首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microglia recognize double-stranded RNA via TLR3   总被引:4,自引:0,他引:4  
Microglia are CNS resident innate immune cells of myeloid origin that become activated and produce innate proinflammatory molecules upon encountering bacteria or viruses. TLRs are a phylogenetically conserved diverse family of sensors for pathogen-associated molecular patterns that drive innate immune responses. We have recently shown that mice deficient in TLR3 (TLR3(-/-) mice) are resistant to lethal encephalitis and have reduced microglial activation after infection with West Nile virus, a retrovirus that produces dsRNA. We wished to determine whether microglia recognize dsRNA through the TLR3 pathway. In vitro, murine wild-type primary cultured microglia responded to synthetic dsRNA polyinosinic-polycytidylic acid (poly(I:C)) by increasing TLR3 and IFN-beta mRNA and by morphologic activation. Furthermore, wild-type microglia dose dependently secreted TNF-alpha and IL-6 after poly(I:C) challenge, whereas TLR3(-/-) microglia produced diminished cytokines. Activation of MAPK occurred in a time-dependent fashion following poly(I:C) treatment of wild-type microglia, but happened with delayed kinetics in TLR3(-/-) microglia. As an in vivo model of encephalitis, wild-type or TLR3(-/-) mice were injected intracerebroventricularly with poly(I:C) or LPS, and microglial activation was assessed by cell surface marker or phospho-MAPK immunofluorescence. After intracerebroventricular injection of poly(I:C), microgliosis was clearly evident in wild-type mice but was nearly absent in TLR3(-/-) animals. When taken together, our results demonstrate that microglia recognize dsRNA through TLR3 and associated signaling molecules and suggest that these cells are key sensors of dsRNA-producing viruses that may invade the CNS.  相似文献   

2.
3.

Background

Toll-like Receptor 3 (TLR3) detects viral dsRNA during viral infection. However, most natural viral dsRNAs are poor activators of TLR3 in cell-based systems, leading us to hypothesize that TLR3 needs additional factors to be activated by viral dsRNAs. The anti-microbial peptide LL37 is the only known human member of the cathelicidin family of anti-microbial peptides. LL37 complexes with bacterial lipopolysaccharide (LPS) to prevent activation of TLR4, binds to ssDNA to modulate TLR9 and ssRNA to modulate TLR7 and 8. It synergizes with TLR2/1, TLR3 and TLR5 agonists to increase IL8 and IL6 production. This work seeks to determine whether LL37 enhances viral dsRNA recognition by TLR3.

Methodology/Principal Findings

Using a human bronchial epithelial cell line (BEAS2B) and human embryonic kidney cells (HEK 293T) transiently transfected with TLR3, we found that LL37 enhanced poly(I:C)-induced TLR3 signaling and enabled the recognition of viral dsRNAs by TLR3. The presence of LL37 also increased the cytokine response to rhinovirus infection in BEAS2B cells and in activated human peripheral blood mononuclear cells. Confocal microscopy determined that LL37 could co-localize with TLR3. Electron microscopy showed that LL37 and poly(I:C) individually formed globular structures, but a complex of the two formed filamentous structures. To separate the effects of LL37 on TLR3 and TLR4, other peptides that bind RNA and transport the complex into cells were tested and found to activate TLR3 signaling in response to dsRNAs, but had no effect on TLR4 signaling. This is the first demonstration that LL37 and other RNA-binding peptides with cell penetrating motifs can activate TLR3 signaling and facilitate the recognition of viral ligands.

Conclusions/Significance

LL37 and several cell-penetrating peptides can enhance signaling by TLR3 and enable TLR3 to respond to viral dsRNA.  相似文献   

4.
5.
The role of TLRs on intestinal epithelial cells (IECs) is controversial, and the mechanisms by which TLRs influence mucosal homeostasis are obscure. In this study, we report that genomic dsRNA from rotavirus, and its synthetic analog polyinosinic-polycytidylic acid (poly(I:C)), induce severe mucosal injury in the small intestine. Upon engaging TLR3 on IECs, dsRNA triggers IECs to secrete IL-15, which functions to increase the percentage of CD3+NK1.1+ intestinal intraepithelial lymphocytes (IELs) and enhances the cytotoxicity of IELs. Moreover, The CD3+NK1.1+ IELs are proved as CD8alphaalpha+ IELs. These results provide direct evidence that abnormal TLR3 signaling contributes to breaking down mucosal homeostasis and the first evidence of pathogenic effects mediated by CD8alphaalpha+ IELs. The data also suggest that genomic dsRNA may be involved in the pathogenesis of acute rotavirus gastroenteritis.  相似文献   

6.
7.
Toll-like receptor 3 (TLR3) recognizes dsRNA and initiates an innate immune response through the formation of a signaling unit (SU) composed of one double-stranded RNA (dsRNA) and two TLR3 molecules. We report the crystal structure of human TLR3 ectodomain (TLR3ecd) in a quaternary complex with three neutralizing Fab fragments. Fab15 binds an epitope that overlaps the C-terminal dsRNA binding site and, in biochemical assays, blocks the interaction of TLR3ecd with dsRNA, thus directly antagonizing TLR3 signaling through inhibition of SU formation. In contrast, Fab12 and Fab1068 bind TLR3ecd at sites distinct from the N- and C-terminal regions that interact with dsRNA and do not inhibit minimal SU formation with short dsRNA. Molecular modeling based on the co-structure rationalizes these observations by showing that both Fab12 and Fab1068 prevent lateral clustering of SUs along the length of the dsRNA ligand. This model is further supported by cell-based assay results using dsRNA ligands of lengths that support single and multiple SUs. Thus, their antagonism of TLR3 signaling indicates that lateral clustering of SUs is required for TLR3 signal transduction.  相似文献   

8.
Thanks to the Nobel Foundation for permission to publish this Lecture. We report here the Nobel Lecture delivered by Professor Andrew Z Fire. Together with the accompanying lecture by Professor Mello this lecture describes the exciting years leading to the discovery of RNA interference (RNAi) and some of the underlying molecular mechanisms. Professor Fire nicely points out his own contribution and the contribution of other research groups to the development of this field. He also presents an interesting discussion on the role of RNAi in immunity and challenges us with a number of open questions. The lecture ends presenting the great potential of exploiting RNAi for therapeutical purposes.  相似文献   

9.
Gene silencing by double-stranded RNA   总被引:28,自引:0,他引:28  
Eukaryotes silence gene expression in the presence of double-stranded RNA homologous to the silenced gene. Silencing occurs by the targeted degradation of mRNA. Biochemical reactions that recapitulate this phenomenon generate RNA fragments of 21--23 nucleotides from the double-stranded RNA. These stably associate with an RNA endonuclease and probably serve as a discriminator to select mRNAs. Once selected, mRNAs are cleaved at sites 21--23 nucleotides apart. This mechanism, termed RNAi, has functional links to viral defense and silencing phenomena, such as cosuppression. It also functions to repress the hopping of transposable elements.  相似文献   

10.
11.
Kaposi’s sarcoma (KS) is strongly associated with KS herpes virus infection, and inflammation plays an important role in this disease. We have shown that human KS biopsy-derived SLK cells, which are of endothelial origin and form KS-like tumors in nude mice, express the viral RNA pattern recognition receptors Toll-like receptor 3 (TLR3), retinoic acid-inducible gene-I (RIG-I), and melanoma-differentiation-associated gene 5 (MDA5). Furthermore, SLK cells have enhanced release of IL-6, IL-8 (CXCL8), RANTES (CCL5), and IP-10 (CXCL10) proteins in response to the synthetic viral RNA analog poly(I:C). SiRNA knockdowns demonstrated that TLR3 mediates this inflammatory response to poly(I:C) in SLK cells. Furthermore, knockdown of the RNA receptor RIG-I resulted in enhanced chemokine release, in a TLR3 pathway-dependent manner. Thus, exposure of KS cells to viral RNA ligands can result in a TLR3-mediated increase in the secretion of inflammatory proteins associated with KS cell growth that may contribute to disease.  相似文献   

12.
The key step in the activation of autoreactive B cells is the internalization of nucleic acid containing ligands and delivery of these ligands to the Toll-like Receptor (TLR) containing endolysosomal compartment. Ribonucleoproteins represent a large fraction of autoantigens in systemic autoimmune diseases. Here we demonstrate that many uridine-rich mammalian RNA sequences associated with common autoantigens effectively activate autoreactive B cells. Priming with type I IFN increased the magnitude of activation, and the range of which RNAs were stimulatory. A subset of RNAs that contain a high degree of self-complementarity also activated B cells through TLR3. For the RNA sequences that activated predominantly through TLR7, the activation is proportional to uridine-content, and more precisely defined by the frequency of specific uridine-containing motifs. These results identify parameters that define specific mammalian RNAs as ligands for TLRs.  相似文献   

13.
Studies involving Toll-like receptor 3 (TLR3)-deficient mice suggest that this receptor binds double-stranded RNA. In the present study, we analyzed ligand/receptor interactions and receptor-proximal events leading to TLR3 activation. The mutagenesis approach showed that certain cysteine residues and glycosylation in TLR3 amino-terminal leucine-rich repeats were necessary for ligand-induced signaling. Furthermore, inactive mutants had a dominant negative effect, suggesting that the signaling module is a multimer. We constructed a chimeric molecule fusing the amino-terminal ectodomain of TLR3 to the transmembrane and carboxyl terminal domains of CD32a containing an immunoreceptor tyrosine-based motif. Expression of TLR3-CD32 in HEK293T cells and the myeloid cell line U937 resulted in surface localization of the receptor, whereas the nonrecombinant molecule was intracellularly localized. The synthetic double-stranded RNAs poly(I-C) and poly(A-U) induced calcium mobilization in a TLR3-CD32 stably transfected U937 clone but not in control cells transfected with other constructs. An anti-TLR3 antibody also induced Ca(2+) flux but only when cross-linked by a secondary anti-immunoglobulin antibody, confirming that multimerization by the ligand is a requirement for signaling. The inhibitors of lysosome maturation, bafilomycin and chloroquine, inhibited the poly(I-C)-induced biological response in immune cells, showing that TLR3 interacted with its ligand in acidic subcellular compartments. Furthermore, TLR3-CD32 activation with poly(I-C) was only observed within a narrow pH window (pH 5.7-6.7), whereas anti-TLR3-mediated Ca(2+) flux was pH-insensitive. The importance of an acidic pH for TLR3-ligand interaction becomes critical when using oligomeric poly(I-C) (15-40-mers). These observations demonstrate that engagement of TLR3 by poly(I-C) at an acidic pH, probably in early phagolysosomes or endosomes, induces receptor aggregation leading to signaling.  相似文献   

14.
Maturation of dendritic cells (DC) to competent APC is essential for the generation of acquired immunity and is a major function of adjuvants. dsRNA, a molecular signature of viral infection, drives DC maturation by activating TLR3, but the size of dsRNA required to activate DC and the expression patterns of TLR3 protein in DC subsets have not been established. In this article, we show that cross-priming CD8α(+) and CD103(+) DC subsets express much greater levels of TLR3 than other DC. In resting DC, TLR3 is located in early endosomes and other intracellular compartments but migrates to LAMP1(+) endosomes on stimulation with a TLR3 ligand. Using homogeneous dsRNA oligonucleotides (ONs) ranging in length from 25 to 540 bp, we observed that a minimum length of ~90 bp was sufficient to induce CD86, IL-12p40, IFN-β, TNF-α, and IL-6 expression, and to mature DC into APC that cross-presented exogenous Ags to CD8(+) T cells. TLR3 was essential for activation of DC by dsRNA ONs, and the potency of activation increased with dsRNA length and varied between DC subsets. In vivo, dsRNA ONs, in a size-dependent manner, served as adjuvants for the generation of Ag-specific CTL and for inducing protection against lethal challenge with influenza virus when given with influenza nucleoprotein as an immunogen. These results provide the basis for the development of TLR3-specific adjuvants capable of inducing immune responses tailored for viral pathogens.  相似文献   

15.
16.
17.
Post-transcriptional gene silencing by double-stranded RNA   总被引:2,自引:0,他引:2  
Imagine being able to knock out your favourite gene with only a day's work. Not just in one model system, but in virtually any organism: plants, flies, mice or cultured cells. This sort of experimental dream might one day become reality as we learn to harness the power of RNA interference, the process by which double-stranded RNA induces the silencing of homologous endogenous genes. How this phenomenon works is slowly becoming clear, and might help us to develop an effortless tool to probe gene function in cells and animals.  相似文献   

18.
The synthetic double-stranded RNA polyinosinate-polycytidylate [poly(I).poly(C)] was mitogenic in cultures of human foreskin fibroblasts, as demonstrated by a stimulation of 3H-thymidine incorporation and an increase in cell density. Poly(I).poly(C) is a potent inducer of interferon (IFN)-beta in human fibroblasts. Single-stranded poly(l) or poly(C) were not mitogenic in human fibroblasts and did not stimulate IFN production. Antiserum to interferon (IFN)-beta, added to poly(I).poly(C)-stimulated cultures in order to neutralize endogenously generated IFN, markedly amplified the mitogenic action. Under similar experimental conditions, antiserum to IFN-beta did not enhance the mitogenic action of epidermal growth factor (EGF). Dexamethasone enhanced the mitogenic action of poly(I).poly(C) in a manner similar to antiserum against IFN-beta. This effect of dexamethasone correlated with its marked inhibitory action on poly(I).poly(C)-stimulated IFN production. Together with the results of other related studies, these findings support the notion of an evolutionary link between the generation of a mitogenic signal and IFN induction. In addition, these results support the concept that autocrine secretion of IFN-beta can exert negative feedback control of cell proliferation.  相似文献   

19.
We show that in Dictyostelium discoideum an endogenous gene as well as a transgene can be silenced by introduction of a gene construct that is transcribed into a hairpin RNA. Gene silencing was accompanied by the appearance of sequence-specific RNA about 23mers and seemed to have a limited capacity. The three Dictyostelium homologues of the RNA-directed RNA polymerase (RrpA, RrpB, and DosA) all contain an N-terminal helicase domain homologous to the one in the dicer nuclease, suggesting exon shuffling between RNA-directed RNA polymerase and the dicer homologue. Only the knock-out of rrpA resulted in a loss of the hairpin RNA effect and simultaneously in a loss of detectable about 23mers. However, about 23mers were still generated by the Dictyostelium dsRNase in vitro with extracts from rrpA(-), rrpB(-), and DosA(-) cells. Both RrpA and a target gene were required for production of detectable amounts of about 23mers, suggesting that target sequences are involved in about 23mer amplification.  相似文献   

20.
Sorrentino S  Naddeo M  Russo A  D'Alessio G 《Biochemistry》2003,42(34):10182-10190
Under physiological salt conditions double-stranded (ds) RNA is resistant to the action of most mammalian extracellular ribonucleases (RNases). However, some pancreatic-type RNases are able to degrade dsRNA under conditions in which the activity of bovine RNase A, the prototype of the RNase superfamily, is essentially undetectable. Human pancreatic ribonuclease (HP-RNase) is the most powerful enzyme to degrade dsRNA within the tetrapod RNase superfamily, being 500-fold more active than the orthologous bovine enzyme on this substrate. HP-RNase has basic amino acids at positions where RNase A shows instead neutral residues. We found by modeling that some of these basic charges are located on the periphery of the substrate binding site. To verify the role of these residues in the cleavage of dsRNA, we prepared four variants of HP-RNase: R4A, G38D, K102A, and the triple mutant R4A/G38D/K102A. The overall structure and active site conformation of the variants were not significantly affected by the amino acid substitutions, as deduced from CD spectra and activity on single-stranded RNA substrates. The kinetic parameters of the mutants with double-helical poly(A).poly(U) as a substrate were determined, as well as their helix-destabilizing action on a synthetic DNA substrate. The results obtained indicate that the potent activity of HP-RNase on dsRNA is related to the presence of noncatalytic basic residues which cooperatively contribute to the binding and destabilization of the double-helical RNA molecule. These data and the wide distribution of the enzyme in different organs and body fluids suggest that HP-RNase has evolved to perform both digestive and nondigestive physiological functions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号