首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Under equilibrium conditions, the nicotinic acetylcholine receptor from Torpedo electroplax carries two high affinity-binding sites for agonists. It is generally assumed that these are the only agonist sites on the receptor and that their occupancy results in rapid channel activation followed by slower conformational transitions that lead to the high affinity equilibrium state. These slow transitions are thought to reflect the physiological process of desensitization. Here we show that preequilibration of the high affinity sites with saturating concentrations of carbamylcholine does not diminish the ion flux response to subsequent exposure to higher (activating) concentrations of this agonist. This finding has profound implications with respect to receptor function: (1) occupancy of the high affinity sites per se does not desensitize the receptor and (2) these sites cannot be directly involved in receptor activation. It is thus necessary to invoke the presence of additional binding sites in channel opening.  相似文献   

2.
Human blood neutrophils suspended in Na+-free, high-K+, phosphate-buffered solution exhibit respiratory and secretory responses to N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) much higher than those suspended in phosphate-buffered solution containing physiological concentration of K+ and Na+. The differences between the responses are very marked at low doses of fMet-Leu-Phe (10?9, 10?8 M), progressively decrease at higher doses, and disappear at the maximal stimulatory concentration of the peptide (10?6 M). The higher responses of human neutrophils to fMet-Leu-Phe are not dependent on the membrane depolarization, that occurs when the cells are suspended in high-K+ buffered solution, but on the absence, or on the low concentration, of Na+ in the suspending medium. In fact: (i) the higher respiratory and secretory responses progressively decrease by substituting K+ with Na+ in the suspending solution, without change of the state of depolarization; (ii) the replacement of extracellular Na+ with choline ions does not affect the transmembrane potential of neutrophils but induces higher respiratory and secretory responses to fMet-Leu-Phe; (iii) the membrane depolarization induced by gramicidin and by ouabain does not result in a higher respiratory response to chemotactic peptide. These results indicate that in human neutrophils Na+ plays a regulative role in the stimulation of the respiratory burst and in the secretion induced by the chemotactic peptide. This regulation does not influence the maximal responses, but the threshold of the responses. K+ is also involved at least in the respiratory response, since the effect of the absence of Na+ is potentiated when the concentration of K+ of the suspending solution is high. Furthermore, the finding that a very high respiratory burst and the secretion of β-glucuronidase and vitamin B-12-binding protein can be induced by fMet-Leu-Phe in human neutrophils in the absence of external Na+ indicates that the entry of this cation and the consequent decrease in transmembrane potential are not necessary events for the activation of respiration and secretion by the peptide. The mechanism underlying the effect of the modification of ionic composition of the external medium is discussed in terms of the molecular events triggered by the stimulus at the level of the plasma membrane and of the recognition phenomena at the cell surface, that are common steps for the induction of the respiratory and secretory responses in neutrophils.  相似文献   

3.
The responses of neutrophils to formyl peptides are initiated and in many cases achieve a maximal level prior to equilibrium receptor occupancy. In order to begin to understand the linkage between receptor occupancy and cell response we have used a pulsed binding procedure to analyze: 1) the number of receptors contributing to three potential signalling events and six functional responses and 2) the evolution of these responses once ligand binding is interrupted. We find that the half-optimal elevations of the potential signals are produced by less than 1% occupancy (Ca2+) or 1-3% occupancy (cAMP, membrane depolarization). In contrast, actin polymerization and a rapid light scatter response are elicited by less than 0.1% occupancy. Half-optimal elastase release and degranulation require approximately 3% occupancy. While half-optimal O2- production and aggregation require approximately 30% occupancy, the half-optimal rate of O2- production requires less than 10% occupancy. To resolve the apparent lack of correlation between the responses and the signals we examined their time courses following the pulse of stimulation. At least four responses and one signal are transient and decay while occupied receptors remain on the membrane surface. These include the Quin 2-Ca2+ signal, actin polymerization, the light scatter response, O2- generation, and aggregation. Ca2+ elevation is correlated with the responses in that: 1) each of these responses is transient unless new receptors are occupied; 2) occupancy of nearly all of the receptors contributes to the time course of these responses; 3) when binding is interrupted, the responses decay with a half-time of 15 s, following a latency of approximately 10 s or less (except for disaggregation where latency is 30-40 s). We discuss evidence in support of the hypothesis that transient cell responses arise from transient receptor activation.  相似文献   

4.
Phosphorylation of a 47 kDa protein in human neutrophils is induced by phorbol 12-myristate 13-acetate (PMA), opsonized latex beads, fMet-Leu-Phe, calcium ionophore A23187 and fluoride. All of these stimuli activate the specialized microbicidal respiratory burst of neutrophils, and in each case the kinetics of activation correspond with the kinetics of phosphorylation of the 47 kDa protein. Trifluoperazine (50 microM) and chlorpromazine (100 microM), inhibitors of calmodulin and protein kinase C, abolish the increase in oxygen consumption and selectively prevent phosphorylation of the 47 kDa protein after PMA stimulation. Treatment of neutrophils with pertussis toxin totally inhibits both superoxide production and phosphorylation of this protein in response to fMet-Leu-Phe, but not in response to PMA, indicating that a GTP-binding protein modulates the fMet-Leu-Phe receptor signal. Phosphorylation of the 47 kDa protein, a phenomenon absent from the neutrophils of subjects with autosomal recessive chronic granulomatous disease, which lack the respiratory burst, appears to be the common trigger for activation of the burst in normal neutrophils.  相似文献   

5.
Previous studies on the regulation of responses of neutrophils to fMet-Leu-Phe have demonstrated the relevance of the role of the rate of occupation of the receptors by the stimulant. When this rate is decreased by presenting the peptide to neutrophils over a period of time by means of an infusion pump, the activation of the respiratory burst and of the secretion is greatly depressed or is absent. This paper deals with further investigations on the mechanisms of this desensitization, which previous results have shown to consist of an uncoupling between the ligand-receptor complexes and the target for cell responses, caused by the deceleration of the initial rate of occupation of the receptors. The data presented here demonstrate that this desensitization is not linked to the formation of a negative intermediate such as cAMP, but is associated with: (i) a depression of the rate and magnitude of the phosphatidylinositol response (activation of phosphatidylinositol turnover measured as modification of incorporation of [32P]Pi and [3H]glycerol into phosphatidylinositol and phosphatidic acid); (ii) a deceleration of the rate of the release of bound Ca2+, without a decrease in the total quantity of Ca2+ liberated (measured as fluorescence changes of chlorotetracycline treated neutrophils); (iii) a slower rise of cytosolic free Ca2+ concentration [Ca2+]i, without a decrease in the magnitude of the final increase of [Ca2+]i (monitored with Quin 2). These findings, which are discussed in relation to the recent hypotheses on the transduction reactions of receptor-mediated stimuli for neutrophil responses, are consistent with a mechanism of desensitization involving decreased production of diacylglycerol by the hydrolysis of phosphatidylinositol and deficient activation of Ca2+-phospholipid-dependent protein kinase C.  相似文献   

6.
Neutrophils respond to chemoattractants by aggregating, degranulating, remodelling of phospholipids and releasing arachidonic acid. To determine whether ligand-induced remodelling of phospholipids depends on redistribution of intracellular organelles (degranulation), we compared phospholipid remodelling of human neutrophils with that of neutrophil-derived cytoplasts. Cytoplasts, organelle-depleted vesicles of cytosol surrounded by plasmalemma, cannot degranulate. Without a stimulus, [3H]arachidonate was incorporated preferentially into phosphatidylinositol (PI) and phosphatidylcholine (PC). Exposure of cytoplasts and neutrophils prelabelled with [3H]arachidonate or [14C]glycerol to fMet-Leu-Phe (10(-7) M) induced rapid changes in distribution of label and mass of individual phospholipids: [3H]arachidonate in phosphatidic acid (PA) increased 500% (120 s), [14C]glycerol incorporation and mass of PA approached 200% of unstimulated values, and [3H]arachidonate in PI decreased continuously; these data are compatible with activity of a PI/PA cycle. However, the mass of PI in both preparations and [14C]glycerol label in intact neutrophils increased initially (5 s), suggesting net synthesis and mobilization of more than one pool of PI. Heterogeneity of PC pools was also observed: [3H]arachidonate was lost from PC immediately upon addition of stimulus, whereas mass and [14C]glycerol values increased. Thus, net phospholipid synthesis, redistribution of arachidonate and activation of the PI/PA cycle are immediate responses of the neutrophil to receptor occupancy by chemoattractants. Furthermore, the similarity in response to fMet-Leu-Phe of neutrophils and granule-free cytoplasts indicates that these processes are independent of degranulation.  相似文献   

7.
We describe the solubilization, resolution, and reconstitution of the formylmethionylleucylphenylalanine (fMet-Leu-Phe) receptor and guanine nucleotide regulatory proteins (G-proteins). The receptor was solubilized with 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate. Guanine nucleotides decreased the number of high-affinity binding sites and accelerated the rate of dissociation of the receptor-ligand complex, suggesting that the solubilized receptor remained coupled to endogenous G-proteins. The solubilized receptor was resolved from endogenous G-proteins by fractionation on a wheat germ agglutinin (WGA)-Sepharose 4B column. High-affinity [3H]fMet-Leu-Phe binding to the WGA-purified receptor was diminished and exhibited reduced guanine nucleotide sensitivity. High-affinity [3H]fMet-Leu-Phe binding and guanine nucleotide sensitivity were reconstituted upon the addition of purified brain G-proteins. Similar results were obtained when the receptor was reconstituted with brain G-proteins into phospholipid vesicles by gel filtration chromatography. In addition, we also demonstrated fMet-Leu-Phe-dependent GTP hydrolysis in the reconstituted vesicles. The results of this work indicate that coupling of the fMet-Leu-Phe receptor to G-proteins converts the receptor to a high-affinity binding state and that agonist produces activation of G-proteins. The resolution and functional reconstitution of this receptor should provide an important step toward the elucidation of the molecular mechanism of the fMet-Leu-Phe transduction system in neutrophils.  相似文献   

8.
The response of human neutrophils to N-formyl peptides were studied under conditions where ligand binding was controlled by infusing a cell suspension with the peptide over a time period comparable to the normal half-time for binding. Receptor occupancy was measured in real time with a fluorescently labeled peptide using flow cytometry. This binding was approximated by a simple reversible model using typical on (7 X 10(8) M- min-1) and off (0.35/min) rate constants and the infusion rates (0.02-0.2 nM/min). Under conditions of stimulus infusion intracellular calcium elevation, superoxide generation, and right angle light scatter and F-actin formation were measured. As the infusion rate was decreased into the range of 10 pM/min, lowering the rate of increase of receptor occupancy to approximately 0.5% per min, the calcium and right angle light scatter responses elongated in time and decreased in magnitude. Superoxide generation decreased below infusion rates of approximately 100 pM/min (occupancy increasing at a rate in the range of 5% per min). This behavior could contribute to differences between chemotactic responses, which appear to require low rates of receptor occupancy over long periods, and bactericidal or inflammatory responses (free radical generation and degranulation), which require bursts of occupancy of several percent of the receptors.  相似文献   

9.
The dose-response characteristics of the neutrophil 3-3'-dipentyloxacarbocyanine (di-O-C5(3)) fluorescence response to repetitive stimulation with the chemoattractant N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) were studied. Neutrophils exposed to the chemoattractant fMet-Leu-Phe at less than 5 X 10(-8) M subsequently responded only to higher concentrations of fMet-Leu-Phe. This stimulus-induced modification of neutrophil responsiveness involved a reversible fMet-Leu-Phe-induced shift in response Km (the concentration of fMet-Leu-Phe producing a half-maximal response) to higher values which occurred 1 to 2 min after exposure to fMet-Leu-Phe and represented a form of adaptation. A Hill coefficient of 0.68 +/- 0.07 was determined from analysis of the data indicating that the di-O-C5(3) fluorescence response behavior is compatible with functional negatively cooperative interaction and/or heterogeneity of fMet-Leu-Phe receptors. In related studies, analysis of the binding of fMet-Leu-[3H]Phe to intact cells and cell-free plasma membrane preparations resulted in Hill coefficients of 0.64 +/- 0.06 and 0.69 +/- 0.07, respectively, indicating that fMet-Leu-Phe binding exhibits properties similar to the fMet-Leu-Phe-elicited di-O-C5(3) fluorescence response. Modulation of receptor affinity, through either negative cooperativity or changing populations of heterogeneous receptors, may be an important mechanism by which neutrophils adapt and respond to a gradient of chemoattractant during the process of chemotaxis.  相似文献   

10.
The protein kinase C inhibitor, staurosporine, inhibited NADPH oxidase activity of human neutrophils activated by phorbol myristate acetate. However, this inhibitor had no effect on either the initiation or the maximal rate of O2- secretion activated by the chemotactic peptide, fMet-Leu-Phe, but resulted in a more rapid termination of oxidant production. Similarly, staurosporine had no effect on the rapid (1 min) increase in luminol-dependent chemiluminescence activated by fMet-Leu-Phe, but the second (intracellular) phase of oxidant production was inhibited. The initial burst of oxidant production during phagocytosis was similarly protein kinase C-independent, but again the later phases of oxidase activity were staurosporine-sensitive. Neutrophils loaded with Quin-2 at concentrations sufficient to act as a Ca2+ buffer could not secrete O2- in response to fMet-Leu-Phe; although the initial (protein kinase C-independent) burst of luminol chemiluminescence was not observed in fMet-Leu-Phe-stimulated Ca2(+)-buffered cells, the second phase of (protein kinase C-dependent) oxidant production was largely unaffected. Hence, the initial burst of oxidant production activated by fMet-Leu-Phe, opsonized zymosan, and latex beads is independent of the activity of protein kinase C-dependent intracellular activation processes, but the activity of this kinase is required to extend or sustain the duration of oxidant production.  相似文献   

11.
Studies were carried out on the mechanism responsible for the enhancement of the respiratory and secretory responses to N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) exhibited by human neutrophils suspended in Na+-free, high-K+ buffered solution. The results demonstrate that: (a) the variation of Na+ concentration in the suspending solution induces in human neutrophils a marked modification of the recognition apparatus for the chemotactic peptide fMet-Leu-Phe, the lack of or low concentration of this ion increasing the number of the receptors and their specific affinity for the ligand; (b) the greater respiratory burst and secretion induced by fMet-Leu-Phe in human neutrophils suspended in Na+-free, high-K+ medium are due to the increased formation of receptor-ligand complexes at the cell membrane; (c) the greater respiratory response is partially due also to a higher efficiency of these receptor-ligand complexes. The molecular mechanism by which Na+ exerts a regulative role on the properties of the recognition apparatus for the chemotactic peptide and its possible significance are discussed.  相似文献   

12.
The hypothesis that protein kinase C (PKC) participates in agonist-mediated desensitization of formyl peptide receptors in HL-60 granulocytes was tested. fMet-Leu-Phe and leukotriene B4(LTB4) produced homologous desensitization of agonist-stimulated intracellular calcium transients. Pre-treatment with the PKC activator, phorbol myristate acetate (PMA; 10 nM), abolished both fMet-Leu-Phe and LTB4-stimulated calcium transients. Membranes prepared from control HL-60 granulocytes (NM) or cells treated with 10 nM PMA (PMA-M) demonstrated increased formyl peptide receptor and G protein density, as determined by radioligand binding and pertussis toxin- and cholera toxin-catalysed ADP ribosylation. fMet-Leu-Phe stimulation of guanosine 5′-[γ-thio]-triphosphate (GTPγS) binding and GTP hydrolysis and GDP inhibition of fMet-Leu-Phe binding were not different between NM and PMA-M. Pre-treatment with 10 nM PMA did not inhibit subsequent fMet-Leu-Phe-stimulated superoxide generation or phospholidase D activation. We conclude that PKC desensitizes fMet-Leu-Phe-stimulated phospholipase C, but not phospholipase D, responses and that PKC activation does not mediate agonist-induced desensitization of formyl peptide receptors.  相似文献   

13.
A simple theoretical framework is presented for bioassay studies using three componentin vitrosystems. An equilibrium model is used to derive equations useful for predicting changes in biological response after addition of hormone-binding-protein or as a consequence of increased hormone affinity. Sets of possible solutions for receptor occupancy and binding protein occupancy are found for typical values of receptor and binding protein affinity constants. Unique equilibrium solutions are dictated by the initial condition of total hormone concentration. According to the occupancy theory of drug action, increasing the affinity of a hormone for its receptor will result in a proportional increase in biological potency. However, the three component model predicts that the magnitude of increase in biological potency will be a small fraction of the proportional increase in affinity. With typical initial conditions a two-fold increase in hormone affinity for its receptor is predicted to result in only a 33% increase in biological response. Under the same conditions an 11-fold increase in hormone affinity for receptor would be needed to produce a two-fold increase in biological potency. Some currently used bioassay systems may be unrecognized three component systems and gross errors in biopotency estimates will result if the effect of binding protein is not calculated. An algorithm derived from the three component model is used to predict changes in biological response after addition of binding protein toin vitrosystems. The algorithm is tested by application to a published data set from an experimental study in anin vitrosystem (Limet al., 1990,Endocrinology127,1287–1291). Predicted changes show good agreement (within 8%) with experimental observations.  相似文献   

14.
Previous studies on the regulation of responses of neutrophils to fMet-Leu-Phe have demonstrated the relevance of the role of the rate of occupation of the receptors by the stimulant. When this rate is decreased by presenting the peptide to neutrophils over a period of time by means of an infusion pump, the activation of the respiratory burst and of the secretion is greatly depressed or is absent. This paper deals with further investigations on the mechanisms of this desensitization, which previous results have shown to consist of an uncoupling between the ligand-receptor complexes and the target for cell responses, caused by the deceleration of the initial rate of occupation of the receptors. The data presented here demonstrate that this desensitization is not linked to the formation of a negative intermediate such as cAMP, but is associated with: (i) a depression of the rate and magnitude of the phosphatidylinositol response (activation of phospahtidylinositol turnover measured as modification of incorporation of [32P]Pi and [3H]glycerol into phosphatidylinositol and phosphatidic acid); (ii) a deceleration of the rate of the release of bound Ca2+, without a decrease in the total quantity of Ca2+ liberated (measured as fluorescence changes of chlorotetracycline treated neutrophils); (iii) a slower rise of cytosolic free Ca2+ concentration [Ca2+]i, without a decrease in the magnitude of the final increase of [Ca2+]i (monitored with Quin 2). These findings, which are discussed in relation to the recent hypotheses on the transduction reactions of receptor-mediated stimuli for neutrophil responses, are consistent with a mechanism of desensitization involving decreased production of diacylglycerol by the hydrolysis of phosphatidylinositol and deficient activation of Ca2+-phospholipid-dependent protein kinase C.  相似文献   

15.
D J Cash  K Subbarao 《Biochemistry》1988,27(12):4580-4590
The effect of pentobarbital on the responses of the gamma-aminobutyric acid (GABA) receptor from rat brain was studied in quantitative measurements of GABA-mediated chloride-exchange rates (reflecting channel-opening equilibrium) and receptor desensitization rates by using 36Cl- tracer ion with native membrane vesicles. Pentobarbital effected the two phases of 36Cl- influx in different ways, supporting previous evidence that these are mediated by two different receptors [Cash, D. J., & Subbarao, K. (1987) Biochemistry 26, 7556; Cash, D. J., & Subbarao, K. (1987) Biochemistry 26, 7562]. Both the chloride-exchange rate and the desensitization rate of the faster desensitizing receptor were increased by pentobarbital at concentrations above 20 microM by an allosteric effect shifting the response curve to lower GABA concentrations. A similar enhancement of the responses of the slower desensitizing receptor occurred up to 200 microM pentobarbital. Two pentobarbital effector sites were involved in the allosteric mechanism. Above 500 microM pentobarbital, both the initial chloride-exchange rate and the desensitization rate of the slower desensitizing receptor were decreased. This inhibition, which was immediate, occurred with saturating as well as low GABA concentrations and therefore was not attributed to decreased GABA binding but to inhibitory sites for pentobarbital, different from the allosteric activating sites and the GABA binding sites. The chloride ion exchange activity was seen to recover with time, at concentrations above 1000 microM pentobarbital, in a process with a very steep dependence on pentobarbital concentration. This reactivation was attributed to the conversion of an initial form of the receptor to a final form that was less inhibited by pentobarbital. The similarity of the effects of pentobarbital on the chloride ion exchange with its effects on electrophysiological measurements supports the fact that these different techniques study the same phenomena. Comparisons of the effects of pentobarbital on desensitization and on high-affinity ligand binding measurements suggest that increased GABA binding at equilibrium reflects an increased conversion to the desensitized state.  相似文献   

16.
We have found that an anti-CD11c monoclonal antibody (MAb) inhibits the respiratory burst induced in phorbol 12-myristate 13-acetate (PMA)-differentiated U937 cells as well as in human peripheral blood monocytes and neutrophils upon cell stimulation with concanavalin A. The MAb had no effect, however, when the added stimulus was fMet-Leu-Phe or PMA. Flow cytometry analyses indicated that concanavalin A was able to interact with CD11c. The anti-CD11c MAb inhibited significantly concanavalin A binding to differentiated U937 cells, and concanavalin A blocked binding of anti-CD11c MAb to the cells. Binding of labelled concanavalin A to membrane proteins which were separated by PAGE and transferred to nitrocellulose paper indicated that proteins with apparent molecular masses similar to those of CD11c (150 kDa) and CD18 (95 kDa) molecules were the main concanavalin A-binding proteins in differentiated U937 cells as well as in mature neutrophils. Similar experiments carried out in the presence of the anti-CD11c MAb showed a specific and significant inhibition of concanavalin A binding to the CD11c molecule. These results indicate that concanavalin A binds to the CD11c molecule and this binding is responsible for the concanavalin A-induced respiratory burst in PMA-differentiated U937 cells as well as in human mature monocytes and neutrophils.  相似文献   

17.
1. Isolated rat fat cells were incubated at 37 degrees with [U-14C]-glucose 0.55 mM and 125I-labeled insulin. The amount of receptor-bound 125I-labeled insulin and the rate of insulin-induced 14C-lipid synthesis were assessed during association and dissociation of 125I-labeled insulin. 2. The rate of 14C-lipid synthesis was constant from zero time in the absence of insulin and in the presence of insulin in a high concentration (0.7 muM). With insulin in a low concentration (56 pM) the insulin-induced rate of 14C-lipid synthesis was proportional to the receptor occupancy; the receptor binding reached equilibrium and the rate of 14C-lipid synthesis reached a constant value after 30 to 45 min. With insulin in a concentration of 0.7 nM the rate of 14C-lipid synthesis reached a steady state before equilibrium of the receptor binding was obtained. 3. Ater preincubation with 56 pM 125I-labeled insulin followed by removal of extracellular insulin the decrease in the rate of insulin induced 14C-lipid synthesis followed the decrease in receptor occupancy with a half-time of about 10 min. After preincubation with insulin in concentrations of 0.28, 0.56, and 1.4 nM a maximum rate of 14C-lipid synthesis was maintained for about 8, 15, and 30 min, respectively. 4. The following model is suggested. Binding of insulin to the previously described receptors with a dissociation constant of about 3 nM (Gammeltoft, S., and Gliemann, J. (1973) Biochim. Biophys Acta 320, 16-32) represents the first step in the action of insulin on lipid synthesis from glucose. The receptor occupancy is rate-determining at low concentrations of insulin, i.e. when the occupancy is small (about 2 percent or less). At higher insulin concentrations some other step becomes rate-determining and the higher occupancy at equilibrium therefore causes no further increase in the steady state lipogenesis. However, a high receptor occupancy causes a prolonged maintenance of a maximal (or near-maximal) effect after removal of insulin from the medium.  相似文献   

18.
A leukotriene B4 (LTB4) analog, 20-trifluoromethyl LTB4 (20CF3-LTB4), has been synthesized and evaluated with human neutrophils for effects on chemotaxis and degranulation. 20CF3-LTB4 was equipotent to LTB4 as a chemoattractant (EC50, 3 nM), produced 50% of maximal activity of LTB4, and competed with [H] LTB4 for binding to intact human neutrophil LTB4 receptors. In contrast to chemotactic activity, 20CF3-LTB4 in nanomolar concentrations exhibited antagonist activity without agonist activity up to 10 microM on LTB4-induced degranulation. The analog had no significant effect on degranulation induced by the chemoattractant peptide, N-formyl-methionyl-leucyl-phenylalanine (fMLP). Like LTB4, 20CF3-LTB4 induced neutrophil desensitization to degranulation by LTB4. The results indicate that hydrogen atoms at C-20 of LTB4 are critical for its intrinsic chemotactic and degranulation activities. The fact that 20CF3-LTB4 is a partial agonist for chemotaxis and an antagonist for degranulation suggests that different LTB4 receptor subtypes are coupled to these neutrophil functions. Desensitization of the neutrophil degranulation response to LTB4 can result from receptor occupancy by an antagonist, and therefore, the desensitization is not specific for an agonist.  相似文献   

19.
Studies were carried out on the mechanism responsible for the enhancement of the respiratory and secretory responses to N-formylmethionylleucylphenylalanine (fMet-Leu-Phe) exhibited by human neutrophils suspended in Na+-free, high-K+ buffered solution. The results demonstrate that: (a) the variation of Na+ concentration in the suspending solution induces in human neutrophils a marked modification of the recognition apparatus for the chemotactic peptide fMet-Leu-Phe, the lack of or low concentration of this ion increasing the number of the receptors and their specific affinity for the ligand; (b) the greater respiratory burst and secretion induced by fMet-Leu-Phe in human neutrophils suspended in Na+-free, high-K+ medium are due to the increased formation of receptor-ligand complexes at the cell membrane; (c) the greater respiratory response is partially due also to a higher efficiency of these receptor-ligand complexes. The molecular mechanism by which Na+ exerts a regulative role on the properties of the recognition apparatus for the chemotactic peptide and its possible significance are discussed.  相似文献   

20.
Exogenous diacylglycerols stimulate neutrophil superoxide anion production, suggesting that endogenous diacylglycerols may function as second messengers for this biological response. We have measured the diacylglycerol mass in human neutrophils stimulated by fMet-Leu-Phe, ionomycin, and concanavalin A and have correlated the kinetics and magnitude of the diacylglycerol response with those for superoxide anion production. For each stimulus, no increase in diacylglycerol mass was detected prior to the onset of superoxide anion generation. However, large sustained increases in diacylglycerol concentration (260-2000% of basal levels) occurred in parallel with the rise in superoxide anion. The cessation or continuation of diacylglycerol accumulation and superoxide anion production also correlated. The diacylglycerol response was proportional to the stimulus concentration and correlated with the concentration dependence for superoxide anion. Pretreatment of neutrophils with cytochalasin B enhanced both superoxide anion and diacylglycerol responses with all three stimuli. These data support the hypothesis that diacylglycerol functions as a modulator of superoxide anion generation causing a sustained or augmented respiratory burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号