首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The major coat protein of the filamentous bacteriophage M13 is inserted as an integral protein in the inner membrane of the Escherichia coli host upon infection. M13 coat protein is an ideal model membrane protein and has been the target of many biophysical studies. An overview is presented here of the application of nuclear magnetic resonance spectroscopy to the study of the structure and dynamics of M13 coat protein in several lipid-mimetic environments. The coat protein may be biosynthetically enriched with 13C- and 15N-labelled amino acids, allowing the resolution and assignment of individual nuclei. Structural fluctuations at selected sites have been monitored using 13C relaxation and isotope-detected amide hydrogen exchange kinetics. A model is proposed for the structure of a coat protein dimer in detergent micelles.  相似文献   

2.
G D Henry  B D Sykes 《Biochemistry》1992,31(23):5284-5297
The major coat protein of the filamentous coliphage M13 is a 50-residue integral membrane protein. Detergent-solubilized M13 coat protein is a promising candidate for structure determination by nuclear magnetic resonance methods as the protein can be prepared in large quantities and the protein-containing micelle is reasonably small. Under the conditions of our experiments, SDS-bound coat protein exists as a dimer with an apparent molecular weight of 27,000. Broad lines and poor resolution in the 1H spectrum have led us to adopt an 15N-directed approach, in which the coat protein was labeled both uniformly with 15N and selectively with [alpha-15N]alanine, -glycine, -valine, -leucine, -isoleucine, phenylalanine, -lysine, -tyrosine, and -methionine. Nitrogen resonances were assigned as far as possible using carboxypeptidase digestion, double-labeling, and an independent knowledge of the amide proton exchange rates determined from neighboring assigned 13C-labeled carbonyl carbons. 1H/15N heteronuclear multiple quantum coherence (HMQC) spectroscopy of both uniform and site-selectively-labeled proteins subsequently correlated amide nitrogen with amide proton chemical shifts, and the assignments were completed sequentially from homonuclear NOESY and HMQC-NOESY spectra. The most slowly exchanging amide protons were shown to occur in a continuous stretch extending from methionine-28 to phenylalanine-42. This sequence includes most of the resonances of the hydrophobic core, although it is shifted toward the C-terminal end of the protein. Strong NH to NH (i,i+1) nuclear Overhauser enhancements are a feature of the coat protein, which appears to be largely helical. Between 20 and 25 residues give rise to 2 juxtaposed resonances which can be seen clearly in the HMQC spectrum of uniform 15N-labeled coat protein. These residues are concentrated in a region extending from the beginning of the membrane-spanning sequence through to the disordered region near the C-terminus. We propose that dodecyl sulfate-bound M13 coat protein consists of two independent domains, an N-terminal helix which is in a state of moderately fast dynamic flux and a long, stable, C-terminal membrane-spanning helix, which undergoes extensive interactions with a second monomer. Amide 1H chemical shifts are consistent with this picture; in addition, a marked periodicity is observed at the C-terminal end of the molecule.  相似文献   

3.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3626-3634
Hydrogen-exchange rates have been measured for individual assigned amide protons in M13 coat protein, a 50-residue integral membrane protein, using a 13C nuclear magnetic resonance (NMR) equilibrium isotope shift technique. The locations of the more rapidly exchanging amides have been determined. In D2O solutions, a peptide carbonyl resonance undergoes a small upfield isotope shift (0.08-0.09 ppm) from its position in H2O solutions; in 1:1 H2O/D2O mixtures, the carbonyl line shape is determined by the exchange rate at the adjacent nitrogen atom. M13 coat protein was labeled biosynthetically with 13C at the peptide carbonyls of alanine, glycine, phenylalanine, proline, and lysine, and the exchange rates of 12 assigned amide protons in the hydrophilic regions were measured as a function of pH by using the isotope shift method. This equilibrium technique is sensitive to the more rapidly exchanging protons which are difficult to measure by classical exchange-out experiments. In proteins, structural factors, notably H bonding, can decrease the exchange rate of an amide proton by many orders of magnitude from that observed in the freely exposed amides of model peptides such as poly(DL-alanine). With corrections for sequence-related inductive effects [Molday, R. S., Englander, S. W., & Kallen, R. G. (1972) Biochemistry 11, 150-158], the retardation of amide exchange in sodium dodecyl sulfate solubilized coat protein has been calculated with respect to poly(DL-alanine). The most rapidly exchanging protons, which are retarded very little or not at all, are shown to occur at the N- and C-termini of the molecule.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
G D Henry  J H Weiner  B D Sykes 《Biochemistry》1987,26(12):3619-3626
The major coat protein of the filamentous bacteriophage M13 is a 50-residue amphiphilic polypeptide which is inserted, as an integral membrane-spanning protein, in the inner membrane of the Escherichia coli host during infection. 13C was incorporated biosynthetically into a total of 23 of the peptide carbonyls using labeled amino acids (alanine, glycine, lysine, phenylalanine, and proline). The structure and dynamics of carbonyl-labeled M13 coat protein were monitored by 13C nuclear magnetic resonance (NMR) spectroscopy. Assignment of many resonances was achieved by using protease digestion, pH titration, or labeling of the peptide bond with both 13C and 15N. The carbonyl region of the natural-abundance 13C NMR spectrum of M13 coat protein in sodium dodecyl sulfate solution shows approximately eight backbone carbonyl resonances with line widths much narrower than the rest. Three of these more mobile residues correspond to assigned peaks (glycine-3, lysine-48, and alanine-49) in the individual amino acid spectra, and another almost certainly arises from glutamic acid-2. A ninth residue, alanine-1, also gives rise to a very narrow carbonyl resonance if the pH is well above or below the pKa of the terminal amino group. These data suggest that only about four residues at either end of the protein experience large-amplitude spatial fluctuations; the rest of the molecule is essentially rigid on the time scale of the overall rotational tumbling of the protein-detergent complex. The relative exposure of different regions of detergent-bound protein was monitored by limited digestion with proteinase K.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

5.
The major coat protein of M13 bacteriophage has been incorporated into bilayers of 1,2-dimyristoyl-sn-glycero-3-phosphocholine, deuterated in the trimethyl segments of the choline headgroup (DMPC-d9). Two-component deuterium and phosphorus-31 NMR spectra have been observed from bilayer complexes containing the coat protein, indicating slow exchange (on the deuterium quadrupole anisotropy and phosphorus-31 chemical shift averaging time scales) of lipid molecules of less than 10(3) Hz between two motionally distinct environments in the complexes. The fraction of the isotropic spectral component increases with increasing M13 protein concentration, and this component is attributed to lipid headgroups, which are disordered relative to their order in protein-free bilayers. The activation energy of the fast local motions of the trimethyl groups of the choline residue in the headgroup decreases from 23 kJ mol-1 in the pure lipid bilayers to 20 kJ mol-1 for the protein-associated lipid headgroups. The chemical exchange rate of lipid molecules between the two motionally distinct environments has been estimated to be 20-50 Hz by steady-state line-shape simulations of the deuterium spectra of DMPC-d9/M13 coat protein complexes using exchange-coupled modified Bloch equations. The off-rate was, as expected from one-to-one exchange, independent of the L/P ratio; tau off -1 = 0.23 kHz. It is suggested that the protein-associated lipid may be trapped between closely packed parallel aggregates of M13 coat protein and that the high local concentration of protein in a one-dimensional arrangement in lipid bilayers may be required for the fast reassembly of phage particles before release from an infected cell.  相似文献   

6.
The experimentally observed 31P lineshapes and transversal relaxation of 15% (wt/wt) M13, 30% M13, and 30% tobacco mosaic virus (TMV) are compared with lineshapes and relaxation curves that are simulated for various types of rotational diffusion using the models discussed previously (Magusin, P. C. M. M., and M. A. Hemminga. 1993. Biophys. J. 64:1851-1860). It is found that isotropic diffusion cannot explain the observed lineshape effects. A rigid rod diffusion model is only successful in describing the experimental data obtained for 15% M13. For 30% M13 the experimental lineshape and relaxation curve cannot be interpreted consistently and the TMV lineshape cannot even be simulated alone, indicating that the rigid rod diffusion model does not generally apply. A combined diffusion model with fast isolated motions of the encapsulated nucleic acid dominating the lineshape and a slow overall rotation of the virion as a whole, which mainly is reflected in the transversal relaxation, is able to provide a consistent picture for the 15 and 30% M13 samples, but not for TMV. Strongly improved lineshape fits for TMV are obtained assuming that there are three binding sites with different mobilities. The presence of three binding sites is consistent with previous models of TMV. The best lineshapes are simulated for a combination of one mobile and two static sites. Although less markedly, the assumption that two fractions of DNA with different mobilities exist within M13 also improves the simulated lineshapes. The possible existence of two 31P fractions in M13 sheds new light on the nonintegral ratio 2.4:1 between the number of nucleotides and protein coat subunits in the phage: 83% of the viral DNA is less mobile, suggesting that the binding of the DNA molecule to the protein coat actually occurs at the integral ratio of two nucleotides per protein subunit.  相似文献   

7.
Although transmembrane (TM) segments of integral membrane proteins are putatively alpha-helical in conformation, beta-sheet promoters (Val, Ile, Thr) often account for approximately 40% of TM residue composition. We are examining the conformational role(s) of these residues, using as a model system the major coat protein of the filamentous bacteriophage M13. This 50-residue protein, which is located at the Escherichia coli host membrane during phage reproduction, contains a prototypic 19-residue hydrophobic midregion (residues 21-39: YIGYAWAMVVVIVGATIGI). Using "Eckstein" site-directed mutagenesis, we have generated several viable M13 coat protein mutants with beta-branched amino acid substitutions within their TM region. Mutant coat proteins, including Ile32----Val (I32V) and Ala27----Thr (A27T), were obtained in milligram quantities by growing M13 mutant phages in liter preparations, confirming that these coat proteins are capable of assuming their normal biological function(s) in phage reproduction. Circular dichroism spectroscopy performed in the membrane-mimetic medium of deoxycholate micelles indicated comparable alpha-helical contents of mutants I32V and A27T to wild-type protein. 13C nuclear magnetic resonance experiments with mutant A27T demonstrated that the combination of additional beta-branched content and introduction of an -OH substituent induced chemical shift and temperature-dependent changes and influenced the local protein environment at sites up to 12 residues remote from the mutation site. In contrast, mutant I32V (of which a salient feature is a mid-TM pentavaline segment) behaved very similarly to wild-type coat. These findings are interpreted in terms of the range of TM secondary structure and stability which can be accommodated by viable M13 coat protein mutants.  相似文献   

8.
A formalism for membrane protein structure determination was developed. This method is based on steady-state FRET data and information about the position of the fluorescence maxima on site-directed fluorescent labeled proteins in combination with global data analysis utilizing simulation-based fitting. The methodology was applied to determine the structural properties of the N-terminal domain of the major coat protein from bacteriophage M13 reconstituted into unilamellar DOPC/DOPG (4:1 mol/mol) vesicles. For our purpose, the cysteine mutants A7C, A9C, N12C, S13C, Q15C, A16C, S17C, and A18C in the N-terminal domain of this protein were produced and specifically labeled with the fluorescence probe AEDANS. The energy transfer data from the natural Trp-26 to AEDANS were analyzed assuming a two-helix protein model. Furthermore, the polarity Stokes shift of the AEDANS fluorescence maxima is taken into account. As a result the orientation and tilt of the N-terminal protein domain with respect to the bilayer interface were obtained, showing for the first time, to our knowledge, an overall alpha-helical protein conformation from amino acid residues 12-46, close to the protein conformation in the intact phage.  相似文献   

9.
D S Hagen  J H Weiner  B D Sykes 《Biochemistry》1979,18(10):2007-2012
We have utilized a nonperturbing nuclear magnetic resonance technique, specifically measuring sensitivity of the chemical shift of fluorotyrosyl residues to change in solvent from H2O to D2O, to demonstrate that the tyrosyl residues of fluorotyrosyl M13 coat protein in phospholipid vesicles are not accessible to solvent i.e., are buried in the hydrophobic portion of the bilayer. The two fluorotyrosyl residues of the protein did show partial exposure to solvent (42% and 65% with respect to aqueous m-fluorotyrosine) when the protein was incorporated into deoxycholate micelles, pointing to differences in conformation of micellar protein with respect to vesicle-associated protein. M13 coat protein in phospholipid vesicles was not sensitive to lactoperoxidase-catalyzed iodination, supporting the NMR results. Coat protein in deoxycholate micelles showed release of fluorotyrosyl residues upon Pronase digestion, but only after an observed change in environment. The observed changes suggest that proteolytic digestion studies of membrane proteins should be interpreted with the possibility of artifacts related to conformational changes in mind. M13 coat protein in phospholipid vesicles did not demonstrate release of fluorotyrosine by Pronase, again pointing to differences between protein in micelles and in vesicles and corroborating the NMR result.  相似文献   

10.
Using simple design and selective pressure, we have evolved an artificial M13 bacteriophage coat protein. M13 coat proteins first reside in the bacterial inner membrane and subsequently surround the DNA core of the assembled virus. The artificial coat protein (ACP) was designed and evolved to mimic both functions of the natural M13 coat proteins, but with an inverted orientation. ACP is a non-functional coat protein because it is not required for the production of phage particles. Instead, it incorporates into a phage coat which still requires all the natural coat proteins for structural integrity. In contrast with other M13 coat proteins, which can display polypeptides as amino-terminal fusions, ACP permits the carboxy-terminal display of large polypeptides. The results suggest that viruses can co-opt host membrane proteins to acquire new coat proteins and thus new functions. In particular, M13 bacteriophage can be engineered for new functions, such as carboxy-terminal phage display.  相似文献   

11.
G D Henry  B D Sykes 《Biochemistry》1990,29(26):6303-6313
The coat protein of the filamentous coliphage M13 is a 50-residue polypeptide which spans the inner membrane of the Escherichia coli host upon infection. Amide hydrogen exchange kinetics have been used to probe the structure and dynamics of M13 coat protein which has been solubilized in sodium dodecyl sulfate (SDS) micelles. In a previous 1H nuclear magnetic resonance (NMR) study [O'Neil, J. D. J., & Sykes, B. D. (1988) Biochemistry 27, 2753-2762], multiple exponential analysis of the unresolved amide proton envelope revealed the existence of two slow "kinetic sets" containing a total of about 30 protons. The slower set (15-20 amides) originates from the hydrophobic membrane-spanning region and exchanges at least 10(5)-fold slower than the unstructured, non-H-bonded model polypeptide poly(DL-alanine). Herein we use 15N NMR spectroscopy of biosynthetically labeled coat protein to follow individual, assigned, slowly exchanging amides in or near the hydrophobic segment. The INEPT (insensitive nucleus enhancement by polarization transfer) experiment [Morris, G. A., & Freeman, R. (1979) J. Am. Chem. Soc. 101, 760-762] can be used to transfer magnetization to the 15N nucleus from a coupled proton; when 15N-labeled protonated protein is dissolved in 2H2O, the INEPT signal disappears with time as the amide protons are replaced by solvent deuterons. Amide hydrogen exchange is catalyzed by both H+ and OH- ions. Base catalysis is significantly more effective, resulting in a characteristic minimum rate in model peptides at pH approximately equal to 3. Rate versus pH profiles have been obtained by using the INEPT experiment for the amides of leucine-14, leucine-41, tyrosine-21, tyrosine-24, and valines-29, -30, -31, and -33 in M13 coat protein. The valine residues exchange most slowly and at very similar rates, showing an apparent 10(6)-fold retardation over poly(DL-alanine). A substantial basic shift in the pH of the minimum rate (up to 1.5 pH units) was also observed for some residues. Possible reasons for the shift include accumulation of catalytic H+ ions at the negatively charged micelle surface or destabilization of the negatively charged transition state of the base-catalyzed reaction by either charge or hydrophobic effects within the micelle. The time-dependent exchange-out experiment is suitable for slow exchange rates (kex), i.e., less than (1-2) x 10(-4) s-1.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

12.
Solid-state 13C NMR spectra of the M photocycle intermediate of bacteriorhodopsin (bR) have been obtained from purple membrane regenerated with retinal specifically 13C labeled at positions 5, 12, 13, 14, and 15. The M intermediate was trapped at -40 degrees C and pH = 9.5-10.0 in either 100 mM NaCl [M (NaCl)] or 500 mM guanidine hydrochloride [M (Gdn-HCl)]. The 13C-12 chemical shift at 125.8 ppm in M (NaCl) and 128.1 ppm in M (Gdn-HCl) indicates that the C13 = C14 double bond has a cis configuration, while the 13C-13 chemical shift at 146.7 ppm in M (NaCl) and 145.7 ppm in M (Gdn-HCl) demonstrates that the Schiff base is unprotonated. The principal values of the chemical shift tensor of the 13C-5 resonance in both M (NaCl) and M (Gdn-HCl) are consistent with a 6-s-trans structure and a negative protein charge localized near C-5 as was observed in dark-adapted bR. The approximately 5 ppm upfield shift of the 13C-5 M resonance (approximately 140 ppm) relative to 13C-5 bR568 and bR548 (approximately 145 ppm) is attributed to an unprotonated Schiff base in the M chromophore. Of particular interest in this study were the results obtained from 13C-14 M. In M (NaCl), a dramatic upfield shift was observed for the 13C-14 resonance (115.2 ppm) relative to unprotonated Schiff base model compounds (approximately 128 ppm). In contrast, in M (Gdn-HCl) the 13C-14 resonance was observed at 125.7 ppm. The different 13C-14 chemical shifts in these two M preparations may be explained by different C = N configurations of the retinal-lysine Schiff base linkage, namely, syn in NaCl and anti in guanidine hydrochloride.  相似文献   

13.
The filamentous coliphage M13 possesses multiple copies of a 50-residue coat protein which is inserted into the inner membrane of Escherichia coli during infection. 13C nuclear magnetic resonance (NMR) spectroscopy has been used to probe the structure and dynamics of M13 coat protein solubilized in detergent micelles. A comparison of backbone dynamics within the hydrophobic core region and the hydrophilic terminal domains was obtained by biosynthetic incorporation of [3-13C]alanine. Alanine is distributed throughout the protein and accounts for 10 residues (i.e., 20% of the total). Similar 13C NMR spectra of the protein have been obtained in two anionic detergents, sodium deoxycholate and sodium dodecyl sulfate, although the structures and physical properties of these solubilizing agents are quite different. The N-terminal alanine residues, assigned by pH titration, and the penultimate residue, assigned by carboxypeptidase A digestion, give rise to analogous peaks in both detergent systems. The pKa of Ala-1 (approximately 8.8) and the relaxation parameters of individual carbon atoms (T1, T2, and the nuclear Overhauser enhancement) are also generally similar, suggesting a similarity in the overall protein structure. Relaxation data have been analyzed according to the model-free approach of Lipari and Szabo [Lipari, G., & Szabo, A. (1982) J. Am. Chem. Soc. 104, 4546-4559]. The overall correlation times were obtained by fitting the three experimental relaxation values for a given well-resolved single carbon atom to obtain a unique value for the generalized order parameter, S2, and the effective correlation time, tau e. The former parameter reflects the spatial restriction of motion, and the latter, the rate.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
M13 major coat protein, a 50-amino-acid-long protein, was incorporated into DOPC/DOPG (80/20 molar ratio) unilamellar vesicles. Over 60% of all amino acid residues was replaced with cysteine residues, and the single cysteine mutants were labeled with the fluorescent label I-AEDANS. The coat protein has a single tryptophan residue that is used as a donor in fluorescence (or F?rster) resonance energy transfer (FRET) experiments, using AEDANS-labeled cysteines as acceptors. Based on FRET-derived constraints, a straight alpha-helix is proposed as the membrane-bound conformation of the coat protein. Different models were tested to represent the molecular conformations of the donor and acceptor moieties. The best model was used to make a quantitative comparison of the FRET data to the structures of M13 coat protein and related coat proteins in the Protein Data Bank. This shows that the membrane-bound conformation of the coat protein is similar to the structure of the coat protein in the bacteriophage that was obtained from x-ray diffraction. Coat protein embedded in stacked, oriented bilayers and in micelles turns out to be strongly affected by the environmental stress of these membrane-mimicking environments. Our findings emphasize the need to study membrane proteins in a suitable environment, such as in fully hydrated unilamellar vesicles. Although larger proteins than M13 major coat protein may be able to handle environmental stress in a different way, any membrane protein with water exposed parts in the C or N termini and hydrophilic loop regions should be treated with care.  相似文献   

15.
M13B1 vector based on the filamentous phage M13 has been constructed. M13B1 phage carries the gene of resistance to ampicillin and contains the unique site of recognition for BamHI restriction endonuclease in gene VIII coding for the major coat protein. BamHI restriction site has been inserted into the gene of the major coat protein by means of oligonucleotide directed mutagenesis. The synthetic DNA fragment coding for the model peptides has been inserted through BamHI site into the M13B1 DNA. The possibility of inserting foreign peptides into the N-terminus at maintaining the viability of hybrid phages has been shown. The differences in specificity of the recombinant phage maturation have been determined by analysing the amino acid sequence of B-protein.  相似文献   

16.
The M13 phage assembles in the inner membrane of Escherichia coli. During maturation, about 2,700 copies of the major coat protein move from the membrane onto a single-stranded phage DNA molecule that extrudes out of the cell. The major coat protein is synthesized as a precursor, termed procoat protein, and inserts into the membrane via a Sec-independent pathway. It is processed by a leader peptidase from its leader (signal) peptide before it is assembled onto the phage DNA. The transmembrane regions of the procoat protein play an important role in all these processes. Using cysteine mutants with mutations in the transmembrane regions of the procoat and coat proteins, we investigated which of the residues are involved in multimer formation, interaction with the leader peptidase, and formation of M13 progeny particles. We found that most single cysteine residues do not interfere with the membrane insertion, processing, and assembly of the phage. Treatment of the cells with copper phenanthroline showed that the cysteine residues were readily engaged in dimer and multimer formation. This suggests that the coat proteins assemble into multimers before they proceed onto the nascent phage particles. In addition, we found that when a cysteine is located in the leader peptide at the -6 position, processing of the mutant procoat protein and of other exported proteins is affected. This inhibition of the leader peptidase results in death of the cell and shows that there are distinct amino acid residues in the M13 procoat protein involved at specific steps of the phage assembly process.  相似文献   

17.
A Kuhn  G Kreil    W Wickner 《The EMBO journal》1986,5(13):3681-3685
M13 procoat protein has two hydrophobic domains, one in the leader peptide and one which anchors the mature coat protein in the membrane. Disruption of the membrane anchor region by insertion of arginyl residues does not yield periplasmic coat protein. Instead, the rate of membrane assembly is slowed greater than 100-fold (t1/2 less than 5 s for wild-type, t1/2 greater than 10 min for mutant). The hydrophobic region of mature coat protein not only functions as a membrane anchor, but has an important role in the membrane assembly process per se.  相似文献   

18.
The purification of M13 procoat, a membrane protein precursor.   总被引:1,自引:0,他引:1       下载免费PDF全文
Many membrane proteins and most secreted proteins are initially made as precursors with an N-terminal leader sequence. We now report the isolation of M13 procoat, the precursor of the membrane-bound form of M13 coat protein. There are 40 000 copies of M13 procoat protein/cell during M13 amber 7 virus infection. Purified procoat is quantitatively cleaved by isolated leader peptidase to yield mature-length coat protein. Rabbit antibodies to M13 procoat will precipitate procoat but not coat, suggesting that the antibody molecules are specifically recognizing the leader sequence or the conformation which it induces in the whole procoat molecule.  相似文献   

19.
Phage display is achieved by fusing polypeptide libraries to phage coat proteins. The resulting phage particles display the polypeptides on their surfaces and they also contain the encoding DNA. Library members with particular functions can be isolated with simple selections and polypeptide sequences can be decoded from the encapsulated DNA. The technology's success depends on the efficiency with which polypeptides can be displayed on the phage surface, and significant progress has been made in engineering M13 bacteriophage coat proteins as improved phage display platforms. Functional display has been achieved with all five M13 coat proteins, with both N- and C-terminal fusions. Also, coat protein mutants have been designed and selected to improve the efficiency of heterologous protein display, and in the extreme case, completely artificial coat proteins have been evolved specifically as display platforms. These studies demonstrate that the M13 phage coat is extremely malleable, and this property can be used to engineer the phage particle specifically for phage display. These improvements expand the utility of phage display as a powerful tool in modern biotechnology.  相似文献   

20.
The major coat protein (gene 8 protein) of bacteriophage M13 has been studied intensively as a model of membrane assembly, protein packing, and protein-DNA interactions. Because this protein is essential for assembly of the phage, very few mutants have been isolated. We have therefore cloned the gene 8 into a plasmid under control of the araB promoter. In the presence of arabinose, the cloned gene is expressed at a rate comparable to that in an M13-infected cell. Plasmid-derived procoat is inserted across the plasma membrane and processed to coat at a normal rate. The coat can support plaque formation by a defective M13 virus (M13am8) with an amber mutation in its procoat gene. This complementation assay was used to screen the mutagenized, cloned gene 8 for mutants which fail to make fully functional coat. Mutants were obtained which fail to synthesize procoat, which do not convert procoat to mature coat protein, or in which the coat protein is incapable of assembling into infectious virions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号