首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Plants of Agropyron spicatum (Pursh) Scribn. and Smith. from populations native to serpentine and nonserpentine soils were grown at varying levels of magnesium and calcium in culture solutions. The yields of plants from the two populations were different. At high Mg levels (low Ca) the yield of the serpentine population was significantly higher than that of the nonserpentine population. At low Mg the yield of the serpentine population leveled off at a Mg: Ca ratio of 1:2, while the yield of the nonserpentine population increased up to a Mg:Ca ratio of 1:8 and showed no leveling off. Chemical analyses of tissue showed that the Ca uptake of plants from the serpentine population was significantly higher than that of the nonserpentine population. In addition, the serpentine population maintained a lower Mg concentration in the shoots than the nonserpentine population at comparable Mg substrate levels. The two populations showed differences in Ca and Mg uptake efficiency and Mg/Ca, Ca + Mg/K + Na, and Ca + Mg + K + Na in the shoots. The ecotypic differentiation with respect to Mg and Ca between native populations of serpentine and nonserpentine A. spicatum does not appear to be due to any single mechanism but, rather, a combination of several possible mechanisms, i.e., differences in root morphology, uptake mechanisms, translocation of nutrients, and interactions between cations.  相似文献   

2.
Pot experiments were set up to determine the species-specific uptake of cesium (Cs) by mycorrhizal (AM) and non-mycorrhizal (non-AM) plants. Using stable Cs and K application, side-effects of mineral fertilization (K) on AM development and uptake of Cs and the other cations Na, Ca and Mg were investigated. AM colonization by the fungus Glomus mosseae led to a significant decrease in shoot Cs content of Agrostis tenuis from the first (4 weeks) to the third harvest (8 weeks). With regard to the root system, statistically significant differences were observed from the first (4 weeks) to the second harvest (6 weeks). Supply of additional K produced a significant decrease in Cs uptake by both AM and non-AM plants over a 10-week period. In the case of AM plant shoots, K fertilization did not very effectively reduce Cs uptake by A. tenuis. Cs contents of fertilized AM roots were similar to non-AM controls. Potassium application resulted in an increase in K content and a slight reduction in Na and Mg contents of shoots and roots. Without K fertilization, the Na content of non-AM controls was significantly enhanced over AM shoots. Shoot and root Ca contents were generally higher without than with K addition. Negative side-effects of K fertilization as a countermeasure to Cs uptake were not observed in relation to AM development. The intensity of colonization by G. mosseae was not significantly depressed by K treatment. AM development in plants appeared to decrease Cs uptake, at least at moderate nutrient levels. It is possible that Cs is sequestered by AM extraradical fungal hyphae and consequently not transferred to the plant to the extent found in non-AM roots. Accepted: 6 November 2000  相似文献   

3.
The effects of K+ and Na+ on the Ca2+,Mg2+-ATPase of sarcoplasmic reticulum fragments (SRF) were investigated at 1 mM ATP. There was an alteration of the sensitivity of the ATPase to the monovalent cations during storage of the SRF preparation. The Ca2+, Mg2+-ATPase of freshly prepared SRF was slightly activated by 5-10 mM K+ and Na+. Mg2+-ATPase was inhibited by both the monovalent cations to the same extent, and this response to the ions was independent of the freshness of the preparations. After storage of SRF, however, the Ca2+,Mg2+-ATPase was markedly activated by higher concentrations of K+ and Na+ (0.2-0.3 M). K+ and Na+ reduced the Ca uptake at the steady state in freshly prepared SRF, but did not affect pre-steady state uptake. In the presence of oxalate, the rate of Ca accumulation both in fresh and stored preparations was activated by 0.1-0.2 M K+ and Na+. The Ca2+, mg2+-ATPase with oxalate, so-called "extra ATPase," showed the same response to the ions as did the activity without oxalate during storage.  相似文献   

4.
Predicting Cation Ratios in Corn from Saline Solution Composition   总被引:3,自引:0,他引:3  
The response of Zea mays (L.) cv. Pioneer 3906 to nutrient culturesthat varied in Na/Ca ratios was studied at 5 different salinitylevels; 0, 0.1, –0.2, 0.3 and –0.4 MPa. Principlesof ion exchange theory were used to relate the cation composition(Ca, Mg and Na) in the shoots to activity ratios in the rootmedia. The data are expressed using the Gapon convention wherethe selectivity coefficient is related to the equivalent fractionof the exchange ions. Plots of the cation ratios of Ca/Na, Ca/Mgand Mg/Na can be represented by a single line regardless ofsalinity level. This information supports the concept derivedfrom physiological studies that the uptake of Ca, Mg and Naby salt-stressed plants is passive. The data suggest that theratios of these cations in corn shoots can be predicted forvarious salinities from solution composition of the root mediaand shoot ion concentrations at a single salinity level. Key words: Gapon equation, ion exchange, selectivity, cation uptake  相似文献   

5.
采用沙培法,对盐胁迫下坪山柚和福橘幼苗体内矿质元素的变化进行了研究。结果表明,随着NaCl浓度的增加,坪山柚和福橘幼苗根部及地上部Na^+、Cl-含量增加,且相同浓度下,福橘比坪山柚高。40mmol/L NaCI胁迫下,坪山柚和福橘幼苗地上部的K^+、Fe含量,根部的Ca^2+、Mg^2+、Zn含量显著下降,而根部Fe含量及地上部Zn含量显著增加。随NaCl浓度增大,坪山柚根部K^+含量,地上部Ca^2+、Mg^2+含量变化不明显,而福橘根部、地上部上述离子含量在NaCl浓度≥160mmol/L时均显著下降。因此,根部K^+含量,地上部Ca^2+、Mg^2+含量存在品种问差异,或许可作为耐盐性鉴定指标。NaCl胁迫降低坪山柚和福橘幼苗根部及地上部P、Mn含量,而Cu含量在较高浓度NaCl胁迫下显著增加。NaCl胁迫明显降低坪山柚和福橘幼苗地上部K^+/Na^+、Ca^2+/Na^+和Mg^2+/Na^+值,其中K^+/Na^+值的变化可考虑作为柑橘耐盐性鉴定的指标。  相似文献   

6.
In the present investigation, we studied uptake and management of the major cations in the xerohalophyte, Tecticornia indica (Willd.) subsp. indica as subjected to salinity. Plants were grown under greenhouse conditions at various salinity levels (0, 100, 200 and 400 mM NaCl) over 110 days. At harvest, they were separated into shoots and roots then analyzed for water contents, dry weights (DW), and Na+, K+, Ca2+, and Mg2+ contents. Plants showed a growth optimum at 200 mM NaCl and much better tissue hydration under saline than non-saline conditions. At this salt concentration (200 mM NaCl), shoot Na+ content reached its highest value (7.9 mmol · g-?1 DW). In spite of such stressful conditions, salt-treated plants maintained adequate K+, Ca2+, and Mg2+ status even under severe saline conditions. This was mainly due to their aptitude to selectively acquire these essential cations and efficiently use them for biomass production.  相似文献   

7.
Active transport of sugars (D-galactose, D-glucose, 3-0-methylglucose and L-arabinose) by sacs of everted intestine of snail (Cryptomphalus hortensis) was strongly inhibited, but not abolished, when all Na from the bathing solutions was substituted by K, Tris, Mg or Ca. Absence of Na produced also a marked inhibition of O2 consumption by the tissue. Omission of other cations (K, Ca, Mg), substituted by Tris, did not affect sugar transport or O2 uptake. Sodium seems to play a specific and important but not indispensable r?le in sugar active transport by snail intestine. Since anaerobiosis did not affect sugar transport, this Na role is independent of its effect on O2 uptake.  相似文献   

8.
Photosynthetic characteristics, leaf ionic content, and net fluxes of Na(+), K(+), and Cl(-) were studied in barley (Hordeum vulgare L) plants grown hydroponically at various Na/Ca ratios. Five weeks of moderate (50 mM) or high (100 mM) NaCl stress caused a significant decline in chlorophyll content, chlorophyll fluorescence characteristics, and stomatal conductance (g(s)) in plant leaves grown at low calcium level. Supplemental Ca(2+) enabled normal photochemical efficiency of PSII (F(v)/F(m) around 0.83), restored chlorophyll content to 80-90% of control, but had a much smaller (50% of control) effect on g(s). In experiments on excised leaves, not only Ca(2+), but also other divalent cations (in particular, Ba(2+) and Mg(2+)), significantly ameliorated the otherwise toxic effect of NaCl on leaf photochemistry, thus attributing potential targets for such amelioration to leaf tissues. To study the underlying ionic mechanisms of this process, the MIFE technique was used to measure the kinetics of net Na(+), K(+), and Cl(-) fluxes from salinized barley leaf mesophyll in response to physiological concentrations of Ca(2+), Ba(2+), Mg(2+), and Zn(2+). Addition of 20 mM Na(+) as NaCl or Na(2)SO(4) to the bath caused significant uptake of Na(+) and efflux of K(+). These effects were reversed by adding 1 mM divalent cations to the bath solution, with the relative efficiency Ba(2+)>Zn(2+)=Ca(2+)>Mg(2+). Effect of divalent cations on Na(+) efflux was transient, while their application caused a prolonged shift towards K(+) uptake. This suggests that, in addition to their known ability to block non-selective cation channels (NSCC) responsible for Na(+) entry, divalent cations also control the activity or gating properties of K(+) transporters at the mesophyll cell plasma membrane, thereby assisting in maintaining the high K/Na ratio required for optimal leaf photosynthesis.  相似文献   

9.
A gradual increase in the concentration of Ca2+ from anterior to the posterior region was observed when mono- and divalent cations were estimated in different segments of the epididymis in wall lizard. Na+ and K+ levels increased from anterior to middle segment but declined significantly in the posterior segment. However, no significant difference in the levels of Mg2+ was observed in various segments. To study the influence of mono- and divalent cations on sperm motility in vitro, the spermatozoa from posterior region of the epididymis were incubated in medium with varying concentrations of Na+, K+, Ca2+ and Mg2+. Spermatozoa were non-motile when suspended in Na+-free medium. Addition of NaCl induced the acquisition of sperm motility in a concentration-dependent manner. Further, amiloride, a Na+-influx blocker, markedly reduced the Na+-induced forward progressive motility. Unlike Na+, the presence of K+ or Ca2+ in the incubation medium reduced the motility of spermatozoa even at very low concentrations. The inhibitory effect of Ca2+ decreased when nifedipine, a Ca2+-influx blocker, was added to the medium. Mg2+ at high concentrations only was able to reduce the forward progressive motility.  相似文献   

10.
The effect of Ca2+, Cd2+, Ba2+, Mg2+ and pH on the renal epithelial Na(+)-channel was investigated by measuring the amiloride-sensitive 22Na+ fluxes into luminal membrane vesicles from pars recta of rabbit proximal tubule. It was found that intravesicular Ca2+ as well as extravesicular Ca2+ substantially lowered the channel-mediated flux. Amiloride sensitive Na+ uptake was nearly completely blocked by 10 microM Ca2+ at pH 7.4. The inhibitory effect of Ca2+ was dependent on pH. Thus, 10 microM Ca2+ produced 90% inhibition of 22Na+ uptake at pH 7.4, and only 40% inhibition at pH 7.0. The tracer fluxes measured in the absence of Ca2+ were pH independent over the range from 7.0 to 7.4. All the cations Ca2+, Cd2+, Ba2+ except Mg2+ inhibited the 22Na+ influx drastically when added extravesicularly in millimolar concentrations. The cations Cd2+, Ba2+ and Mg2+ in the same concentrations intravesicularly inhibited the 22Na+ influx only slightly. A millimolar concentration of Ca2+ intravesicularly blocked the amiloride-sensitive 22Na+ flux completely. The data indicate that Ca2+ inhibits Na+ influx specifically by binding to sites composed of one or several deprotonated groups on the channel proteins.  相似文献   

11.
The presence of an Na/Ca exchange system in fasciculata cells of the bovine adrenal gland was tested using isolated plasmalemmal vesicles. In the presence of an outwardly Na(+) gradient, Ca(2+) uptake was about 2-fold higher than in K(+) condition. Li(+) did not substitute for Na(+) and 5 mM Ni(2+) inhibited Ca(2+) uptake. Ca(2+) efflux from Ca(2+)-loaded vesicles was Na(+)-stimulated and Ni(2+)-inhibited. The saturable part of Na(+)-dependent Ca(2+) uptake displayed Michaelis-Menten kinetics. The relationship of Na(+)-dependent Ca(2+) uptake versus intravesicular Na(+) concentration was sigmoid (apparent K(0.5) approximately 24 mM; Hill number approximately 3) and Na(+) acted on V(max) without significant effect on K(m). Na(+)-stimulated Ca(2+) uptake was temperature-dependent (apparent Q(10) approximately 2.2). The inhibition properties of several divalent cations (Cd(2+), Sr(2+), Ni(2+), Ba(2+), Mn(2+), Mg(2+)) were tested and were similar to those observed in kidney basolateral membrane. The above results indicate the presence of an Na/Ca exchanger located on plasma membrane of zona fasciculata cells of bovine adrenal gland. This exchanger displays similarities with that of renal basolateral cell membrane.  相似文献   

12.
The mineral nutrition of a clone of the submersed aquatic macrophyte Potamogeton pectinatus L. was examined in relation to the ability of the roots to mobilize N, P, K, S, Ca, Mg, dissolved inorganic C and micronutrients to the shoots from a constant small volume of sediment in the absence of one or more of these nutrients in the water phase. Survival, biomass production and shoot nutrient concentration values were measured after 35 days of growth under controlled conditions. Flower production and shoot morphology were also noted.The roots of P. pectinatus were capable of mobilizing sufficient P, N, S, K and micronutrients from the sediment to the shoots to meet normal growth requirements. In the absence of K from the water phase, Na replaced it, but the vigor of the plants suffered somewhat by the substitution. The roots were not capable of mobilizing sufficient Mg, Ca, or dissolved inorganic C from the sediment to the shoots to meet normal growth requirements. Survival and normal growth occurred with a minimum of 2 ppm Ca, 10 ppm Mg, and 0.5 meq HCO3? in the water phase. Water-phase Ca was necessary to prevent the toxicity of other cations such as Mg when present in the water phase.A seasonal periodicity in biomass production occurred under standardized environmental conditions, suggesting an internal regulation independent of obvious external signals.  相似文献   

13.
Abstract Growth of barley (Hordeum vulgare L., cv. Georgie) was insensitive to soil K content above about 150 mg kg?1, but at lower levels it declined. The reduction in yield was greater in soils containing approximately 10 mg Na kg?1 than in soils with about 90 mg kg?1 of Na. Growth was unaffected by changes in shoot K concentration above 75 mol m?3, but declined at lower concentrations, and the decrease was less in plants grown in soils with high Na. Growth responses were not simply related to tissue K concentrations because plants grown in soils with extra Na had higher yields but lower K concentrations. When soil Na was low, plants accumulated Ca as tissue K declined, but when Na was provided this ion was accumulated. Plant Mg concentrations were generally low but increased as K decreased. The Ca and Mg were osmotically active. There were highly significant inverse linear relationships between yield and either the Ca or Mg concentrations in the shoots. X-ray microanalysis was used to examine the compartmentation of cations in leaves from barley plants (cv. Clipper) grown in nutrient solutions with high and low K concentrations. In plants grown with 2.5 mol m?3 K, this was the major cation in both the cytoplasm and vacuole of mesophyll cells. However, in plants grown with 0.02 mol m?3 K it declined to undetectable levels in the vacuole, although it was still detectable in the cytoplasm. In all plants, Ca was mainly located in epidermal cells. The implication of the results for explaining responses to K. in terms of compartmentation of solutes is discussed.  相似文献   

14.
Membrane ghost preparations of Escherichia coli K-12 obtained by osmotic lysis of lysozyme-induced spheroplasts were found to possess both Mg(++)- and Ca(++)-activated adenosine 5'-triphosphatase (ATPase, EC 3.6.1.3) activities. Maximal activities of 1.0 to 1.5 mumoles of orthophosphate released per min per mg of protein were obtained at pH 9.0 with a molar Mg(++) to adenosine 5'triphosphate (ATP) ratio of 2:5 and at pH 9.9 with a molar Ca(++) to ATP ratio of 1:5. These ATPase activities were not altered by ouabain, fluoride, N-ethylmaleimide, 2,4-dinitrophenol, cyanide, or dithionite, but were inhibited by low concentrations of azide, p-chloromercuribenzoate, and pentachlorophenol. Mg(++) ATPase was more susceptible to inhibition by azide than was Ca(++) ATPase. Fifty per cent inactivation of both activities was observed when membrane ghost preparations were preincubated at 66 C for 10 min. The Mg(++) and Ca(++) ATPase activities of these preparations were not additive, but did respond independently to inhibition by monovalent cations. Ca(++) ATPase was found to be very sensitive to inhibition by K(+), Na(+), Li(+), Rb(+), and Cs(+); Mg(++) ATPase was relatively insensitive to these ions. One possible interpretation of the results presented in this paper is that the membrane of E. coli possesses an ATPase which is activated by either Mg(++) or Ca(++) and that activation by Ca(++) increases the susceptibility of this enzyme to inhibition by monovalent cations. Increased susceptibility of E. coli membrane ATPase to inhibition by monovalent cations such as Na(+) and K(+) as a consequence of Ca(++) activation could represent a regulatory mechanism.  相似文献   

15.
Cultured smooth muscle cells from rat aorta were loaded with Na+, and Na+/Ca2+ antiport was assayed by measuring the initial rates of 45Ca2+ influx and 22Na+ efflux, which were inhibitable by 2',4'-dimethylbenzamil. The replacement of extracellular Na+ with other monovalent ions (K+, Li+, choline, or N-methyl-D-glucamine) was essential for obtaining significant antiport activity. Mg2+ competitively inhibited 45Ca2+ influx via the antiporter (Ki = 93 +/- 7 microM). External Ca2+ or Sr2+ stimulated 22Na+ efflux as would be expected for antiport activity. Mg2+ did not stimulate 22Na+ efflux, which indicates that Mg2+ is probably not transported by the antiporter under the conditions of these experiments. Mg2+ inhibited Ca2+-stimulated 22Na+ efflux as expected from the 45Ca2+ influx data. The replacement of external N-methyl-D-glucamine with K+, but not other monovalent ions (choline, Li+), decreased the potency of Mg2+ as an inhibitor of Na+/Ca2+ antiport 6.7-fold. Other divalent cations (Co2+, Mn2+, Cd2+, Ba2+) also inhibited Na+/Ca2+ antiport activity, and high external potassium decreased the potency of each by 4.3-8.6-fold. The order of effectiveness of the divalent cations as inhibitors of Na+/Ca2+ antiport (Cd2+ greater than Mn2+ greater than Co2+ greater than Ba2+ greater than Mg2+) correlated with the closeness of the crystal ionic radius to that of Ca2+.  相似文献   

16.
In reconstituted human red blood cells a difference was found in (Ca2+ + Mg2+)-ATPase activity and in Ca2+ efflux at 37 degrees C, depending on the side of the membrane at which the monovalent cations K+ and Na+ were placed. Under the conditions used, (Ca2+ + Mg2+)-ATPase activity and Ca2+ efflux was highest when K+ (35 +/- 0.5 mM (+/- S.E.), mean of four experiments) was at the inside and Na+ (130 mM) at the outside of the ghost membrane.  相似文献   

17.
Cycling of six mineral elements (N, P, K, Na, Ca and Mg) was studied in a humid subtropical grassland at Cherrapunji, north-eastern India during 1988-1989. Elemental concentrations in the shoot of four dominant grass species,viz., Arundinella khaseana, Chrysopogon gryllus, Eragrostiella leioptera andEulalia trispicata were very low, and none of the species appears suitable for fodder use. Among different vegetation compartments, live root was the largest reservoir of all the nutrients (except Ca) followed by live shoot, dead shoot, litter and dead root. For Ca, live shoot was the major storage compartment. The total annual uptake (kg ha-1) was 137.3, 10.4, 51.1, 5.5, 8.7 and 18.2 for N, P, K, Na, Ca and Mg, respectively. In an annual cycle 98% N, 77% P, 49% K, 109% Na, 87% Ca and 65% Mg returned to the soil through litter and belowground detritus. A major portion of N, P and Na was recycled through the belowground system, whereas nearly half of K, Ca and Mg was recycled through the shoot system. Precipitation acts as the source of N and P input, but at the same time causes loss of cations.  相似文献   

18.
The Na-K ATPase found in sedimentable fractions of intestinal epithelium of rats hydrolyzed cytidine triphosphate nearly as well as ATP (25% to 50%); was active only in presence of divalent cations, with specificity for Mg (100%), Mn (50%) and Ca (10%); showed a plateau of activation when Mg concentrations were in excess of substrate; and was inhibited by a second divalent cation (Zn > Mn > Ca), and by 3 × 10?4 M ouabain (50%). Parallel assays of rat red cell ghosts showed differences in substrate specificity (CTP was not utilized), in activation kinetics (activation peak with Mg) and in greater specificity to Mg (Mn was a weaker activator and Zn was a weaker inhibitor). Stabilities also differed in the two preparations: Na? K ATPase of intestinal epithelium was activated by sucrose extraction and denatured during cytolysis at room temperature, while that of red cell fragments was denatured during sucrose extraction and preserved by hemolysis at room temperature. Other properties of Na? K ATPase studied in the two tissues included activation by monovalent cations (optimum at 160 mM Na, 15 mM K), specificity to monovalent cations, and sensitivity to lipid solvents and to some drugs. The data were discussed in terms of comparative properties of Na? K ATPases of various cells. Residual ATPase activities of intestinal epithelium and red cell ghosts were shown to differ in substrate specificity, inhibition and activation. “Residual ATPase” from intestinal epithelium was a zinc-activated nucleoside polyphosphate phosphohydrolase, while ghosts contained Mg? ATPase. Only the latter enzyme was specific to ATP and Mg, activated by Ca in presence of Mg, and sensitive to inhibition by PCMB and Zn.  相似文献   

19.
The mechanism by which metalloporphyrins synthesized within the mitochondria escape to the incubation medium was studied in isolated rat liver mitochondria. In a low-ionic-strength sucrose medium, the efflux of metalloporphyrins is markedly decreased when K+ (greater than 10 mM) is added. The effect of K+ is not dependent on the energy state of the mitochondria and it can in part be abolished by adding globin, but not albumin. K+ also decreases the uptake of porphyrins by the mitochondria and thereby the rate of synthesis of metalloporphyrins. Qualitatively similar results are found with Na+, Li+, Mg2+ and Ca2+. Quantitatively, however, the efficiency of cations to inhibit the release of metalloporphyrins decreases in the order: Mg2+ greater than Ca2+ greater than K+ greater than Li+ greater than Na+. Co-protoporhyrin behaves essentially as Co-deuteroporphyrin. The results provide further evidence that the efflux of metalloporphyrins from the mitochondria depends on haem-binding ligands of the suspending medium and also on the ionic strength of the incubation medium.  相似文献   

20.
Musibono  D. E.  Day  J. A. 《Hydrobiologia》2000,437(1-3):213-219
Experiments were performed on the freshwater amphipod Paramelita nigroculus to determine the route of uptake for Al, Cu and Mn. The extent of correlation between the concentrations of Al, Cu and Mn and those of macro-cations Na, Ca and Mg was investigated in order to determine appropriate strategies of water quality management. Indeed, active uptake of toxicants can be controlled by disturbing the active pump used. After 21 days of exposure to different combined concentrations, survivors were analysed chemically by ICP-S after depuration, drying, ashing and digestion with concentrated nitric acid.The results showed significant correlations between the concentrations of major cations and the three metals under study (i.e. Al, Cu and Mn) at p < 0.05. These are Ca vs Al, Ca vs Mg, Na vs Mg, Na vs Mn, Al vs Mg, Al vs Cu, and Mg vs Mn. No other combination showed significant correlation. High r-values for Na vs Mg (r=0.7194) and for Na vs Mn (r=0.6253), as well as low concentrations of Mg and Mn, suggest interactions between the active uptake of Mn and Mg, although there may be interferences due to the use of Na pump. Additional experiments examined the type of interaction occurring when Mn and Mg were present in 1:1 mixtures in water. The Student's t test showed that observed differences in bioaccumulation of Mn, when alone and when combined, were not statistically significant at p < 0.05. These differences may be attributed to chance but not to the presence of Mg in the medium; while differences in bioaccumulation of Mg, when alone and when combined, were statistically significant at p < 0.002. These were attributed to Mn, which lowers Mg uptake by P. nigroculus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号