首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
The effects of rearrangement and insertion of sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) were investigated. The alterations were made by recombinant DNA manipulations on a plasmid subclone containing an M-MuLV LTR. Promoter activity of altered LTRs was measured by fusion to the bacterial chloramphenicol acetyltransferase gene, followed by transient expression assay in NIH 3T3 cells. M-MuLV proviral organizations containing the altered LTRs were also generated, and infectious virus was recovered by transfection. Infectivity of the resulting virus was quantified by XC plaque assay, and pathogenicity was determined by inoculating neonatal NIH Swiss mice. Inversion of sequences in the U3 region containing the tandemly repeated enhancer sequences (-150 to -353 base pairs [bp]) reduced promoter activity approximately fivefold in the transient-expression assays. Infectious virus containing the inverted sequences (Mo- M-MuLV) showed a 20-fold reduction in relative infectivity compared with wild-type M-MuLV, but the virus still induced thymus-derived lymphoblastic lymphoma or leukemia in mice, with essentially the same kinetics as for wild-type M-MuLV. We previously derived an M-MuLV which carried inserted enhancer sequences from the F101 strain of polyomavirus (Mo + PyF101 M-MuLV) and showed that this virus is nonleukemogenic. In Mo + PyF101 M-MuLV, the PyF101 sequences were inserted between the M-MuLV promoter and the M-MuLV enhancers (at -150 bp). A new LTR was generated in which the PyF101 sequences were inserted to the 5' side of the M-MuLV enhancers (at -353 bp, PyF101 + Mo M-MuLV). The PyF101 + Mo LTR exhibited promoter activity similar (40 to 50%) to that of wild-type M-MuLV, and infectious PyF101 + Mo M-MuLV had high infectivity on NIH 3T3 cells (50% of wild type). In contrast to the nonleukemogenic Mo + PyF101 M-MuLV, PyF101 + Mo M-MuLV induced leukemia with kinetics similar to that of wild-type M-MuLV. Thus, the position of the PyF101 sequences relative to the M-MuLV LTR affected the biological behavior of the molecular construct. Furthermore, PyF101 + Mo M-MuLV induced a different spectrum of neoplastic disease. In comparison with wild-type M-MuLV, which induces a characteristic thymus-derived lymphoblastic lymphoma with extremely high frequency, PyF101 + Mo M-MuLV was capable of inducing both acute myeloid leukemia or thymus-derived lymphoblastic lymphoma, or both. Tumor DNA from both the PyF101 + Mo- and Mo- M-MuLV-inoculated animals contained recombinant proviruses with LTRs that differed from the initially inoculated virus.  相似文献   

4.
5.
The glucocorticoid-regulatory sequences from the murine mammary tumor virus long terminal repeat (MMTV LTR) were introduced into the LTR of Moloney murine leukemia virus (M-MuLV) by recombinant DNA techniques. The site of insertion was in the M-MuLV LTR U3 region at -150 base pairs with respect to the RNA cap site. Infectious M-MuLVs carrying the altered LTRs (Mo + MMTV M-MuLVs) were recovered by transfection of proviral clones into NIH-3T3 cells. The Mo + MMTV M-MuLVs were hormonally responsive in that infection was 3 logs more efficient when performed in the presence of dexamethasone, irrespective of the orientation of the inserted MMTV sequences. However, even in the presence of hormone, the Mo + MMTV M-MuLVs were less infectious than wild-type M-MuLV. In contrast to the large effect on infectivity, dexamethasone induced virus-specific RNA levels in chronically Mo + MMTV M-MuLV-infected cells only two- to fourfold. Fusion plasmids between the altered LTRs and the bacterial chloramphenicol acetyltransferase gene allowed the investigation of LTR promoter strength by the transient chloramphenicol acetyltransferase expression assay. The chloramphenicol acetyltransferase assays indicated that the insertion of MMTV sequences into the M-MuLV LTR reduced promoter activity in the absence of glucocorticoids but that promoter activity could be induced two- to fivefold by dexamethasone. The Mo + MMTV M-MuLVs were also tested for the possibility that viral DNA synthesis or integration during initial infection was enhanced by dexamethasone. However, no significant difference was detected between cultures infected in the presence or absence of hormone. The insertion of MMTV sequences into an M-MuLV LTR deleted of its enhancer sequences did not yield infectious virus or active promoters, even in the presence of dexamethasone.  相似文献   

6.
B K Brightman  C Farmer    H Fan 《Journal of virology》1993,67(12):7140-7148
Mo+PyF101 M-MuLV is a variant Moloney murine leukemia virus containing polyomavirus F101 enhancers inserted just downstream from the M-MuLV enhancers in the long terminal repeat (LTR). The protein coding sequences for this virus are identical to those of M-MuLV. Mo+PyF101 M-MuLV induces T-cell disease with a much lower incidence and longer latency than wild-type M-MuLV. We have previously shown that Mo+PyF101 M-MuLV is defective in preleukemic events induced by wild-type M-MuLV, including splenic hematopoietic hyperplasia, bone marrow depletion, and generation of recombinant mink cell focus-inducing viruses (MCFs). We also showed that an M-MCF virus driven by the Mo+PyF101 LTR is infectious in vitro but does not propagate in mice. However, in these experiments, when a pseudotypic mixture of Mo+PyF101 M-MuLV and Mo+PyF101 MCF was inoculated into newborn NIH Swiss mice, they died of T-cell leukemia at times almost equivalent to those induced by wild-type M-MuLV. Tumor DNAs from Mo+PyF101 M-MuLV-Mo+PyF101 MCF-inoculated mice were examined by Southern blot analysis. The predominant forms of Mo+PyF101 MCF proviruses in these tumors contained added sequences in the U3 region of the LTR. The U3 regions of representative tumor-derived variant Mo+PyF101 MCFs were cloned by polymerase chain reaction amplification, and sequencing indicated that they had acquired an additional copy of the M-MuLV 75-bp tandem repeat in the enhancer region. NIH 3T3 cell lines infected with altered viruses were obtained from representative Mo+PyF101 M-MuLV-Mo+PyF101 MCF-induced tumors, and mice were inoculated with the recovered viruses. Leukemogenicity was approximately equivalent to that in the original Mo+PyF101 M-MuLV-Mo+PyF101 MCF viral stock. Southern blot analysis on the resulting tumors now predominantly revealed loss of the polyomavirus sequences. These results suggest that the suppressive effects of the PyF101 sequences on M-MuLV-induced disease and potentially on MCF propagation were overcome in two ways: by triplication of the M-MuLV direct repeats and by loss of the polyomavirus sequences.  相似文献   

7.
8.
Centromeres of higher eukaryotes are epigenetically marked by the centromere-specific CENP-A nucleosome. New CENP-A recruitment requires the CENP-A histone chaperone HJURP. In this paper, we show that a LacI (Lac repressor) fusion of HJURP drove the stable recruitment of CENP-A to a LacO (Lac operon) array at a noncentromeric locus. Ectopically targeted CENP-A chromatin at the LacO array was sufficient to direct the assembly of a functional centromere as indicated by the recruitment of the constitutive centromere-associated network proteins, the microtubule-binding protein NDC80, and the formation of stable kinetochore–microtubule attachments. An amino-terminal fragment of HJURP was able to assemble CENP-A nucleosomes in vitro, demonstrating that HJURP is a chromatin assembly factor. Furthermore, HJURP recruitment to endogenous centromeres required the Mis18 complex. Together, these data suggest that the role of the Mis18 complex in CENP-A deposition is to recruit HJURP and that the CENP-A nucleosome assembly activity of HJURP is responsible for centromeric chromatin assembly to maintain the epigenetic mark.  相似文献   

9.
10.
We have studied the replication of ecotropic murine leukemia viruses (MuLV) in the spleens and thymuses of mice infected with the lymphocytic leukemia-inducing virus Moloney MuLV (M-MuLV), with the erythroleukemia-inducing virus Friend MuLV (F-MuLV), or with in vitro-constructed recombinants between these viruses in which the long terminal repeat (LTR) sequences have been exchanged. At 1 week after infection both the parents and the LTR recombinants replicated predominantly in the spleens with only low levels of replication in the thymus. At 2 weeks after infection, the patterns of replication in the spleens and thymuses were strongly influenced by the type of LTR. Viruses containing the M-MuLV LTR exhibited a remarkable elevation in thymus titers which frequently exceeded the spleen titers, whereas viruses containing the F-MuLV LTR replicated predominantly in the spleen. In older preleukemic mice (5 to 8 weeks of age) the structural genes of M-MuLV or F-MuLV predominantly influenced the patterns of replication. Viruses containing the structural genes of M-MuLV replicated efficiently in both the spleen and thymus, whereas viruses containing the structural genes of F-MuLV replicated predominantly in the spleen. In leukemic mice infected with the recombinant containing F-MuLV structural genes and the M-MuLV LTR, high levels of virus replication were observed in splenic tumors but not in thymic tumors. This phenotypic difference suggested that tumors of the spleen and thymus may have originated by the independent transformation of different cell types. Quantification of polytropic MulVs in late-preleukemic mice infected with each of the ecotropic MuLVs indicated that the level of polytropic MuLV replication closely paralleled the level of replication of the ecotropic MuLVs in all instances. These studies indicated that determinants of tissue tropism are contained in both the LTR and structural gene sequences of F-MuLV and M-MuLV and that high levels of ecotropic or polytropic MuLV replication, per se, are not sufficient for leukemia induction. Our results further suggested that leukemia induction requires a high level of virus replication in the target organ only transiently during an early preleukemic stage of disease.  相似文献   

11.
12.
The enhancer sequences in the Moloney murine leukemia virus (M-MuLV) long terminal repeat (LTR) are of considerable interest since they are crucial for virus replication and the ability of the virus to induce T lymphomas. While extensive studies have identified numerous nuclear factors that can potentially bind to M-MuLV enhancer DNA in vitro, it has not been made clear which of these factors are bound in vivo. To address this problem, we carried out in vivo footprinting of the M-MuLV enhancer in infected cells by in vivo treatment with dimethyl sulfate (DMS) followed by visualization through ligation-mediated PCR (LMPCR) and gel electrophoresis. In vivo DMS-LMPCR footprinting of the upstream LTR revealed evidence for factor binding at several previously characterized motifs. In particular, protection of guanines in the central LVb/Ets and Core sites within the 75-bp repeats was detected in infected NIH 3T3 fibroblasts, Ti-6 lymphoid cells, and thymic tumor cells. In contrast, factor binding at the NF-1 sites was found in infected fibroblasts but not in T-lymphoid cells. These results are consistent with the results of previous experiments indicating the importance of the LVb/Ets and Core sequences for many retroviruses and the biological importance especially of the NF-1 sites in fibroblasts and T-lymphoid cells. No evidence for factor binding to the glucocorticoid responsive element and LVa sites was found. Additional sites of protein binding included a region in the GC-rich sequences downstream of the 75-bp repeats (only in fibroblasts), a hypersensitive guanine on the minus strand in the LVc site (only in T-lymphoid cells), and a region upstream of the 75-bp repeats. These experiments provide concrete evidence for the differential in vivo binding of nuclear factors to the M-MuLV enhancers in different cell types.  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
Intramolecular integration within Moloney murine leukemia virus DNA   总被引:36,自引:19,他引:17       下载免费PDF全文
By screening a library of unintegrated, circular Moloney murine leukemia virus (M-MuLV) DNA cloned in lambda phage, we found that approximately 20% of the M-MuLV DNA inserts contained internal sequence deletions or inversions. Restriction enzyme mapping demonstrated tht the deleted segments frequently abutted a long terminal repeat (LTR) sequence, whereas the inverted segments were usually flanked by LTR sequences, suggesting that many of the variants arose as a consequence of M-MuLV DNA molecules integrating within their own DNA. Nucleotide sequencing also suggested that most of the variant inserts were generated by autointegration. One of the recombinant M-MuLV DNA inserts contained a large inverted repeat of a unique M-MuLV sequence abutting an LTR. This molecule was shown by nucleotide sequencing to have arisen by an M-MuLV DNA Molecule integrating within a second M-MuLV DNA molecule before cloning. The autointegrated M-MuLV DNA had generally lost two base pairs from the LTR sequence at each junction with target site DNA, whereas a four-base-pair direct repeat of target site DNA flanked the integrated viral DNA. Nucleotide sequencing of preintegration target site DNA showed that this four-base-pair direct repeat was present only once before integration and was thus reiterated by the integration event. The results obtained from the autointegrated clones were supported by nucleotide sequencing of the host-virus junction of two cloned M-MuLV integrated proviruses obtained from infected rat cells. Detailed analysis of the different unique target site sequences revealed no obvious common features.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号