首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
P-selectin glycoprotein ligand-1 (PSGL-1), a dimeric mucin on leukocytes, is the best characterized ligand for selectins. P-selectin binds stereospecifically to the extreme N terminus of PSGL-1, which contains three clustered tyrosine sulfates (TyrSO3-) adjacent to a Thr residue with a core 2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). GSP-6, a synthetic glycosulfopeptide modeled after the N terminus of PSGL-1, containing three TyrSO3- residues and a short, monofucosylated C2-O-sLe(x) bound to P-selectin with high affinity (K(d) approximately 650 nm). However, PSGL-1 from human HL-60 cells contains higher levels of O-glycans that are sialylated and polyfucosylated polylactosamines (PFPL). Furthermore, studies with fucosyltransferase-deficient mice suggest that sialylated PFPL structures contribute to binding to P-selectin. To resolve whether sialylated PFPL O-glycans participate in binding of PSGL-1 to human P-selectin, we synthesized glycosulfopeptides, designated GSP-6' and GSP-6", with three TyrSO3- residues and either difucosylated polylactosamine (C2-O-Le(x)-sLe(x)) or trifucosylated polylactosamine (C2-O-Le(x)-Le(x)-sLe(x)). Binding of the GSPs to P-selectin was measured by affinity chromatography, fluorescence solid-phase assays, and equilibrium gel filtration. Unexpectedly, both GSP-6' and GSP-6" bound to P-selectin with low affinity (K(d) approximately 37 microm for GSP-6' and K(d) approximately 50 microm for GSP-6"). Binding of GSP-6' and GSP-6" to P-selectin required fucosylation and, to a lesser extent, sialylation as well as the sulfated peptide backbone of GSP-6' and GSP-6". These results demonstrate that contrary to expectations, a core 2 O-glycan containing sialylated PFPL does not promote high affinity binding of PSGL-1 to P-selectin.  相似文献   

2.
P-selectin glycoprotein ligand-1 (PSGL-1) is a mucin on leukocytes that binds to selectins. P-selectin binds to an N-terminal region of PSGL-1 that requires sulfation of at least one of three clustered tyrosines (TyrSO(3)) and an adjacent core-2-based O-glycan expressing sialyl Lewis x (C2-O-sLe(x)). We synthesized glycosulfopeptides (GSPs) modeled after this region of PSGL-1 to explore the roles of individual TyrSO(3) residues, the placement of C2-O-sLe(x) relative to TyrSO(3), the relative contributions of fucose and sialic acid on C2-O-sLe(x), and the function of the peptide sequence for binding to P-selectin. Binding of GSPs to P-selectin was measured by affinity chromatography and equilibrium gel filtration. 2-GSP-6, which has C2-O-sLe(x) at Thr-57 and TyrSO(3) at residues 46, 48, and 51, bound to P-selectin with high affinity (K(d) approximately 650 nm), whereas an isomeric trisulfated GSP containing C2-O-sLe(x) at Thr-44 bound much less well. Non-sulfated glycopeptide (2-GP-6) containing C2-O-sLe(x) at Thr-57 bound to P-selectin with approximately 40-fold lower affinity (K(d) approximately 25 microm). Proteolysis of 2-GP-6 abolished detectable binding of the residual C2-O-sLe(x)-Thr to P-selectin, demonstrating that the peptide backbone contributes to binding. Monosulfated and disulfated GSPs bound significantly better than non-sulfated 2-GP-6, but sulfation of Tyr-48 enhanced affinity (K(d) approximately 6 microm) more than sulfation of Tyr-46 or Tyr-51. 2-GSP-6 lacking sialic acid bound to P-selectin at approximately 10% that of the level of the parent 2-GSP-6, whereas 2-GSP-6 lacking fucose did not detectably bind; thus, fucose contributes more than sialic acid to binding. Reducing NaCl from 150 to 50 mm markedly enhanced binding of 2-GSP-6 to P-selectin (K(d) approximately 75 nm), demonstrating the charge dependence of the interaction. These results reveal a stereospecific interaction of P-selectin with PSGL-1 that includes distinct contributions of each of the three TyrSO(3) residues, adjacent peptide determinants, and fucose/sialic acid on an optimally positioned core-2 O-glycan.  相似文献   

3.
L-selectin expressed on leukocytes is involved in lymphocyte homing to secondary lymphoid organs and leukocyte recruitment into inflamed tissue. L-selectin binds to the sulfated sialyl Lewis x (6-sulfo-sLex) epitope present on O-glycans of various glycoproteins in high endothelial venules. In addition, L-selectin interacts with the dimeric mucin P-selectin glycoprotein ligand-1 (PSGL-1) expressed on leukocytes. PSGL-1 lacks 6-sulfo-sLex but contains sulfated tyrosine residues (Tyr-SO3)at positions 46, 48, and 51 and sLex in a core 2-based O-glycan (C2-O-sLex) on Thr at position 57. The role of tyrosine sulfation and core 2 O-glycans in binding of PSGL-1 to L-selectin is not well defined. Here, we show that L-selectin binds to a glycosulfopeptide (GSP-6) modeled after the extreme N terminus of human PSGL-1, containing three Tyr-SO3 and a nearby Thr modified with C2-O-sLex. Leukocytes roll on immobilized GSP-6 in an L-selectin-dependent manner, and rolling is dependent on Tyr-SO3 and C2-O-sLex on GSP-6. The dissociation constant for binding of L-selectin to GSP-6, as measured by equilibrium gel filtration, is approximately 5 microm. Binding is dependent on Tyr-SO3 residues as well as the sialic acid and fucose residues of C2-O-sLex. Binding to an isomeric glycosulfopeptide containing three Tyr-SO3 residues and a core 1-based O-glycan expressing sLex was reduced by approximately 90%. All three Tyr-SO3 residues of GSP-6 are required for high affinity binding to L-selectin. Low affinity binding to mono- and disulfated GSPs is largely independent of the position of the Tyr-SO3 residues, except for some binding preference for an isomer sulfated on both Tyr-48 and -51. These results demonstrate that L-selectin binds with high affinity to the N-terminal region of PSGL-1 through cooperative interactions with three sulfated tyrosine residues and an appropriately positioned C2-O-sLex O-glycan.  相似文献   

4.
Colonization of neutrophils by the bacterium Anaplasma phagocytophilum causes the disease human granulocytic ehrlichiosis. The pathogen also infects mice, its natural host. Like binding of P-selectin, binding of A. phagocytophilum to human neutrophils requires expression of P-selectin glycoprotein ligand-1 (PSGL-1) and alpha1-3-fucosyltransferases that construct the glycan determinant sialyl Lewis x (sLex). Binding of A. phagocytophilum to murine neutrophils, however, requires expression of alpha1-3-fucosyltransferases but not PSGL-1. To further characterize the molecular features that A. phagocytophilum recognizes, we measured bacterial binding to microspheres bearing specific glycoconjugates or to cells expressing human PSGL-1 and particular glycosyltransferases. Like P-selectin, A. phagocytophilum bound to purified human PSGL-1 and to glycopeptides modeled after the N terminus of human PSGL-1 that presented sLex on an O-glycan. Unlike P-selectin, A. phagocytophilum bound to glycopeptides that contained sLex but lacked tyrosine sulfation or a specific core-2 orientation of sLex on the O-glycan. A. phagocytophilum bound only to glycopeptides that contained a short amino acid sequence found in the N-terminal region of human but not murine PSGL-1. Unlike P-selectin, A. phagocytophilum bound to cells expressing PSGL-1 in cooperation with sLex on both N-and O-glycans. Moreover, bacteria bound to microspheres coupled independently with glycopeptide lacking sLex and with sLex lacking peptide. These results demonstrate that, unlike P-selectin, A. phagocytophilum binds cooperatively to a nonsulfated N-terminal peptide in human PSGL-1 and to sLex expressed on PSGL-1 or other glycoproteins. Distinct bacterial adhesins may mediate these cooperative interactions.  相似文献   

5.
P-selectin glycoprotein ligand-1 (PSGL-1) is a large (240 kDa) glycoprotein found on the surface of nearly all leukocytes. The mature molecule is decorated with multiple N- and O-linked glycans and displays copies of the tetrasaccharide sialyl-Lewis(x) (sLe(X)), as well as a cluster of three tyrosine sulfate (tyr-SO(3)) groups near the N-terminus of the processed protein. Previous studies have suggested that PSGL-1 needs to be tyrosine-sulfated, in addition to glycosylated with sLe(X), to successfully interact with P-selectin. To better understand how biochemical features of the PSGL-1 ligand are related to its adhesion phenotype, we have measured the dynamics of adhesion under flow of a series of well-defined PSGL-1 variants that differ in their biochemical modification, to both P- and E-selectin-coated substrates. These variants are distinct PSGL-1 peptides: one that possesses sLe(X) in conjunction with three N-terminal tyr-SO(3) groups (SGP3), one that possesses sLe(X) without tyrosine sulfation (GP1), and one that lacks sLe(X) but has three N-terminal tyr-SO(3) groups (SP3). Although all peptides expressing sLe(X), tyr-SO(3), or both supported some form of rolling adhesion on P-selectin, only peptides expressing sLe(X) groups showed rolling adhesion on E-selectin. On P-selectin, the PSGL-1 peptides demonstrated a decreasing strength of adhesion in the following order: SGP3 > GP1 > SP3. Robust, rolling adhesion on P-selectin was mediated by the GP1 peptide, despite its lack of tyrosine sulfation. However, the addition of tyrosine sulfation to glycosylated peptides (SGP3) creates a super ligand for P-selectin that supports slower rolling adhesion at all shear rates and supports rolling adhesion at much higher shear rates. Tyrosine sulfation has no similar effect on PSGL-1 rolling on E-selectin. Such functional distinctions in rolling dynamics are uniquely realized with a cell-free system, which permits precise, unambiguous identification of the functional activity of adhesive ligands. These findings are consistent with structural and functional characterizations of the interactions between these peptides and E- and P-selectin published recently.  相似文献   

6.
Selectin-mediated cell adhesion is an essential component of the inflammatory response. In an attempt to unambiguously identify molecular features of ligands that are necessary to support rolling adhesion on P-selectin, we have used a reconstituted ("cell-free") system in which ligand-coated beads are perfused over soluble P-selectin surfaces. We find that beads coated with the saccharides sialyl Lewis(x) (sLe(x)), sialyl Lewis(a) (sLe(a)), and sulfated Lewis(x) (HSO(3)Le(x) support rolling adhesion on P-selectin surfaces. Although it has been suggested that glycosylation and sulfation of P-selectin glycoprotein ligand-1 (PSGL-1) is required for high-affinity binding and rolling on P-selectin, our findings indicate that sulfation of N-terminal tyrosine residues is not required for binding or rolling. However, beads coated with a tyrosine-sulfated, sLe(x)-modified, PSGL-1-Fc chimera support slower rolling on P-selectin than beads coated with sLe(x) alone, suggesting that sulfation improves rolling adhesion by modulating binding to P-selectin. In addition, we find it is not necessary that P-selectin carbohydrate ligands be multivalent for robust rolling to occur. Our results demonstrate that beads coated with monovalent sLe(x), exhibiting a more sparse distribution of carbohydrate than a similar amount of the multivalent form, are sufficient to yield rolling adhesion. The relative abilities of various ligands to support rolling on P-selectin are quantitatively examined among themselves and in comparison to human neutrophils. Using stop-time distributions, rolling dynamics at video frame rate resolution, and the average and variance of the rolling velocity, we find that P-selectin ligands display the following quantitative trend, in order of decreasing ability to support rolling adhesion on P-selectin: PSGL-1-Fc > sLe(a) approximately sLe(x) > HSO(3)Le(x).  相似文献   

7.
P-selectin glycoprotein ligand-1 (PSGL-1) is a disulfide-bonded, homodimeric mucin ( approximately 250 kDa) on leukocytes that binds to P-selectin on platelets and endothelial cells during the initial steps in inflammation. Because it has been proposed that only covalently dimerized PSGL-1 can bind P-selectin, we investigated the factors controlling dimerization of PSGL-1 and re-examined whether covalent dimers are required for binding its P-selectin. Recombinant forms of PSGL-1 were created in which the single extracellular Cys (Cys(320)) was replaced with either Ser (C320S-PSGL-1) or Ala (C320A-PSGL-1). Both recombinants migrated as monomeric species of approximately 120 kDa under both nonreducing and reducing conditions on SDS-polyacrylamide gel electrophoresis. P-selectin bound similarly to cells expressing either wild type or mutated forms of PSGL-1 in both flow cytometric and rolling adhesion assays. Unexpectedly, chemical cross-linking studies revealed that both C320S- and C320A-PSGL-1 noncovalently associate in the plasma membrane and cross-linking generates dimeric species. Chimeric recombinants of PSGL-1 in which the transmembrane domain in PSGL-1 was replaced with the transmembrane domain of CD43 (CD43TMD-PSGL-1) could not be chemically cross-linked, suggesting that residues within the transmembrane domain of PSGL-1 are required for noncovalent association. Cells expressing CD43TMD-PSGL-1 bound P-selectin. To further address the ability of P-selectin to bind monomeric derivatives of PSGL-1, intact HL-60 cells were trypsin-treated, which generated a soluble approximately 25-kDa NH(2)-terminal fragment of PSGL-1 that bound to immobilized P-selectin. Because N-glycosylation of PSGL-1 hinders trypsin cleavage, a recombinant form of PSGL-1 was generated in which all three potential N-glycosylation sites were mutated (DeltaN-PSGL-1). Cells expressing DeltaN-PSGL-1 bound P-selectin, and trypsin treatment of the cells generated NH(2)-terminal monomeric fragments (<10 kDa) of PSGL-1 that bound to P-selectin. These results demonstrate that Cys(320)-dependent dimerization of PSGL-1 is not required for binding to P-selectin and that a small monomeric fragment of PSGL-1 is sufficient for P-selectin recognition.  相似文献   

8.
Leukocyte trafficking involves specific recognition between P-selectin and L-selectin and PSGL-1 containing core 2-based O-glycans expressing sialyl Lewis x (SLe(x)) antigen. However, the structural identity of the glycan component(s) displayed by murine neutrophil PSGL-1 that contributes to its P-selectin counter-receptor activity has been uncertain, since these cells express little if any SLe(x) antigen, and because there have been no direct studies to examine murine PSGL-1 glycosylation. To address this uncertainty, we studied PSGL-1 glycosylation in the murine cell line WEHI-3 using metabolic-radiolabeling with (3)H-monosaccharide precursors to detect low-abundance O-glycan structures. We report that PSGL-1 from WEHI-3 cells expresses a di-sialylated core 2 O-glycan containing the SLe(x) antigen. This fucosylated O-glycan is scarce on PSGL-1 and essentially undetectable in total leukocyte glycoproteins from WEHI-3 cells. These results demonstrate that WEHI-3 cells selectively fucosylate PSGL-1 to generate functionally important core 2-based O-glycans containing the SLe(x) antigen.  相似文献   

9.
Anaplasma phagocytophilum, the aetiologic agent of human granulocytic anaplasmosis, is an obligate intracellular bacterium that colonizes neutrophils and neutrophil precursors. The granulocytotropic bacterium uses multiple adhesins that cooperatively bind to the N-terminal region of P-selectin glycoprotein ligand-1 (PSGL-1) and to sialyl Lewis x (sLe(x)) expressed on myeloid cell surfaces. Recognition of sLe(x) occurs through interactions with alpha2,3-sialic acid and alpha1,3-fucose. It is unknown whether other bacteria-host cell interactions are involved. In this study, we have enriched for A. phagocytophilum organisms that do not rely on sialic acid for cellular adhesion and entry by maintaining strain NCH-1 in HL-60 cells that are severely undersialylated. The selected bacteria, termed NCH-1A, also exhibit lessened dependencies on PSGL-1 and alpha1,3-fucose. Optimal adhesion and invasion by NCH-1A require interactions with the known determinants (sialic acid, PSGL-1 and alpha1,3-fucose), but none of them is absolutely necessary. NCH-1A binding to sLe(x)-modified PSGL-1 requires recognition of the known determinants in the same manners as other A. phagocytophilum strains. These data suggest that A. phagocytophilum expresses a separate adhesin from those targeting sialic acid, alpha1,3-fucose and the N-terminal region of PSGL-1. We propose that NCH-1A upregulates expression of this adhesin.  相似文献   

10.
Selectin-ligand interactions (bonds) mediate leukocyte rolling on vascular surfaces. The molecular basis for differential ligand recognition by selectins is poorly understood. Here, we show that substituting one residue (A108H) in the lectin domain of L-selectin increased its force-free affinity for a glycosulfopeptide binding site (2-GSP-6) on P-selectin glycoprotein ligand-1 (PSGL-1) but not for a sulfated-glycan binding site (6-sulfo-sialyl Lewis x) on peripheral node addressin. The increased affinity of L-selectinA108H for 2-GSP-6 was due to a faster on-rate and to a slower off-rate that increased bond lifetimes in the absence of force. Rather than first prolonging (catching) and then shortening (slipping) bond lifetimes, increasing force monotonically shortened lifetimes of L-selectinA108H bonds with 2-GSP-6. When compared with microspheres bearing L-selectin, L-selectinA108H microspheres rolled more slowly and regularly on 2-GSP-6 at low flow rates. A reciprocal substitution in P-selectin (H108A) caused faster microsphere rolling on 2-GSP-6. These results distinguish molecular mechanisms for L-selectin to bind to PSGL-1 and peripheral node addressin and explain in part the shorter lifetimes of PSGL-1 bonds with L-selectin than P-selectin.  相似文献   

11.
P-selectin glycoprotein ligand-1 (PSGL-1) interacts with selectins to support leukocyte rolling along vascular wall. L- and P-selectin bind to N-terminal tyrosine sulfate residues and to core-2 O-glycans attached to Thr-57, whereas tyrosine sulfation is not required for E-selectin binding. PSGL-1 extracellular domain contains decameric repeats, which extend L- and P-selectin binding sites far above the plasma membrane. We hypothesized that decamers may play a role in regulating PSGL-1 interactions with selectins. Chinese hamster ovary cells expressing wild-type PSGL-1 or PSGL-1 molecules exhibiting deletion or substitution of decamers with the tandem repeats of platelet glycoprotein Ibalpha were compared in their ability to roll on selectins and to bind soluble L- or P-selectin. Deletion of decamers abrogated soluble L-selectin binding and cell rolling on L-selectin, whereas their substitution partially reversed these diminutions. P-selectin-dependent interactions with PSGL-1 were less affected by decamer deletion. Videomicroscopy analysis showed that decamers are required to stabilize L-selectin-dependent rolling. Importantly, adhesion assays performed on recombinant decamers demonstrated that they directly bind to E-selectin and promote slow rolling. Our results indicate that the role of decamers is to extend PSGL-1 N terminus far above the cell surface to support and stabilize leukocyte rolling on L- or P-selectin. In addition, they function as a cell adhesion receptor, which supports approximately 80% of E-selectin-dependent rolling.  相似文献   

12.
Stimulated endothelial cells and activated platelets express P-selectin, which reacts with P-selectin glycoprotein ligand-1 (PSGL-1) for leukocyte rolling on the stimulated endothelial cells and heterotypic aggregation of the activated platelets on leukocytes. P-selectin also binds to several cancer cells in vitro and promotes the growth and metastasis of human colon carcinoma in vivo. The P-selectin/PSGL-1 interaction requires tyrosine sulfation. However, it is unknown whether sulfation is necessary for P-selectin binding to somatic cancer cells. In this study, we show that P-selectin mediated adhesion of Acc-M cells, a cell line derived from a human adenoid cystic carcinoma of salivary gland. These cells had a moderate expression of heparan sulfate-like proteoglycans, but had no detectable expressions of PSGL-1, CD24, Lewis(x), and sialyl Lewis(x). Treatment with sodium chlorate (a sulfation biosynthesis inhibitor), but not 4-methylumbelliferyl-beta-D-xyloside (a proteoglycan biosynthesis inhibitor) or heparinases, reduced adhesion of these cells to P-selectin. Sodium chlorate also inhibited the P-selectin precipitation of the 160-, 54-, and 36-kDa molecules from the cell surface of Acc-M cells. Furthermore, P-selectin could bind to human breast carcinoma ZR-75-30 cells in a sulfation-dependent manner. Our results thus indicate that sulfation is essential for adhesion of nonblood-borne, epithelial-like human cancer cells to P-selectin.  相似文献   

13.
Neutrophils roll on P-selectin expressed by activated platelets or endothelial cells under the shear stresses in the microcirculation. P- selectin glycoprotein ligand-1 (PSGL-1) is a high affinity ligand for P- selectin on myeloid cells. However, it has not been demonstrated that PSGL-1 contributes to the rolling of neutrophils on P-selectin. We developed two IgG mAbs, PL1 and PL2, that appear to recognize protein- dependent epitopes on human PSGL-1. The mAbs bound to PSGL-1 on all leukocytes as well as on heterologous cells transfected with PSGL-1 cDNA. PL1, but not PL2, blocked binding of 125-I-PSGL-1 to immobilized P-selectin, binding of fluid-phase P-selectin to myeloid and lymphoid leukocytes, adhesion of neutrophils to immobilized P-selectin under static conditions, and rolling of neutrophils on P-selectin-expressing CHO cells under a range of shear stresses. PSGL-1 was localized to microvilli on neutrophils, a topography that may facilitate its adhesive function. These data indicate that (a) PSGL-1 accounts for the high affinity binding sites for P-selectin on leukocytes, and (b) PSGL- 1 must interact with P-selectin in order for neutrophils to roll on P- selectin at physiological shear stresses.  相似文献   

14.
P-selectin glycoprotein ligand-1 (PSGL-1) interactions with selectins regulate leukocyte migration in inflammatory lesions. In mice, selectin ligand activity regulating leukocyte recruitment and lymphocyte homing into lymph nodes results from the sum of unequal contributions of fucosyltransferase (FucT)-IV and FucT-VII, with FucT-VII playing a predominant role. Here we have examined the role of human FucT-IV and -VII in conferring L-selectin, P-selectin, and E-selectin binding activities to PSGL-1. Lewis x (Le(x)) carbohydrate was generated at the CHO(dhfr)(-) cell surface by FucT-IV expression, whereas sialyl Le(x) (sLe(x)) was synthesized by FucT-VII. Both human FucT-IV and -VII had the ability to generate carbohydrate ligands that support L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a major role. Cooperation was observed between FucT-IV and -VII in recruiting L-, P-, or E-selectin-expressing cells on PSGL-1 and in regulating cell rolling velocity and stability. Additional rolling adhesion assays were performed to assess the role of Thr-57-linked core-2 O-glycans in supporting L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1. These studies confirmed that core-2 O-glycans attached to Thr-57 play a critical role in supporting L- and P-selectin-dependent rolling and revealed that additional binding sites support >75% of E-selectin-mediated rolling. The observations presented here indicate that human FucT-IV and -VII both contribute and cooperate in regulating L-selectin-, P-selectin-, and E-selectin-dependent rolling on PSGL-1, with FucT-VII playing a predominant role in conferring selectin binding activity to PSGL-1.  相似文献   

15.
P-selectin glycoprotein ligand-1 (PSGL-1), the primary ligand for P-selectin, is constitutively expressed on the surface of circulating leukocytes. The objective of this study was to examine the effect of leukocyte activation on PSGL-1 expression and PSGL-1-mediated leukocyte adhesion to P-selectin. PSGL-1 expression was examined via indirect immunofluorescence and flow cytometry before and after leukocyte stimulation with platelet activating factor (PAF) and PMA. Human neutrophils, monocytes, and eosinophils were all demonstrated to have significant surface expression of PSGL-1 at baseline, which decreased within minutes of exposure to PAF or PMA. PSGL-1 was detected in the supernatants of PAF-activated neutrophils by immunoprecipitation. Along with the expression data, this suggests removal of PSGL-1 from the cell surface. Soluble PSGL-1 was also detected in human bronchoalveolar lavage fluids. Down-regulation of PSGL-1 was inhibited by EDTA. However, inhibitors of L-selectin shedding and other sheddase inhibitors did not affect PSGL-1 release, suggesting that PSGL-1 may be shed by an as yet unidentified sheddase or removed by some other mechanism. Functionally, PSGL-1 down-regulation was associated with decreased neutrophil adhesion to immobilized P-selectin under both static and flow conditions, with the most profound effects seen under flow conditions. Together, these data indicate that PSGL-1 can be removed from the surface of activated leukocytes, and that this decrease in PSGL-1 expression has profound effects on leukocyte binding to P-selectin, especially under conditions of flow.  相似文献   

16.
P-selectin (CD62P) is a cell adhesion molecule expressed on stimulated endothelial cells and on activated platelets. It interacts with PSGL-1 (P-selectin glycoprotein ligand-1; CD162) on leukocytes and mediates recruitment of leukocytes during inflammation. P-selectin also binds to several types of cancer cells in vitro and facilitates growth and metastasis of colon carcinoma in vivo. Here we show that P-selectin, but not E-selectin, binds to NCI-H345 cells, a cell line derived from a human small cell lung cancer. EDTA or P7 (a leukocyte adhesion blocking mAb to P-selectin), but not PL5 (a leukocyte adhesion blocking mAb to PSGL-1), can inhibit this binding. P-selectin affinity chromatography can precipitate a approximately 110-kDa major band and a approximately 220-kDa minor band from [3H]-glucosamine-labeled NCI-H345 cells. No expression of PSGL-1 protein and mRNA can be detected in NCI-H345 cells. Taken together, these results suggest that NCI-H345 cells express glycoprotein ligands for P-selectin that are distinct from leukocyte PSGL-1.  相似文献   

17.
Monomeric sialyl Lewis(X) (sLe(x)) and sLe(x)-like oligosaccharides are minimal structures capable of supporting selectin binding in vitro. However, their weak binding interactions do not correlate with the high-affinity binding interactions witnessed in vivo. The polyvalent display of carbohydrate groups found on cell surface glycoprotein structures may contribute to the enhanced binding strength of selectin-mediated adhesion. Detailed biochemical analyses of physiological selectin ligands have revealed a complicated composition of molecules that bind to the selectins in vivo and suggest that there are other requirements for tight binding beyond simple carbohydrate multimerization. In an effort to mimic the high-affinity binding, polyvalent scaffolds that contain multicomponent displays of selectin-binding ligands have been synthesized. Here, we demonstrate that the presentation of additional anionic functional groups in the form of sulfate esters, on a polymerized liposome surface containing a multimeric array of sLe(x)-like oligosaccharides, generates a highly potent, bifunctional macromolecular assembly. This assembly inhibits L-, E-, and P-selectin binding to GlyCAM-1, a physiological ligand better than sLe(x)-like liposomes without additional anionic charge. These multivalent arrays are 4 orders of magnitude better than the monovalent carbohydrate. Liposomes displaying 3'-sulfo Lewis(X)-like oligosaccharides, on the other hand, show slight loss of binding with introduction of additional anionic functional groups for E- and P-selectin and negligible change for L-selectin. The ability to rapidly and systematically vary the composition of these assemblies is a distinguishing feature of this methodology and may be applied to the study of other systems where composite binding determinants are important for high-affinity binding.  相似文献   

18.
Soluble oligosaccharide mimetics of natural selectin ligands act as competitive inhibitors of leukocyte adhesion in models of inflammation. We quantified the binding of simple oligosaccharides based on sialyl Lewis-X (sLe(X)) and complex molecules with the core-2 structure to L- and P-selectin, under both static and fluid flow conditions. Isolated human neutrophils were employed to mimic the physiological valency of selectins and selectin ligands. Surface plasmon resonance studies quantified binding kinetics. We observed the following: (i) The functional group at the anomeric position of carbohydrates plays an important role during selectin recognition, since sLe(X) and sialyl Lewis-a (sLe(a)) were approximately 5-7-fold poorer inhibitors of L-selectin mediated cell adhesion compared to their methyl glycosides. (ii) Despite their homology to physiological glycans, the putative carbohydrate epitopes of GlyCAM-1 and PSGL-1 bound selectins with low affinity comparable to that of sLe(X)-selectin interactions. Thus, besides the carbohydrate portion, the protein core of GlyCAM-1 or the presentation of carbohydrates in clusters on this glycoprotein may contribute to selectin recognition. (iii) A compound Galbeta1,4(Fucalpha1,3)GlcNAcbeta1,6(GalNAcbeta1,3)GalNAcalpha-OMe was identified which blocked L- and P-selectin binding at 30-100-fold lower doses than sLe(X). (iv) Surface plasmon resonance experiments determined that an sLe(X) analogue (TBC1269) competitively inhibited, via steric/allosteric mechanisms, the binding of two anti-P-selectin function blocking antibodies that recognized different epitopes of P-selectin. (v) TBC1269 bound P-selectin via both calcium-dependent and -independent mechanisms, with K(D) of approximately 111.4 microM. The measured on- and off-rates were high (k(off) > 3 s(-)(1), k(on) > 27,000 M(-)(1) s(-)(1)). Similar binding kinetics are expected for sLe(X)-selectin interactions. Taken together, our study provides new insight into the kinetics and mechanisms of carbohydrate interaction with selectins.  相似文献   

19.
Pei XH  Lin ZX  Geng JG 《生理学报》2008,60(4):520-524
P-选凝素表达于血管内皮细胞及血小板膜上,它可以与白细胞膜表面的P-选凝素糖蛋白配基-1(P-selectin glyco-protein ligand-1,PSGL-1)相互作用,在炎症过程中介导白细胞的滚动并启动随后的白细胞迁移级联过程.我们构建了重组人野生型可溶性P-选凝素及其钙离子结合位点突变体,同时构建了重组PSGL-1免疫球蛋白融合分子(PSGL-1-Rg),并应用昆虫杆状病毒表达系统在Sf9细胞中表达这些重组蛋白,最后用镍金属螯和柱或Protein A亲和柱予以纯化.结果显示,用该系统表达的P-选凝素或PSGL-1是有活性的,但是P-选凝素的4个钙离子结合位点突变体却没有活性.该研究证明了P-选凝素钙离子结合位点在其与配基相互作用中的重要性.  相似文献   

20.
《The Journal of cell biology》1995,131(6):1893-1902
Under physiological shear stress, neutrophils roll on P-selectin on activated endothelial cells or platelets through interactions with P- selectin glycoprotein ligand-1 (PSGL-1). Both P-selectin and PSGL-1 are extended molecules. Human P-selectin contains an NH2-terminal lectin domain, an EGF domain, nine consensus repeats (CRs), a transmembrane domain, and a cytoplasmic tail. To determine whether the length of P- selectin affected its interactions with PSGL-1, we examined the adhesion of neutrophils to CHO cells expressing membrane-anchored P- selectin constructs in which various numbers of CRs were deleted. Under static conditions, neutrophils attached equivalently to wild-type P- selectin and to constructs containing from 2-6 CRs. Under shear stress, neutrophils attached equivalently to wild-type and 6 CR P-selectin and nearly as well to 5 CR P-selectin. However, fewer neutrophils attached to the 4 CR construct, and those that did attach rolled faster and were more readily detached by increasing shear stress. Flowing neutrophils failed to attach to the 3 CR and 2 CR constructs. Neutrophils attached and rolled more efficiently on 4 CR P-selectin expressed on glycosylation-defective Lec8 CHO cells, which have less glycocalyx. We conclude that P-selectin must project its lectin domain well above the membrane to mediate optimal attachment of neutrophils under shear forces. The length of P-selectin may: (a) facilitate interactions with PSGL-1 on flowing neutrophils, and (b) increase the intermembrane distance where specific bonds form, minimizing contacts between the glycocalyces that result in cell-cell repulsion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号