首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Reproducible protocol for regeneration of complete plantlets from ‘Bounty’ strawberry (Fragaria ananassa Duch.), using a combination of gelled medium and bioreactor system, has been standardized. Sepals, leaf discs, and petiole halves produced multiple buds and shoots when cultured on semi solid‐gelled medium containing 4 μM thidiazuron (TDZ) for 4 wk followed by transferring in liquid medium containing 2 μM TDZ in a bioreactor system and cultured for another 4 wk. TDZ induced shoot proliferation at 0.1 μM in the bioreactor system but inhibited shoot elongation. TDZ‐induced shoots were elongated and rooted in vitro on gelled medium containing 2 μM zeatin. Such bioreactor‐derived tissue culture (BC) plantlets obtained from sepal explants were grown ex vitro and compared with those propagated by tissue culture on gelled medium (GC) and by conventional runner cuttings (RC), for growth, morphology, anthocyanin content, and antioxidant activity after three growth seasons. The BC and GC plants produced more crowns, runners, leaves, and berries than the RC plants although berry weight per plant did not differ significantly. BC and GC plants produced berries with more anthocyanin contents and antioxidant activities than those produced by the RC plants. However, intersimple sequence repeat (ISSR) marker assay produced a homogenous amplification profile in the tissue culture and donor control plants confirming the clonal fidelity of micropropagated plants. In vitro culture on TDZ and zeatin‐containing nutrient media apparently induced the juvenile branching characteristics that favored enhanced vegetative growth with more crown, runners, leaf, and berry production.  相似文献   

2.
Cultures of three cloudberry (Rubus chamaemorus L.) clones collected from natural stands in Newfoundland and Labrador, Canada were established in vitro on a modified cranberry (Vaccinium macrocarpon Ait.) tissue culture medium containing 8.9 μM 6-benzylaminopurine (BAP). Clones were compared for in vitro shoot proliferation on gelled medium supplemented with varying levels of BAP and thidiazuron (TDZ). Addition of 5.8 μM gibberellic acid (GA3) in 8.9 μM BAP-contained medium improved shoot proliferation. TDZ supported rapid shoot proliferation at low concentration (1.1 μM) but induced 20–30% hyperhydricity in a plastic airlift bioreactor system containing liquid medium. Bioreactor-multiplied hyperhydric shoots were transferred to gelled medium containing 8.9 μM BAP and 5.8 μM GA3 and produced normal shoots within 4 weeks of culture. Genotypes differed significantly with respect to multiplication rate with ‘C1’ producing the most shoots per explant. Proliferated shoots were rooted on a potting medium with 65–75% of survivability of rooted plants. Present results suggested the possibility of large-scale multiplication of cloudberry shoots in bioreactors.  相似文献   

3.
The present study highlights the importance of preculture time and concentration of TDZ (thidiazuron) for direct regeneration from in vitro leaves (attached to shoots) in Arnebia euchroma. Shoot buds proliferated to form multiple shoots on MS medium (Murashige and Skoog medium) with 5.0 μM Kn. Different additives viz. ascorbic acid, PVP (polyvinylpyrrolidone), PVPP (polyvinylpolypyrrolidone) or activated charcoal (50, 100 and 250 mg/l each) were used to check the phenolic exudations. Direct shoot regeneration was obtained when shoots were initially precultured for 40 days on medium with a higher concentration of TDZ (20.0 μM) and then transferred to a lower concentration (5.0 μM TDZ). The identity of shoot buds was confirmed by histological studies. Regenerated shoots were cultured for 30 days on medium containing Kn (5.0 μM) for proliferation and then transferred to IBA (0.25 μM)‐containing medium for rooting. Rooted plantlets were transferred to greenhouse with 45–50% survival.  相似文献   

4.
An efficient in vitro plant regeneration from leaf-disc culture of Jatropha curcas L has been established. Adventitious shoot buds along with callus were induced from leaves of 2-year-old J. curcas plants cultured on Murashige and Skoog’s (MS) medium supplemented with TDZ (2 μM) BAP (2 μM) and IBA (1 μM), wherein 63.3% leaf explants responded. The multiplication of shoots was achieved from the adventitious shoot buds after transferring them to shoot induction medium. The highest number of shoots (9.7/explant) was achieved after 6 weeks of culture on MS medium containing 3 μM of BAR The welldeveloped shoots were rooted on MS medium supplemented with IBA (1.5 μM) with the rooting frequency of 53.3%. Addition of phloroglucinol (200 μM) to the medium enhanced the frequency of rooting to 76.7%. Regenerated plantlets were successfully transferred to field after initial acclimatization.  相似文献   

5.
A. Sieboldianus (5-leaf aralia) is recalcitrant for micropropagation, but has very good landscaping potential. This research was conducted with the following objectives: (1) to study effects of BA, TDZ, CPPU, 2iP, kinetin and zeatin in woody plant medium on the performance of softwood shoot nodal explants produced by field grown 5-leaf aralia plants; (2) to investigate influences of BA or TDZ in the forcing solution on subsequentin vitro shoot initiation of nodal explants taken from forced softwood growth. Shoot initiation of softwood nodal explants from field-grown plants was promoted by adding BA, TDZ or CPPU to the culture medium. Kinetin, zeatin and 2iP were ineffective for micropropagation ofA. Sieboldianus. The forced softwood growth for use as explants was “primed” by forcing dormant stems in solution containing 200 mg 8-HQC per liter plus 2% sucrose, 44.4, 222, or 444 μM BA, or 45.4, 227, or 454 μM TDZ. BA and TDZ in the forcing solution enhanced subsequentin vitro axillary shoot initiation of nodal explants taken from forced stems by doubling the number of shoots produced per explant to 3.3 from 1.65 shoots per explant taken from field grown plants. This forcing solution technique also reduced the time needed from culture initiation to potted plants to half of the time needed for the conventional micropropagation method (12 to 14 vs. 25 to 27 weeks), thus expediting the micropropagation ofA. Sieboldianus.  相似文献   

6.
Summary An efficient system to regenerate shoots on excised sepals (calyx) of greenhouse-grown ‘Bounty’ strawberry (Fragaria x ananassa Duch.) was developed in vitro. Sepal cultures produced multiple buds and shoots without an intermediary callus phase on 2–4 μM 1-phenyl-3-(1,2,3-thiadiazol-5-yl) urea (thidiazuron, TDZ)-containing shoot induction medium within 4–5 wk of culture initiation. Young expanding sepals with the adaxial side touching the culture medium and maintained for 14 d in darkness produced the best results. In a second experiment, sepals proved more effective than the leaf discs and petiole segments for regenerating shoots. A third experiment compared the effects of six concentrations of two cytokinins (TDZ at 0, 0.5, 2, and 4 μM and zeatin at 2 and 4 μM) for elongation of sepal-derived adventitious shoots. The media containing TDZ generally promoted more callus formation and suppressed shoot elongation. TDZ-initiated cultures transferred into the medium containing 2–4 μM zeatin, produced usable shoots after one additional subculture. Shoots were rooted in vitro in the same medium used for shoot regeneration, but without any growth regulators. When transferred to potting medium, 85–90% of in vitro plantlets survived.  相似文献   

7.
The influence of cytokinin thidiazuron (TDZ) and auxin indole-3-acetic acid (IAA) on in vitro shoot organogenesis of fifteen Rhododendron genotypes was investigated and a protocol for high frequency adventitious shoot regeneration from leaf explants was developed. High genotypic variation was observed and regeneration frequencies ranged from 0 to 100 %. Genotype Ovation had the highest number of shoots (26.4 per explant) after 12 weeks on medium with 0.57 μM IAA and 1.20 μM TDZ, but only 65 % of explants regenerated. Catawbiense Grandiflorum had 17.7 shoots per explant and 75 % regeneration on medium with 5.70 μM IAA and 0.45 μM TDZ and Van Werden Poelman had 14.3 shoots per explant and 100 % regeneration on medium with 0 57 μM IAA and 0.45 μM TDZ.  相似文献   

8.
A protocol was established for micropropagation of Semecarpus anacardium L. from mature tree-derived twigs. Sixty percent of aseptic cultures were obtained by surface sterilization with Bavistin, liquid detergent, and cefotaxime. Elongated twigs collected before flowering were optimum for in vitro culture initiation. Meristematic activity was triggered at all concentrations of thidiazuron (TDZ) incorporated into Woody Plant Medium. TDZ suppressed elongation of axillary buds, resulting into swollen meristems and upon its elimination multiple shoot primordia formation and differentiation were noted. Differentiation and shoot elongation were slower in explants pre-cultured with higher concentrations of TDZ. Swollen axillary meristems pre-cultured on TDZ (9.08 and 13.62 μM) failed to differentiate, whereas TDZ at 2.27 μM was optimal for shoot differentiation and elongation. Multiple bud induction was favored by 4.45 μM of TDZ. Differentiation of multiple shoot primordia by repeated subculturing on growth regulator-free medium and rooting was 100% in filter-paper supported half-strength liquid medium containing 7.38 μM IBA. Rooting was 90% in shoots placed directly in half-strength liquid medium with 2.46 μM IBA. Rooted plantlets hardened in soil:sand mixture (1:1) were transferred to green house. Genetic uniformity of in vitro raised clones with mother plant was confirmed by Inter-Simple Sequence Repeat markers.  相似文献   

9.
Internode explants collected from in vitro grown shoots of two clones of Fagus sylvatica L. (European beech) and five clones of F. orientalis Lipski (Oriental beech) were used to evaluate their bud regeneration capacity. Adventitious shoot-buds formed on callus, which developed from internode segments cultured in a Woody Plant Medium supplemented with different concentrations of either thidiazuron (TDZ) or benzyladenine (BA). After 4 weeks of culture on induction media, the explants were transferred to a proliferation medium supplemented with 2.2 μM BA, 9.1 μM zeatin and 2.9 μM indole-3-acetic acid (IAA) for another 8 weeks. Medium containing TDZ was much more efficient than medium containing BA in inducing adventitious buds, the optimal TDZ concentration being 4.5 μM and the optimal BA concentration 17.8 μM. Genotypic variation in shoot regeneration capacity was observed among the two Fagus species and between clones within each species, with a significant interaction between TDZ concentration and genotype regarding mean bud number. Thidiazuron induction medium supplemented with a range of individual auxins was investigated, and it was found that IAA or indole-3-butyric acid at 2.9 μM enhanced the bud forming capacity of explants. Morphogenic response varied significantly with the position of the internode along the stem. The highest regeneration potential was obtained from apical internodes, while those distal to the apex were the least productive. Elongated shoots of adventitious origin can be readily proliferated by axillary branching. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

10.
An efficient system to regenerate shoots on excised leaves of greenhouse-grown wild lowbush blueberry (Vaccinium angustifolium Ait.) was developed in vitro. The effect of thidiazuron (TDZ) on adventitious bud and shoot formation from apical, medial, and basal segments of the leaves was tested. Leaf cultures produced multiple buds and shoots with or without an intermediary callus phase on 2.3–4.5 μM TDZ within 6 wk of culture initiation. The greatest shoot regeneration came from young expanding basal leaf segments positioned with the adaxial side touching the culture medium and maintained for 2 wk in darkness. Callus development and shoot regeneration depended not only on the polarity of the explants but also on the genotype of the clone that supplied the explant material. TDZ-initiated cultures were transferred to medium containing 2.3–4.6 μM zeatin and produced usable shoots after one additional subculture. Elongated shoots were dipped in 39.4 mM indole-3-butyric acid powder and planted on a peat:perlite soilless medium at a ratio of 3:2 (v/v), which yielded an 80–90% rooting efficiency. The plantlets were acclimatized and eventually established in the greenhouse with 75–85% survival.  相似文献   

11.
Multiple shoots were produced from nodal explants of cassava (Manihot esculenta Crantz) by a two-step procedure: a 6- to 8-day exposure to 0.11–0.22 µM thidiazuron (TDZ) in liquid Murashige and Skoog (MS) medium followed by culture on agar-solidified MS medium supplemented with 2.2 µM 6-benzyladenine (BA) and 1.6 M gibberellic acid (GA3). TDZ caused the nodal explants to expand and this expansion (growth) continued during culture with BA and GA3. From this expanded explant, clusters of buds and fasciated stems developed continuously and these gave rise to shoots. The shoot proliferation process was open-ended, yielding an average of 31.5 shoots per nodal explant after 10 weeks of culture with genotype CG 1–56. A positive response was also obtained from seven other genotypes evaluated with this protocol.Abbreviations BA 6-benzyladenine - BM basal medium - DPU 1,3-diphenylurea - GA3 gibberellie acid - 2iP isopentenyladenine - MSM multiple shoot medium - NAA 1-naphthaleneacetic acid - PGR plant growth regulator - TDZ thidiazuron - Z zeatin  相似文献   

12.
The effect of thidiazuron (TDZ) was studied on in vitro axillary shoot proliferation from nodal explant of Psoralea corylifolia - an endangered medicinal plant. Proliferation of shoots was achieved on Murashige and Skoog (MS) medium supplemented with 0.5, 1, 2, 3, 4 and 5 μM TDZ. The maximum number (13.6 ± 1.4) of shoots per explant were obtained from nodal segment cultured on 2 μM TDZ for 4 weeks and this increased to 29.7 ± 2.1 on hormone free MS medium after 8 weeks. The in vitro proliferated and elongated shoots were transferred individually on a root induction medium containing 0.5 μM indole-3-butyric acid (IBA) and within 4 weeks 4.5 ± 0.5 roots per shoot were produced. The regenerated plantlets were transferred to 1:1 soil and vermiculite mixture and acclimatized with 80 % survival rate. Fully acclimatized plants were grown in garden soil in greenhouse and their morphological and physiological parameters were comparable with seedlings.  相似文献   

13.
A system for in vitro regeneration of Aloe arborescens was developed using young inflorescences as explants. Different phytohormone combinations of N-phenyl-N′-1,2,3-thiadiazol-5-yl urea (TDZ), benzyladenine (BA), 6-(γ,γ-dimethylallyl-amino)purine riboside (2iPR), zeatin ribozide (ZR), N-(2-chloro-4-pyridyl)-N′-phenylurea (CPPU) and kinetin (K), with or without ancymidol, were examined in order to induce plant regeneration. Efficient shoot regeneration was initiated on Murashige and Skoog (MS) medium supplemented with BA or TDZ. MS medium enriched with 19.6, 22.2 μM BA and 3.92 μM ancymidol (MSBA5/1 medium), promoted organogenesis enabling 87.3% of the explants to regenerate 6.04 ± 1.79 shoots/explant. Subsequent shoot elongation and plant regeneration were strongly affected by the medium composition used for shoot induction. Optimal elongation (three to four shoots per explant) was obtained when shoots, initiated on MSBA5/1 medium, were subsequently transferred onto MS containing only 4.4 μM BA. Rooting was performed on MS media lacking growth regulators. Histological analysis revealed that the initiated shoots originated from the receptacle tissue surrounding the residual vascular tissue of the flower buds.  相似文献   

14.
An in vitro protocol was developed for regeneration of Cyperus pangorei that may supplement enough raw materials for the mat weaving community. Callus was initiated from inflorescence explants on Murashige and Skoog’s (MS) medium supplemented with 5 and 10 μM each of 2, 4-D, 2, 4, 5-T and CPA. Development of numerous de novo spikelets from immature inflorescence explants grown in (10 μM) 2, 4, 5-T was observed. MS with 5 μM Kn and 100 ml l?1 Coconut milk (CM) promoted shoot regeneration from calli. Calli from 2,4-D and CPA medium sub-cultured on medium containing 5 μM BAP, 5 μM Kn, 1 μM IAA and 100 ml l?1 CM produced extensive and rapid rhizogenesis with wiry and scaly roots. Micropropagation using rhizome buds on MS medium with BAP, Kn and Zeatin at 10 μM concentrations resulted in shoot release and multiplication by breaking the bud dormancy. An average of 10 shoots per explant was produced in 10 μM BAP, whereas (10 μM) Kn and (10 μM) Zeatin induced only single shoot formation. The shoots were transferred to rooting media comprising 10 μM IAA with 1 μM BAP or Kn and then acclimatized. The results accomplished were found to be useful in developing a complete in vitro regeneration protocol towards the mass production of Cyperus species, which may provide a basis for further genetic improvements that may prove its use as an alternative natural fibre resource in commercial applications.  相似文献   

15.
We report here a simple protocol for regenerating plants from leaf protoplasts of vegetable Brassicas, viz., cabbage, cauliflower and broccoli. Protoplasts from in vitro grown leaf material were cultured in Kao’s medium with a supplementation of 2,4-D, NAA, BAP and glucose, initially in dark for 3d and subsequently in light. Dilution of protoplast cultures was effected on the 7th, 10th and 13th day of culture initiation with Kao’s medium supplemented with sucrose, and reduced 2,4-13 content; NAA was omitted. Micro-colonies were plated on a K3 medium having 2,4-D, BAP and sucrose gelled with agarose. Transfer of calli to another K3 medium with zeatin regenerated shoots from cauliflower protoplast derived calli, whereas a medium with kinetin and zeatin supported shoot regeneration in cabbage and broccoli. Shoot regeneration occurred within 6-6 weeks of culture initiation. Shoots were easily rooted on MS medium without growth regulators.  相似文献   

16.
An adventitious shoot regeneration protocol from in vitro leaves of the most important dried plum cultivar in the USA, ‘Improved French’, has been established. Factors affecting regeneration were studied in order to optimise regeneration. The proliferation medium in which the shoots, used as the source of leaf explants, were cultured had a strong influence on subsequent regeneration. Shoot regeneration was observed at a mean frequency of 52% when a Murashige-based and Skoog-based shoot culture medium with 3 μM N6-benzylaminopurine and 0.25 μM indole-3-butyric acid (IBA) was employed compared with shoot regeneration frequencies of less than 5% for a Quoirin-based and Lepoivre-based shoot culture medium, with 8.9 μM N6-benzylaminopurine and 0.49 μM IBA. The shoot regeneration medium contained α-naphthaleneacetic acid at 2.0–6.0 μM and thidiazuron at 4.5–15.0 μM. 2,4 Dichlorophenoxy-acetic acid at 9.0 μM was included in the medium but only for the first 4 days of culture. Shoot regeneration frequencies were positively related to thidiazuron concentration and significantly greater (P < 0.05) for 9–15 μM thidiazuron than for the media with 4.5 μM thidiazuron. Leaf explants, incubated in a 16-h-light/8-h-dark photoperiod or in the dark for 1 week followed by exposure to light, showed significantly more organogenic activity (P < 0.01) than was observed for leaves cultured in the dark for 2 or 3 weeks before they were transferred to the light. The utilisation of Bacto agar (0.7%) as the gelling agent increased organogenesis compared with media gelled with TC Agar (0.7%), or an agar–gellan gum blend (Agargel™) (0.45%). The addition of the ethylene inhibitor silver thiosulphate at 60–120 μM also improved organogenesis. When all the studied factors were optimised, a regeneration rate of 65% was achieved. Rooting frequency of regenerated shoots was significantly increased (P < 0.05) by the use of full-strength Murashige and Skoog salts (40%) or 100 mg L−1 phloroglucinol (53%) to the rooting medium.  相似文献   

17.
Leucaena leucocephala is a fast growing multipurpose legume tree used for forage, leaf manure, paper and pulp. Lignin in Leucaena pulp adversely influences the quality of paper produced. Developing transgenic Leucaena with altered lignin by genetic engineering demands an optimized regeneration system. The present study deals with optimization of regeneration system for L. leucocephala cv. K636. Multiple shoot induction from the cotyledonary nodes of L. leucocephala was studied in response to cytokinins, thidiazuron (TDZ) and N6-benzyladenine (BA) supplemented in half strength MS (½-MS) medium and also their effect on in vitro rooting of the regenerated shoots. Multiple shoots were induced from cotyledonary nodes at varied frequencies depending on the type and concentration of cytokinin used in the medium. TDZ was found to induce more number of shoots per explant than BA, with a maximum of 7 shoots at an optimum concentration of 0.23 µM. Further increase in TDZ concentration resulted in reduced shoot length and fasciation of the shoots. Liquid pulse treatment of the explants with TDZ did not improve the shoot production further but improved the subsequent rooting of the shoots that regenerated. Regenerated shoots successfully rooted on ½-MS medium supplemented with 0.54 µM α-naphthaleneacetic acid (NAA). Rooted shoots of Leucaena were transferred to coco-peat and hardened plantlets showed ≥ 90 % establishment in the green house.Key words: Cotyledonary nodes, Multiple shoot induction, Pulse treatment, TDZ  相似文献   

18.
Dormant buds from a mature tree of Populus tremula ‘Erecta’ were incubated on a Murashige and Skoog (MS) medium supplemented with 1.0 μM thidiazuron (TDZ). Induced shoots were then proliferated on medium of MS or Woody Plant Medium (WPM), or Driver and Kuniyuki Walnut (DKW) supplemented with varying levels of benzyladenine (BA). Overall, shoots grown on MS medium supplemented with 1.25–2.5 μM BA exhibited the highest frequency of shoot proliferation (>95%) and more than 60% of responding explants produced more than five shoots per explant. Shoot organogenesis was induced from both leaf and petiole explants incubated on WPM medium containing BA, or TDZ, or zeatin. Among the different cytokinins tested, zeatin induced the highest frequency (average 72.1%) of shoot organogenesis. None of explants survived on media containing no cytokinins within 6–8 weeks following culture. Overall, a higher frequency of shoot regeneration was obtained from petioles than from leaf explants. The highest frequency of regeneration was achieved when petioles were incubated on WPM containing 10–20 μM zeatin. Addition of naphthaleneacetic acid (NAA) did not have a significant effect on shoot regeneration in all treatments. Shoot organogenesis was directly induced from petiole explants without intervening callus. Regenerated shoots were easily rooted on all tested media supplemented with 0.5 μM NAA. Rooted plants were transferred to potting mix and grown in the greenhouse.  相似文献   

19.
The effects of various combinations of plant growth regulators on regeneration potential from seedling-derived leaf tissues of Brassica oleracea L. var. botrytis were evaluated. Callus was induced from 2-wk-old leaf explants. The explants were incubated on Gamborg’s (MSB5) medium. The maximum frequency of callus induction (85.56%) was recorded on MSB5 medium supplemented with 9.1 μM thidiazuron (TDZ) and 0.5 μM α-naphthaleneacetic acid (NAA). Optimum shoot induction (54.44%) was obtained on MSB5 medium supplemented with 4.5 μM TDZ and 0.5 μM NAA. The maximum number of shoots per explant (5.33) was recorded on MSB5 medium with 4.5 μM TDZ and 0.5 μM NAA, whereas the maximum shoot length (4.86 cm) was recorded for shoots cultured on MSB5 medium supplemented with 4.5 μM TDZ and 5.7 μM gibberellic acid (GA3). However, optimum root induction (71.11%) occurred on half-strength Murashige and Skoog basal medium supplemented with 4.9 μM indole-3 butyric acid (IBA). Studies on the antioxidant activity of superoxide dismutase, ascorbate peroxidase, and peroxidase in seedlings, callus, regenerated shoots, and regenerated plantlets cultured on 4.5 μM TDZ and 0.5 μM NAA medium revealed the roles of these key antioxidative enzymes in callus induction and regeneration. The genetic stability of the regenerated plantlets was assessed using inter simple sequence repeat primers. The monomorphic amplification products confirmed true-to-type in vitro regenerated plants. This in vitro regeneration method can be useful in the large-scale production of genetically uniform plants, for genetic transformation, and conservation of elite germplasm of plant species.  相似文献   

20.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号