首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
H2AX: functional roles and potential applications   总被引:1,自引:0,他引:1  
Upon DNA double-strand break (DSB) induction in mammals, the histone H2A variant, H2AX, becomes rapidly phosphorylated at serine 139. This modified form, termed γ-H2AX, is easily identified with antibodies and serves as a sensitive indicator of DNA DSB formation. This review focuses on the potential clinical applications of γ-H2AX detection in cancer and in response to other cellular stresses. In addition, the role of H2AX in homeostasis and disease will be discussed. Recent work indicates that γ-H2AX detection may become a powerful tool for monitoring genotoxic events associated with cancer development and tumor progression.  相似文献   

2.
Rybaczek D  Maszewski J 《Protoplasma》2007,230(1-2):31-39
Summary. Histone H2A variant H2AX is rapidly phosphorylated on the induction of DNA double-strand breaks by ionizing radiation and hydroxyurea-mediated replication arrest, resulting in the formation of γ-H2AX foci along megabase chromatin domains nearby the sites of incurred DNA damage. In an attempt to establish a relationship between species-specific nuclear architecture and H2AX phosphorylation in S/G2 phase-arrested root meristem cells, immunocytochemical comparisons using an antibody raised against human γ-H2AX were made among three plants differing with respect to DNA contents: Allium porrum, representing a reticulate type of DNA package, Vicia faba, having semireticulate cell nuclei, and Raphanus sativus, characterised by a chromocentric type of chromatin. Another approach was aimed at determining possible correlations between the extent of hydroxyurea-induced phosphorylation of H2AX histones and the quantities of root meristem cells induced by caffeine to enter aberrant mitotic division (premature chromosome condensation). It was concluded that the higher-order structure of chromatin may contribute to the accessibility of molecular factors engaged in the recognition and repair of genetic lesions. Consequently, in contrast to A. porrum and V. faba, a diffuse chromatin in chromocentric cell nuclei of R. sativus may become more vulnerable both to generate DNA double-strand breaks and to recruit molecular elements needed to arrange the cell cycle checkpoint functions, and thus, more resistant to factors which allow the cells to enter premature chromosome condensation spontaneously. On the other hand, however, caffeine-mediated overriding of the S-M checkpoint control system resulted in the typical appearance of premature chromosome condensation, irrespective of the genomic content of DNA. Correspondence and reprints: Department of Cytophysiology, University of Łódź, Pilarskiego 14, 90-231 Łódź, Poland.  相似文献   

3.
BACKGROUND: DNA replication stress often induces DNA damage. The antitumor drug hydroxyurea (HU), a potent inhibitor of ribonucleotide reductase that halts DNA replication through its effects on cellular deoxynucleotide pools, was shown to damage DNA inducing double-strand breaks (DSBs). Aphidicolin (APH), an inhibitor of alpha-like DNA polymerases, was also reported to cause DNA damage, but the evidence for induction of DSBs by APH is not straightforward. Histone H2AX is phosphorylated on Ser 139 in response to DSBs and one of the protein kinases that phosphorylate H2AX is ataxia telangiectasia mutated (ATM); activation of ATM is through its phosphorylation of Ser 1981. The present study was undertaken to reveal whether H2AX is phosphorylated in cells exposed to HU or APH and whether its phosphorylation is mediated by ATM. MATERIALS AND METHODS: HL-60 cells were treated in cultures with 0.1-5.0 mM HU or 1-4 muM APH for up to 5 h. Activation of ATM and H2AX phosphorylation was detected immunocytochemically using Ab specific to Ser1981-ATM or Ser 139-H2AX epitopes, respectively, concurrent with measurement of cellular DNA content. RESULTS: While exposure of cells to HU led to H2AX phosphorylation selectively during S phase and the cells progressing through the early portion of S (DI = 1.1-1.4) were more affected than late-S phase (DI = 1.6-1.9) cells, ATM was not activated by HU. In fact, the level of constitutive ("programmed") ATM phosphorylation was distinctly suppressed, in all phases of the cell cycle, at 0.1-5.0 mM HU. Cells' exposure to APH also resulted in H2AX phosphorylation at Ser139 with no evidence of ATM activation, and as in the case of HU, the early-S cells were more affected than the late-S phase cells. The rise in frequency of apoptotic cells became apparent after 2 h of exposure to HU or APH, and all apoptotic cells had markedly elevated levels of both H2AX-Ser139 and ATM-Ser1981 phosphorylation. CONCLUSIONS: The lack of correlation between H2AX phosphorylation and ATM activation indicates that protein kinase(s) other than ATM (ATR and/or DNA-dependent protein kinase) are activated by DSBs induced by replication stress. Interestingly, HU inhibits the constitutive ("programmed") level of ATM phosphorylation in untreated cells. However, DNA fragmentation during apoptosis activates ATM and dramatically increases level of H2AX phosphorylation.  相似文献   

4.

Background and Aims

Prolonged treatment of Allium cepa root meristems with changing concentrations of hydroxyurea (HU) results in either premature chromosome condensation or cell nuclei with an uncommon form of biphasic chromatin organization. The aim of the current study was to assess conditions that compromise cell cycle checkpoints and convert DNA replication stress into an abnormal course of mitosis.

Methods

Interphase-mitotic (IM) cells showing gradual changes of chromatin condensation were obtained following continuous 72 h treatment of seedlings with 0·75 mm HU (without renewal of the medium). HU-treated root meristems were analysed using histochemical stainings (DNA-DAPI/Feulgen; starch-iodide and DAB staining for H2O2 production), Western blotting [cyclin B-like (CBL) proteins] and immunochemistry (BrdU incorporation, detection of γ-H2AX and H3S10 phosphorylation).

Key Results

Continuous treatment of onion seedlings with a low concentration of HU results in shorter root meristems, enhanced production of H2O2, γ-phosphorylation of H2AX histones and accumulation of CBL proteins. HU-induced replication stress gives rise to axially elongated cells with half interphase/half mitotic structures (IM-cells) having both decondensed and condensed domains of chromatin. Long-term HU treatment results in cell nuclei resuming S phase with gradients of BrdU labelling. This suggests a polarized distribution of factors needed to re-initiate stalled replication forks. Furthermore, prolonged HU treatment extends both the relative time span and the spatial scale of H3S10 phosphorylation known in plants.

Conclusions

The minimum cell length and a threshold level of accumulated CBL proteins are both determining factors by which the nucleus attains commitment to induce an asynchronous course of chromosome condensation. Replication stress-induced alterations in an orderly route of the cell cycle events probably reflect a considerable reprogramming of metabolic functions of chromatin combined with gradients of morphological changes spread along the nucleus.  相似文献   

5.

Background  

When DNA double-strand breaks (DSB) are induced by ionizing radiation (IR) in cells, histone H2AX is quickly phosphorylated into γ-H2AX (p-S139) around the DSB site. The necessity of DNA-PKcs in regulating the phosphorylation of H2AX in response to DNA damage and cell cycle progression was investigated.  相似文献   

6.
Accumulation of DNA damage may play an essential role in both cellular senescence and organismal aging. The ability of cells to sense and repair DNA damage declines with age. However, the underlying molecular mechanism for this age-dependent decline is still elusive. To understand quantitative and qualitative changes in the DNA damage response during human aging, DNA damage-induced foci of phosphorylated histone H2AX (γ-H2AX), which occurs specifically at sites of DNA double-strand breaks (DSBs) and eroded telomeres, were examined in human young and senescing fibroblasts, and in lymphocytes of peripheral blood. Here, we show that the incidence of endogenous γ-H2AX foci increases with age. Fibroblasts taken from patients with Werner syndrome, a disorder associated with premature aging, genomic instability and increased incidence of cancer, exhibited considerably higher incidence of γ-H2AX foci than those taken from normal donors of comparable age. Further increases in γ-H2AX focal incidence occurred in culture as both normal and Werner syndrome fibroblasts progressed toward senescence. The rates of recruitment of DSB repair proteins to γ-H2AX foci correlated inversely with age for both normal and Werner syndrome donors, perhaps due in part to the slower growth of γ-H2AX foci in older donors. Because genomic stability may depend on the efficient processing of DSBs, and hence the rapid formation of γ-H2AX foci and the rapid accumulation of DSB repair proteins on these foci at sites of nascent DSBs, our findings suggest that decreasing efficiency in these processes may contribute to genome instability associated with normal and pathological aging.  相似文献   

7.
Immunocytochemistry using α-phospho-H2AX antibodies shows that hydroxyurea (HU), an inhibitor of ribonucleotide reductase, and aphidicolin (APH), an inhibitor of DNA-polymerases α and δ, may promote formation of phospho-H2AX foci in late S/G2-phase cells in root meristems of Vicia faba. Although fluorescent foci spread throughout the whole area of nucleoplasm, large phospho-H2AX aggregates in HU-treated cells allocate mainly in perinucleolar regions. A strong tendency of ATR/ATM-dependent phospho-Chk1S317 kinase to focus in analogous compartments, as opposed to phospho-Chk2T68 and to both effector kinases in APH-treated cells, may suggest that selected elements of the intra-S-phase cell cycle checkpoints share overlapping locations with DNA repair factors known to concentrate in phospho-H2AX aggregates. APH-induced phosphorylation of H2AX exhibits little or no overlap with the areas positioned close to nucleoli. Following G2-M transition of the HU- and APH-pretreated cells, altered chromatin structures are still discernible as large phospho-H2AX foci in the vicinity of chromosomes. Both in HU- and APH-treated roots, immunofluorescence analysis revealed a dominant fraction of small foci and a less frequent population of large phospho-H2AX agregates, similar to those observed in animal cells exposed to ionizing radiation. The extent of H2AX phosphorylation has been found considerably reduced in root meristem cells treated with HU and caffeine. The frequencies of phospho-H2AX foci observed during mitosis and caffeine-mediated premature chromosome condensation (PCC) suggest that there may be functional links between the checkpoint mechanisms that control genome integrity and those activities which operate throughout the unperturbed mitosis in plants.  相似文献   

8.
Plant root meristem cells divide asynchronously which makes biochemical analysis of cell cycle regulation particularly difficult. In the present article a high level of cell cycle synchronization in Vicia faba root meristems was obtained by using a rich medium (HNS), special culture conditions and a double-block method with replication inhibitor—hydroxyurea (HU). Two HU concentrations were tested and different periods of the first and the second synchronization, and of cycle recommencement between the first and the second blockage. The level of synchronization was estimated on the basis of 3H-thymidine labeling indices, mitotic, and phase indices and indices determining the percentage of G1 and G2 cells, which were identified by cytophotometric measurements of DNA content in individual nuclei. The highest level of cell cycle synchronization was obtained after double treatment of meristems with 1.25 mM HU (18 and 12 h) separated by 6-h incubation in HNS without HU. During the second postincubation in HNS in subsequent hours: 4, 7, 10, 11, over 90% of cells in the S phase, nearly 70% in G2 phase, 86% in mitosis, and nearly 70% in G1 phase were received, respectively. The use of 2.5 mM HU in a similar experimental procedure caused disturbed divisions.  相似文献   

9.
DNA double-strand breaks (DSBs) that occur in cells after ionizing radiation (IR) or chemical agents are the most dangerous lesions in eukaryotic cells resulting in cell death or chromosomal aberrations and cancer. DSB repair is very important for maintenance of genome stability. One of the earliest cellular responses to DSBs is phosphorylation at 139 serine of core variant histone H2AX in megabase chromatin domains around DSB (γ-H2AX), which amplifies the signal and makes it possible to identify even a very few DSBs in a genome. Here, using immunofluorescent and Western blotting techniques, we studied the dynamics of γ-H2AX formation in human lymphocytes of various individuals irradiated ex vivo. We found that the dynamics of γ-H2AX formation in lymphocytes differ between individuals but had similar kinetics and statistically is independent of people’s age.  相似文献   

10.
Phosphorylation of replacement histone H2AX occurs in megabase chromatin domains around DNA double-strand breaks (DSBs), and this modification called γ-H2AX can be used as an effective marker for DSBs repair and DNA damage response. Using Western blotting and immunohistochemistry techniques we have studied here the influence of exogenous nicotinamide adenine dinucleotide phosphate (NADP), which can potentially increase the level of intracellular NAD+, on the level of γ-H2AX formation in mouse heart cells after ionizing radiation (IR). We have found that injection of NADP in different doses immediately after IR causes an increased level of γ-H2AX in mouse heart cells 20 min after IR at the dose of 3 Gy compared to control mice after IR exposure. It indicates that there could be a relationship between intracellular NAD+ content and DNA damage response in vivo.  相似文献   

11.
Histone H2AX undergoes phosphorylation on Ser 139 (γ-H2AX) rapidly in response to DNA double-strand breaks induced by exogenous stimuli, such as ionizing radiation. However, the endogenous phosphorylation pattern and modifier of H2AX remain unclear. Here we show that H2AX is regulated physically at the level of phosphorylation at Ser139 during a hair cycle in the mouse skin. In anagen hair follicles, γ-H2AX-positive cells were observed in the outer root sheath (ORS) and hair bulb in a cycling inferior region but not in a permanent superficial region. In telogen hair follicles, γ-H2AX-positive cells were only detected around the germ cell cap. In contrast, following X-irradiation, γ-H2AX was observed in various cell types including the ORS cells in the permanent superficial region. Furthermore, γ-H2AX-positive cells were detected in the skin of mice lacking either ATM or DNA-PK, suggesting that these kinases are not essential for phosphorylation in vivo.  相似文献   

12.
We recently showed that histone H2AX phosphorylated on serine 139 (γ-H2AX), a hallmark of DNA damage response (DDR), also forms early during apoptosis induced by death receptor activation. Here, we extend and discuss our findings on apoptotic γ-H2AX, which differs from the well-established DDR with nuclear foci. During apoptosis induced by death receptors agonists (TRAIL and FasL) and staurosporine, γ-H2AX is initiated in the nuclear periphery immediately inside the nuclear envelope while total H2AX remains distributed throughout the nucleus. This process is readily detectable by immunofluorescence microscopy and we refer to it as the “γ-H2AX ring”. It is conserved both in cancer and normal cells. The γ-H2AX ring contains the activated checkpoints kinases, ATM, Chk2 and DNA-PK; the latter being the main effector for the apoptotic γ-H2AX phosphorylation. Notably, we show here that the γ-H2AX ring coincides with phosphorylated H2B on serine 14 (PS14-H2B), another histone modification associated with apoptosis. The coordinated phosphorylations of H2AX and H2B suggest a previously unrecognized histone phosphorylation signature for apoptosis consisting of γ-H2AX together with PS14-H2B and possibly PY142-H2AX. This signature (“phospho-histone 2 code”) together with the γ-H2AX ring provides a new feature to monitor and study apoptosis.  相似文献   

13.
Ataxia telangiectasia (AT) is a genetic disorder caused by the mutation of the atm gene. It is characterized by progressive neurological abnormalities in combination with oculocutaneous telangiectasias, immunodeficiency, and increased frequency of malignancy. Cells of AT patients display increased radiosensitivity and premature aging markers, including shortened telomer length beginning at birth and limited proliferation potential. We studied radiosensitivity (at a dose 2 Gy) and the manifestation of premature aging markers in cultured skin fibroblasts derived from two unrelated AT patients and their heterozygous parents. We have shown that all the markers studied, i.e., HP1-γ, histone H2AX phosphorylated for serine-139 (γ-H2AX) and foci of 53BP1 protein, indicate the premature aging of the cells of both patients and their blood relatives. However, cells of heterozygous carriers express premature aging to a lesser extent. A study of the repair process (the amount of γ-H2AX and the number of cells with 53BP1 foci in their nuclei) after X-ray irradiation showed that patients’ cells only halfway completed repairs, even 24 h after irradiation, while the healthy donor cells completed repairs in 24 h. In cells from atm heterozygous donors, DNA repair was also slower. Heterozygous cells also differ reliably from healthy donor cells. Only amounts of p21Waf1/Cip1 protein, an inhibitor of cyclin-dependent kinases, in heterozygous cells do not differ from normal cells. However, the patients’ cells differ significantly. It was found that the mutation of the atm gene was related to the suppression of the reparation of DNA double-strand breaks (DSBs), which is in good agreement with increased radiosensitivity and premature aging in AT families at the cellular level.  相似文献   

14.
Histone H2AX rapidly undergoes phosphorylation at Ser139 (γ-H2AX) in response to DNA double-strand breaks. Although ATM kinase and DNA-PK phosphorylate Ser139 of H2AX in culture cells, the regulatory mechanism of γ-H2AX level remains unclear in vivo. Here, we detected the phosphorylation of H2AX and the elimination of γ-H2AX in the mouse skin after X-irradiation. Furthermore, following X-irradiation, the level of γ-H2AX also increased in mice lacking either ATM or DNA-PK. Although the elimination after X-irradiation was detected in the skin of these mutant mice, the elimination in DNA-PK-deficient mice was slower than that in C3H and ATM knockout mice, suggesting that a fraction of γ-H2AX in the skin is eliminated in a DNA-PK-dependent manner. Although the DNA-PK-dependent elimination of γ-H2AX was also detected in the liver, kidney, and spleen, the DNA-PK-dependent phosphorylation of H2AX was detected in the spleen only. These results suggest that the regulatory mechanism of γ-H2AX level is tissue-specific.  相似文献   

15.
Phosphorylated histone H2AX (γ-H2AX) functions in the recruitment of DNA damage response proteins to DNA double-strand breaks (DSBs) and facilitates DSB repair. ATM also co-localizes with γ-H2AX at DSB sites following its auto-phosphorylation. However, it is unclear whether γ-H2AX has a role in activation of ATM-dependent cell cycle checkpoints. Here, we show that ATM as well as NBS1 is recruited to damaged-chromatin in a γ-H2AX-dependent manner. Foci formation of phosphorylated ATM and ATM-dependent phosphorylation is repressed in H2AX-knockdown cells. Furthermore, anti-γ-H2AX antibody co-immunoprecipitates an ATM-like protein kinase activity in vitro and recombinant H2AX increases in vitro kinase activity of ATM from un-irradiated cells. Moreover, H2AX-deficient cells exhibited a defect in ATM-dependent cell cycle checkpoints. Taken together, γ-H2AX has important role for effective DSB-dependent activation of ATM-related damage responses via NBS1.  相似文献   

16.
Environmental contamination and ingestion of the radionuclide Cesium-137 (137Cs) is a large concern in fallout from a nuclear reactor accident or improvised nuclear device, and highlights the need to develop biological assays for low-dose rate, internal emitter radiation. To mimic low-dose rates attributable to fallout, we have developed a VAriable Dose-rate External 137Cs irradiatoR (VADER), which can provide arbitrarily varying and progressive low-dose rate irradiations in the range of 0.1–1.2 Gy/day, while circumventing the complexities of dealing with radioactively contaminated biomaterials. We investigated the kinetics of mouse peripheral leukocytes DNA damage response in vivo after variable, low-dose rate 137Cs exposure. C57BL/6 mice were placed in the VADER over 7 days with total accumulated dose up to 2.7 Gy. Peripheral blood response including the leukocyte depletion, apoptosis as well as its signal protein p53 and DNA repair biomarker γ-H2AX was measured. The results illustrated that blood leukocyte numbers had significantly dropped by day 7. P53 levels peaked at day 2 (total dose = 0.91 Gy) and then declined; whereas, γ-H2AX fluorescence intensity (MFI) and foci number generally increased with accumulated dose and peaked at day 5 (total dose = 2.08 Gy). ROC curve analysis for γ-H2AX provided a good discrimination of accumulated dose < 2 Gy and ≥ 2 Gy, highlighting the potential of γ-H2AX MFI as a biomarker for dosimetry in a protracted, environmental exposure scenario.  相似文献   

17.
Condensin complexes are essential for chromosome condensation and segregation in mitosis, while condensin dysfunction, among other pathways leading to chromosomal bridging in mitosis, may play a role in tumor genomic instability, including recently discovered chromotripsis. To characterize potential double-strand breaks specifically occurring in late anaphase, human chromosomes depleted of condensin were analyzed by γ-H2AX ChIP followed by high-throughput sequencing (ChIP-seq). In condensin-depleted cells, the nonrepeated parts of the genome were shown to contain distinct γ-H2AX enrichment zones 75% of which overlapped with known hemizygous deletions in cancers. Furthermore, some tandemly repeated DNA sequences, analyzed separately from the rest of the genome, showed significant γ-H2AX enrichment in condensin-depleted anaphases. The most commonly occurring targets of such enrichment included simple repeats, centromeric satellites, and rDNA. The two latter categories indicate that acrocentric human chromosomes are especially susceptible to breaks upon condensin deficiency. The genomic regions that are specifically destabilized upon condensin dysfunction may constitute a condensin-specific chromosome destabilization pattern.  相似文献   

18.
Formation of hybrid nucleosomes cantaining new and old histones.   总被引:3,自引:2,他引:1       下载免费PDF全文
5 mM hydroxyurea (HU) inhibits DNA synthesis in mouse P815 cells by 94-97% in less than 1 hr. Nevertheless, histone synthesis continues and newly-synthesised histones are incorporated into non-replicating chromatin at a rate of about 20% of that in control exponentially-growing cells. To study the organization of these histones in chromatin P815 cells were treated with 5 mM HU in medium containing dense (15N, 13C, 2H) - substituted amino acids. After inhibition of DNA synthesis, newly-synthesised histones were labelled with (3H)-arginine. The cells were harvested 90 min later, and mono- and oligonucleosomes were prepared and analysed on metrizamide-triethanolamine (MA-TEA density gradients. Analysis of the distribution of 3H-labelled histones in these gradients shows that they are incorporated into hybrid mononucleosomes containing both new and old histones. It is also shown that these hybrid nucleosomes are not randomly distributed, but show a certain tendency to be clustered in certain chromatin regions.  相似文献   

19.
20.
Souguir D  Ferjani E  Ledoigt G  Goupil P 《Protoplasma》2008,233(3-4):203-207
The potential genotoxicity of Cu(2+) was investigated in Vicia faba and Pisum sativum seedlings in hydroponic culture conditions. Cu(2+) caused a dose-dependent increase in micronuclei frequencies in both plant models. Cytological analysis of root tips cells showed clastogenic and aneugenic effects of this heavy metal on V. faba root meristems. Cu(2+) induced chromosomal alterations at the lowest concentration used (2.5 mM) when incubated for 42 h, indicating the potent mutagenic effect of this ion. A spectrum of chromosomal abnormalities was observed in V. faba root meristems, illustrating the genotoxic events leading to micronuclei formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号