首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hessle CC  Andersson B  Wold AE 《Cytokine》2005,30(6):311-318
Pro-inflammatory cytokines secreted by tissue macrophages recruit polymorphonuclear leukocytes and evoke fever, cachexia and production of acute phase proteins. This study investigates whether Gram-positive and Gram-negative bacteria equally and efficiently trigger production of the pro-inflammatory cytokines IL-1 beta, IL-6, IL-8 and TNF-alpha in human monocytes. A range of aerobic and anaerobic Gram-positive and Gram-negative bacteria were killed by UV-light and added in different concentrations to human monocytes. Cytokines were measured in 24 h supernatants by ELISA. Gram-positive and Gram-negative bacteria were equally efficient inducers of IL-1 beta, but Gram-positive bacteria generated twice as much TNF-alpha as did Gram-negative bacteria (p<0.001 for 25 and 250 bacteria/cell). In contrast, Gram-negative bacteria induced at least twice as much IL-6 and IL-8 as did Gram-positive bacteria (p<0.001 for 2.5, 25 and 250 bacteria/cell). While the cytokine responses to LPS were similar to those induced by the corresponding amount of Gram-negative bacteria, the strong IL-1 beta and TNF-alpha responses to Gram-positive bacteria could not be induced by soluble peptidoglycan or lipotheicoic acid. The particular nature of the bacteria, thus seem to modify the response to Gram-positive bacterial components. The different cytokine profiles evoked by Gram-positive and Gram-negative bacteria might optimize clearance of bacteria that differ in cell wall structure.  相似文献   

2.
革兰氏阴性细菌由于具有复杂的双层膜结构,其蛋白质分泌能力较差.这使得革兰氏阴性细菌的典型菌株——大肠杆菌作为最常用的受体细胞在生物制药工程和其他生物技术产品生产中受到一定的限制.因此,革兰氏阴性细菌蛋白分泌系统的研究具有重要意义.本文详细地归纳了革兰氏阴性细菌已知的蛋白分泌系统,分别从分泌系统的分泌过程、分泌蛋白类别、...  相似文献   

3.
Peng  Jinxiu  Qiu  Shuai  Jia  Fengjing  Zhang  Lishi  He  Yuhang  Zhang  Fangfang  Sun  Mengmeng  Deng  Yabo  Guo  Yifei  Xu  Zhaoqing  Liang  Xiaolei  Yan  Wenjin  Wang  Kairong 《Amino acids》2021,53(1):23-32

Protonectin was a typical amphiphilic antimicrobial peptide with potent antimicrobial activity against Gram-positive and Gram-negative bacteria. In the present study, when its eleventh amino acid in the sequence was substituted by phenylalanine, the analog named phe-Prt showed potent antimicrobial activity against Gram-positive bacteria, but no antimicrobial activity against Gram-negative bacteria, indicating a significant selectivity between Gram-positive bacteria and Gram-negative bacteria. However, when Gram-negative bacteria were incubated with EDTA, the bacteria were susceptible to phe-Prt. Next, the binding effect of phe-Prt with LPS was determined. Our result showed that LPS could hamper the bactericidal activity of phe-Prt against Gram-positive bacteria. The result of zeta potential assay further confirmed the binding effect of phe-Prt with LPS for it could neutralize the surface charge of E. coli and LPS. Then, the effect of phe-Prt on the integrity of outer membrane of Gram-negative bacteria was determined. Our results showed that phe-Prt had a much weaker disturbance to the outer membrane of Gram-negative bacteria than the parent peptide protonectin. In summary, the introduction of l-phenylalanine into the sequence of antimicrobial peptide protonectin made phe-Prt show significant selectivity against Gram-positive bacteria, which could partly be attributed to the delay effect of LPS for phe-Prt to access to cell membrane. Although further study is still needed to clarify the exact mechanism of selectivity, the present study provided a strategy to develop antimicrobial peptides with selectivity toward Gram-positive and Gram-negative bacteria.

  相似文献   

4.
Secretion, processing and activation of bacterial extracellular proteases   总被引:31,自引:3,他引:31  
Many different bacteria secrete proteases into the culture medium. Extracellular proteases produced by Gram-positive bacteria are secreted by a signal-peptide-dependent pathway and have a propeptide located between the signal peptide and the mature protein. Many extracellular proteases synthesized by Gram-negative bacteria are also produced as precursors with a signal peptide. However, at least two species of Gram-negative bacteria secrete one or more proteases via a novel signal-peptide-independent route. Most proteases secreted by Gram-negative bacteria also have a propeptide whose length and location vary according to the protease. Specific features of protease secretion pathways and the mechanisms of protease activation are discussed with particular reference to some of the best-characterized extracellular proteases produced by Gram-positive and Gram-negative bacteria.  相似文献   

5.
6.
Systemic infections with Gram-negative bacteria are?characterized by high mortality rates due to the "sepsis syndrome," a widespread and uncontrolled inflammatory response. Though it is well recognized that the immune response during Gram-negative bacterial infection is initiated after the recognition of endotoxin by Toll-like receptor 4, the molecular mechanisms underlying the detrimental inflammatory response during Gram-negative bacteremia remain poorly defined. Here, we identify a TRIF pathway that licenses NLRP3 inflammasome activation by all Gram-negative bacteria. By engaging TRIF, Gram-negative bacteria activate caspase-11. TRIF activates caspase-11 via type I IFN signaling, an event that is both necessary and sufficient for caspase-11 induction and autoactivation. Caspase-11 subsequently synergizes with the assembled NLRP3 inflammasome to regulate caspase-1 activation and leads to caspase-1-independent cell death. These events occur specifically during infection with Gram-negative, but not Gram-positive, bacteria. The identification of TRIF as a regulator of caspase-11 underscores the importance of TLRs as master regulators of inflammasomes during Gram-negative bacterial infection.  相似文献   

7.
本实验以普通 Webster 大鼠为动物模型,探讨肠道需氧革兰氏阴性杆菌(Gram ne-gative,G~-杆菌)与门静脉血内毒素的关系。以抗生素联合灌胃使大鼠肠道脱污染,降低肠道定植抗力,再以4种需氧 G~-杆菌混合液灌胃,行肠道再污染,然后再分别测定正常鼠(组),脱污染鼠(组)及再污染鼠(组)不同肠段和粪便需氧 G~-杆菌及相应鼠门静脉血内毒素水平。结果表明,肠道需氧 G~-杆菌的变化与相应门静脉血内毒素水平的变化基本一致.由此可见,上消化道需氧 G~-杆菌过生长,可能会成为门静脉血内毒素水平增加的原因之一。  相似文献   

8.
New Gram-positive and Gram-negative bacteria were isolated from Poeni oily sludge, using enrichment procedures. The six Gram-positive strains belong to Bacillus, Lysinibacillus and Rhodococcus genera. The eight Gram-negative strains belong to Shewanella, Aeromonas, Pseudomonas and Klebsiella genera. Isolated bacterial strains were tolerant to saturated (i.e., n-hexane, n-heptane, n-decane, n-pentadecane, n-hexadecane, cyclohexane), monoaromatic (i.e., benzene, toluene, styrene, xylene isomers, ethylbenzene, propylbenzene) and polyaromatic (i.e., naphthalene, 2-methylnaphthalene, fluorene) hydrocarbons, and also resistant to different antimicrobial agents (i.e., ampicillin, kanamycin, rhodamine 6G, crystal violet, malachite green, sodium dodecyl sulfate). The presence of hydrophilic antibiotics like ampicillin or kanamycin in liquid LB-Mg medium has no effects on Gram-positive and Gram-negative bacteria resistance to toxic compounds. The results indicated that Gram-negative bacteria are less sensitive to toxic compounds than Gram-positive bacteria, except one bacteria belonging to Lysinibacillus genus. There were observed cellular and molecular modifications induced by ampicillin or kanamycin to isolated bacterial strains. Gram-negative bacteria possessed between two and four catabolic genes (alkB, alkM, alkB/alkB1, todC1, xylM, PAH dioxygenase, catechol 2,3-dioxygenase), compared with Gram-positive bacteria (except one bacteria belonging to Bacillus genus) which possessed one catabolic gene (alkB/alkB1). Transporter genes (HAE1, acrAB) were detected only in Gram-negative bacteria.  相似文献   

9.
革兰氏阴性菌在生长繁殖过程中需要从外界摄取营养物质。一些小分子营养物质可以自由地通过革兰氏阴性菌的细胞膜,而一些大分子营养物质的转运需要特异性的TonB复合物依赖性的外膜受体进行转运。TonB复合物由TonB、ExbB、ExbD构成,是革兰氏阴性菌对外界营养物质主动转运过程的能量提供单位,在革兰氏阴性菌分布广泛。近年来,对TonB-ExbB-ExbD复合物的功能、结构及作用机制取得了重大研究进展,然而此复合物在不同的细菌也存在功能及作用机制上的差异。基于此背景,本文综述了TonB复合物的功能和结构研究进展,并分析了TonB复合物在革兰氏阴性菌中的分布、进化,比较了不同革兰氏阴性菌此复合物的差异,有助于进一步发现和揭示TonB复合物的新功能。  相似文献   

10.
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuchsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal viokt-stained organisms with alcoholic safranin (0.25%) for 15 scc will distinguish Gram-positive bacteria (viokt) from Gram-negative bacteria (pink).

Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily dccolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

11.
Y Noda  K T?ei 《Microbios》1992,70(282):49-55
In order to investigate the mechanism of Gram staining of bacteria, tests with anionic dyes followed by treatment with cationic octyltrimethylammonium (OTMA) were carried out. The study revealed that tetrabromophenolphthalein ethylester (TBPE) gave the most reliable staining of Gram-negative bacteria with negative staining of Gram-positive bacteria. Tests on many species of bacteria showed that TBPE positive bacteria were Gram-negative and vice versa, without exception.  相似文献   

12.
E Adams 《Stain technology》1975,50(4):227-231
Gram-negative bacteria stained with crystal violet are decolorized by 95% alcohol within 2 min, whereas Gram-positive bacteria require at least 3 min treatment. Aqueous solutions of safranin, neutral red, and fuschsin replace crystal violet from stained Gram-positive bacteria more quickly than alcohol alone, and alcoholic solutions of these counterstains are in most cases still more effective. Treatment of crystal violet-stained organisms with alcoholic safranin (0.25%) for 15 sec will distinguish Gram-positive bacteria (violet) from Gram-negative bacteria (pink). Alcohol containing very low concentrations of iodine generally decolorizes crystal violet-stained Gram-positive bacteria more quickly than alcohol alone. Increasing concentrations of iodine in alcohol reduce the rate of decolorization of stained bacteria, but stained Gram-negative bacteria are still readily decolorized. The addition of 0.1% iodine to alcohol increases the rate of extraction of crystal violet by alcohol from Gram-negative organisms, but delays extraction of dye from Gram-positive organisms, and this applies when counterstain is also present. A two-solution modification of Gram staining is described in which crystal violet-stained bacteria are treated with an alcoholic solution of safranin, fuchsin, and iodine.  相似文献   

13.
Because of the rise in antibiotic resistance and the dwindling pipeline of effective antibiotics, it is imperative to explore avenues that breathe new life into existing drugs. This is particularly important for intrinsically resistant Gram-negative bacteria, which are exceedingly difficult to treat. The Gram-negative outer membrane (OM) prevents the entry of a plethora of antibiotics that are effective against Gram-positive bacteria, despite the presence of the targets of these drugs. Uncovering molecules that increase the permeability of the OM to sensitize Gram-negative bacteria to otherwise ineffective antibiotics is an approach that has recently garnered increased attention in the field. In this review, we survey chemical matter which has been shown to potentiate antibiotics against Gram-negative bacteria by perturbing the OM. These include peptides, nanoparticles, macromolecules, antibiotic conjugates, and small molecules.  相似文献   

14.
Cadmium uptake by growing cells of gram-positive and gram-negative bacteria   总被引:1,自引:0,他引:1  
The present study evaluates the effect of the cadmium (Cd2+) on the growth and protein synthesis of some Gram-positive (Staphylococcus aureus, Bacillus subtilis and Streptococcus faecium) and Gram-negative (Escherichia coli and Pseudomonas aeruginosa) bacteria and the cadmium uptake by the same micro-organisms. The Gram-negative bacteria tested were less sensitive to metal ions than the Gram-positive, and P. aeruginosa was the most resistant. The Gram-negative bacteria were also able to accumulate higher amounts of cadmium during growth than the Gram-positive bacteria. The maximum values of specific metal uptake (microgram of Cd2+ incorporated per mg of protein) were: 0.52 for S. aureus, 0.65 for S. faecium, 0.79 for B. subtilis, 2.79 for E. coli and 24.15 for P. aeruginosa, respectively. The differences in the ability to accumulate metal found between Gram-negative and Gram-positive bacteria seems to account for different mechanisms of metal resistance.  相似文献   

15.
Mammals have four peptidoglycan recognition proteins (PGRPs or PGLYRPs), which are secreted innate immunity pattern recognition molecules with effector functions. In this study, we demonstrate that human PGLYRP-1, PGLYRP-3, PGLYRP-4, and PGLYRP-3:4 have Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria at physiologic Zn(2+) concentrations found in serum, sweat, saliva, and other body fluids. The requirement for Zn(2+) can only be partially replaced by Ca(2+) for killing of Gram-positive bacteria but not for killing of Gram-negative bacteria. The bactericidal activity of PGLYRPs is salt insensitive and requires N-glycosylation of PGLYRPs. The LD(99) of PGLYRPs for Gram-positive and Gram-negative bacteria is 0.3-1.7 muM, and killing of bacteria by PGLYRPs, in contrast to killing by antibacterial peptides, does not involve permeabilization of cytoplasmic membrane. PGLYRPs and antibacterial peptides (phospholipase A(2), alpha- and beta-defensins, and bactericidal permeability-increasing protein), at subbactericidal concentrations, synergistically kill Gram-positive and Gram-negative bacteria. These results demonstrate that PGLYRPs are a novel class of recognition and effector molecules with broad Zn(2+)-dependent bactericidal activity against both Gram-positive and Gram-negative bacteria that are synergistic with antibacterial peptides.  相似文献   

16.
ObjectiveInfections due to Gram-negative bacteria exhibit seasonal trends, with peak infection rates during warmer months. We hypothesized that the likelihood of a bloodstream infection due to Gram-negative bacteria increases with proximity to the equator. We tested this hypothesis and identified geographical, climatic and social factors associated with this variability.DesignWe established a network of 23 international centers in 22 cities. Setting: De-identified results of positive blood cultures from 2007–2011 and data sources for geographic, climatic and socioeconomic factors were assembled for each center.ParticipantsPatients at the 23 centers with positive blood cultures.ResultsThe mean fraction of bacteremia associated with Gram-negative bacteria was 48.4% (range 26.4% to 61.8%). Although not all sites displayed significant seasonality, the overall P-value for seasonal oscillation was significant (P<0.001). In univariate meta-regression models, temperature, latitude, latitude squared, longitude, per capita gross domestic product and percent of gross domestic product spent on healthcare were all associated with the fraction of bacteremia due to Gram-negative bacteria. In multivariable models, only percent of gross domestic product spent on healthcare and distance from the equator (ie. latitude squared) were significantly associated with the fraction of bacteremia due to Gram-negative bacteria.ConclusionsThe likelihood of bacteremia due to Gram-negative bacteria varies markedly between cities, in a manner that appears to have both geographic (latitude) and socioeconomic (proportion gross domestic product devoted to health spending) determinants. Thus, the optimal approach to initial management of suspected bacteremia may be geographically specific. The rapid emergence of highly antibiotic-resistant Gram-negative pathogens may have geographically specific impacts.  相似文献   

17.
Multidrug resistance mechanisms: drug efflux across two membranes   总被引:25,自引:0,他引:25  
A set of multidrug efflux systems enables Gram-negative bacteria to survive in a hostile environment. This review focuses on the structural features and the mechanism of major efflux pumps of Gram-negative bacteria, which expel from the cells a remarkably broad range of antimicrobial compounds and produce the characteristic intrinsic resistance of these bacteria to antibiotics, detergents, dyes and organic solvents. Each efflux pump consists of three components: the inner membrane transporter, the outer membrane channel and the periplasmic lipoprotein. Similar to the multidrug transporters from eukaryotic cells and Gram-positive bacteria, the inner membrane transporters from Gram-negative bacteria recognize and expel their substrates often from within the phospholipid bilayer. This efflux occurs without drug accumulation in the periplasm, implying that substrates are pumped out across the two membranes directly into the medium. Recent data suggest that the molecular mechanism of the drug extrusion across a two-membrane envelope of Gram-negative bacteria may involve the formation of the membrane adhesion sites between the inner and the outer membranes. The periplasmic components of these pumps are proposed to cause a close membrane apposition as the complexes are assembled for the transport.  相似文献   

18.
Essential aspects of innate immune responses to microbial infections appear to be conserved between insects and mammals. In particular, in both groups, transmembrane receptors of the Toll superfamily play a crucial role in activating immune defenses. The Drosophila Toll family member 18-Wheeler had been proposed to sense Gram-negative infection and direct selective expression of peptides active against Gram-negative bacteria. Here we re-examine the role of 18-Wheeler and show that in adults it is dispensable for immune responses. In larvae, 18wheeler is required for normal fat body development, and in mutant larvae induction of all antimicrobial peptide genes, and not only of those directed against Gram-negative bacteria, is compromised. 18-Wheeler does not qualify as a pattern recognition receptor of Gram-negative bacteria.  相似文献   

19.
Antimicrobial properties of phenolic compounds from berries   总被引:6,自引:0,他引:6  
AIMS: To investigate the antimicrobial properties of phenolic compounds present in Finnish berries against probiotic bacteria and other intestinal bacteria, including pathogenic species. METHODS AND RESULTS: Antimicrobial activity of pure phenolic compounds representing flavonoids and phenolic acids, and eight extracts from common Finnish berries, was measured against selected Gram-positive and Gram-negative bacterial species, including probiotic bacteria and the intestinal pathogen Salmonella. Antimicrobial activity was screened by an agar diffusion method and bacterial growth was measured in liquid culture as a more accurate assay. Myricetin inhibited the growth of all lactic acid bacteria derived from the human gastrointestinal tract flora but it did not affect the Salmonella strain. In general, berry extracts inhibited the growth of Gram-negative but not Gram-positive bacteria. These variations may reflect differences in cell surface structures between Gram-negative and Gram-positive bacteria. Cloudberry, raspberry and strawberry extracts were strong inhibitors of Salmonella. Sea buckthorn berry and blackcurrant showed the least activity against Gram-negative bacteria. CONCLUSION: Different bacterial species exhibit different sensitivities towards phenolics. SIGNIFICANCE AND IMPACT OF THE STUDY: These properties can be utilized in functional food development and in food preservative purposes.  相似文献   

20.
Screening bacteria from different saline environments in Alexandria. Egypt, lead to the isolation of 76 Gram-negative and 14 Gram-positive moderately halophilic bacteria. The isolates were characterized taxonomically for a total of 155 features. These results were analyzed by numerical techniques using simple matching coefficient (SSM) and the clustering was achieved by the unweighed pair-group method of association (UPGMA). At 75% similarity level the Gram-negative bacteria were clustered in 7 phena in addition to one single isolate, whereas 4 phena represented the Gram-positive. Based on phenotypic characteristics, it is suggested that the Gram-negative bacteria belong to the genera Pseudoalteromonas, Flavobacterium, Chromohalobacter, Halomonas and Salegentibacter, in addition to the non-identified single isolate. The Gram-positive bacteria are proposed to belong to the genera Halobacillus, Salinicoccus, Staphylococcus and Tetragenococcus. This study provides the first publication on the biodiversity of moderately halophilic bacteria in saline environments in Alexandria, Egypt.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号