), 1.3+/-0.1 x 10(6) M(-1)s(-1) and 3.1+/-0.3 x 10(6) M(-1)s(-1), respectively. The corresponding reaction rates for compound II reduction were calculated to be 4.5+/-0.3 x 10(6) M(-1)s(-1), 1.9+/-0.1 x 10(5) M(-1)s(-1) and 4.5+/-0.2 x 10(4) M(-1)s(-1), respectively. Semiquinone radicals, produced by compounds I and II in the classical peroxidation cycle, promote compound III (oxymyeloperoxidase) formation. We could monitor formation of ferrous myeloperoxidase as well as its direct transition to compound II by addition of molecular oxygen. Formation of ferrous myeloperoxidase is shown to depend strongly on the reduction potential of the corresponding redox couple benzoquinone/semiquinone. With 2,3-dimethylhydroquinone and 2,3,5-trimethylhydroquinone as substrate, myeloperoxidase is extremely quickly trapped as compound III. These MPO-typical features could have potential in designing specific drugs which inhibit the production of hypochlorous acid and consequently attenuate inflammatory tissue damage.  相似文献   

17.
Plant class III heme peroxidases catalyze lignin polymerization. Previous reports have shown that at least three Arabidopsis thaliana peroxidases, At Prx2, At Prx25 and At Prx71,are involved in stem lignification using T-DNA insertion mutants,atprx2, atprx25, and atprx71. Here, we generated three double mutants, atprx2/atprx25, atprx2/atprx71, and atprx25/atprx71,and investigated the impact of the simultaneous de ficiency of these peroxidases on lignins and plant growth. Stem tissue analysis using the acetyl bromide method and derivatization followed by reductive cleavage revealed improved lignin characteristics, such as lowered lignin content and increased arylglycerolb-aryl(b-O-4) linkage type, especially b-O-4 linked syringyl units, in lignin, supporting the roles of these genes in lignin polymerization. In addition, none of the double mutants oexhibited severe growth defects, such as shorter plant stature, dwar fing, or sterility, and their stems had improved cell wall degradability. This study will contribute to progress in lignin bioengineering to improve lignocellulosic biomass.  相似文献   

18.
In heme peroxidases, a distal His residue plays an essential role in the initial two electron oxidation of resting state enzyme to compound I by hydrogen peroxide. A distal Arg residue assists in this process. The contributions of the charge, H-bonding capacity, size, and mobility of this Arg residue to Coprinus cinereus peroxidase (CIP) reactivity and stability have been examined by substituting Arg51 with Gln (retains H-bond donor at N epsilon position), Asn (small size, H-bond donor and acceptor), Leu (similar to Asn, but hydrophobic), and Lys (charge and H-bond donor, but at N zeta position). UV-visible spectroscopy was used to monitor pH-linked heme changes, compound I formation and reduction, fluoride binding, and thermostability. (1)H NMR spectroscopy enabled heme pocket differences in both resting and cyanide-ligated states of the enzymes to be evaluated and compared with wild-type CIP. We found that the H-bonding capacity of distal Arg is key to fast compound I formation and ligand binding to heme, whereas charge is important for lowering the pK(a) of distal His and for the binding and stabilisation of anionic ligands at heme iron. The properties of the distal Arg residue in CIP, cytochrome c peroxidase (CCP) and horseradish peroxidase (HRP) differ significantly in their pH induced transitions and dynamics.  相似文献   

19.
Resonance Raman (RR) spectra of several compounds III of lignin peroxidase (LiP) have been measured at 90 K with Soret and visible excitation wavelengths. The samples include LiPIIIa (or oxyLiP) prepared by oxygenation of the ferrous enzyme, LiPIIIb generated by reaction of the native ferric enzyme with superoxide, LiPIIIc prepared from native LiP plus H2O2 followed by removal of excess peroxide with catalase, and LiPIII* made by addition of excess H2O2 to the native enzyme. The RR spectra of these four products appear to be similar and, thus, indicate that the environments of these hexacoordinate, low-spin ferriheme species must also be very similar. Nonetheless, the Soret absorption band of LiPIII* is red-shifted by 5 nm from the 414-nm maximum common to LiPIIIa, -b, and -c [Wariishi, H., & Gold, M.H. (1990) J. Biol. Chem. 265, 2070-2077]. Analysis of the iron-porphyrin vibrational frequencies indicates that the electronic structures for the various compounds III are consistent with an FeIIIO2.-formulation. The spectral changes observed between the oxygenated complex and the ferrous heme of lignin peroxidase are similar to those between oxymyoglobin and deoxymyoglobin. The contraction in the core sizes in compound III relative to the native peroxidase is analyzed and compared with that of other heme systems. EPR spectra confirm that the high-spin ferric form of the native enzyme, with an apparent g = 5.83, is converted into the EPR-silent LiPIII* upon addition of excess H2O2. Its magnetic behavior may be explained by anti-ferromagnetic coupling between the low-spin FeIII and the superoxide ligand.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
Manganese peroxidase (MnP) is a component of the lignin degradation system of the basidiomycetous fungus, Phanerochaete chrysosporium. This novel MnII-dependent extracellular enzyme (Mr = 46,000) contains a single protoporphyrin IX prosthetic group and oxidizes phenolic lignin model compounds as well as a variety of other substrates. To elucidate the heme environment of this enzyme, we have studied its electron paramagnetic resonance and resonance Raman spectroscopic properties. These studies indicate that the native enzyme is predominantly in the high-spin ferric form and has a histidine as fifth ligand. The reduced enzyme has a high-spin, pentacoordinate ferrous heme. Fluoride and cyanide readily bind to the sixth coordination position of the heme iron in the native form, thereby changing MnP into a typical high-spin, hexacoordinate fluoro adduct or a low-spin, hexacoordinate cyano adduct, respectively. EPR spectra of 14NO- and 15NO-adducts of ferrous MnP were compared with those of horseradish peroxidase (HRP); the presence of a proximal histidine ligand was confirmed from the pattern of superhyperfine splittings of the NO signals centered at g approximately equal to 2.005. The appearance of the FeII-His stretch at approximately 240 cm-1 and its apparent lack of deuterium sensitivity suggest that the N delta proton of the proximal histidine of the enzyme is more strongly hydrogen bonded than that of oxygen carrier globins and that this imidazole ligand may be described as having a comparatively strong anionic character. Although resonance Raman frequencies for the spin- and coordination-state marker bands of native MnP, nu 3 (1487), nu 19 (1565), and nu 10 (1622 cm-1), do not fall into frequency regions expected for typical penta- or hexacoordinate high-spin ferric heme complexes, ligation of fluoride produces frequency shifts of these bands very similar to those observed for cytochrome c peroxidase and HRP. Hence, these data strongly suggest that the iron in native MnP is predominantly high-spin pentacoordinate. Analysis of the Raman frequencies indicates that the dx2-y2 orbital of the native enzyme is at higher energy than that of metmyoglobin. These features of the heme in MnP must be favorable for the peroxidase catalytic mechanism involving oxidation of the heme iron to FeIV. Consequently, it is most likely that the heme environment of MnP resembles those of HRP, cytochrome c peroxidase, and lignin peroxidase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号