首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Arachidonate 5-lipoxygenase purified from porcine leukocytes produced several more polar compounds from 5,15-dihydroperoxy-eicosatetraenoic acid added as such or generated from 15-hydroperoxy acid. These polar products with absorption maxima at 301-302 nm and shoulders at 289 nm and 316-317 nm were identified as 5S,6R,15S-11-cis-lipoxin A and its 6-epimer, all-trans-lipoxin A isomers, and all-trans-lipoxin B isomers. Most of these lipoxins were presumably degradation products of a 5,6-epoxy intermediate formed by the catalysis of leukotriene A synthase, an integral part of 5-lipoxygenase. The rate of the enzymatic lipoxin synthesis from 15-hydroperoxy acid was about 6% of arachidonate 5-oxygenation.  相似文献   

2.
Arachidonate 12-lipoxygenase purified from porcine leukocytes shows 14R-oxygenase and 14,15-leukotriene A synthase activities with 15-hydroperoxy-arachidonic acid as substrate. The enzyme transformed 5,15-dihydroperoxy-arachidonic acid to several compounds with a conjugated tetraene. A major product was identified as 5S,14R,15S-trihydroperoxy-6,10,12-trans-8-cis-eicosatetraenoic acid, which was reduced to 5S,14R,15S-8-cis-lipoxin B. A requirement of molecular oxygen and the results of H218O experiments suggested that formation of the latter compound was attributed mostly to the 14R-oxygenase activity of the enzyme. There were several other minor products identified as lipoxin A and B isomers. They were produced presumably by hydrolysis of 14,15-epoxy compound formed by the leukotriene A synthase activity of 12-lipoxygenase.  相似文献   

3.
Arachidonate 5-lipoxygenase was purified to near homogeneity from the 105,000 X g supernatant of porcine leukocyte homogenate by immunoaffinity chromatography using a monoclonal anti-5-lipoxygenase antibody. Reaction of the purified enzyme with arachidonic acid produced predominantly 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid with concomitant formation of several more polar compounds in smaller amounts. These minor products were identified as the degradation products of leukotriene A4, namely, 6-trans-leukotriene B4 (epimeric at C-12) and an epimeric mixture of 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids. These compounds were also produced by reaction of the enzyme with 5-hydroperoxy-eicosatetraenoic acid. Association of the 5-lipoxygenase and leukotriene A synthase activities was demonstrated by several experiments: heat inactivation of enzyme, effect of selective 5-lipoxygenase inhibitors, requirements of calcium ion and ATP, and self-catalyzed inactivation of enzyme. The enzyme was also active with 12- and 15-hydroperoxy-eicosatetraenoic acids producing (5S,12S)- and (5S,15S)-dihydroperoxy acids, respectively. Maximal velocities of the reactions with these hydroperoxy acids as compared with that of arachidonic acid (100%, 0.6 mumol/3 min/mg of protein) were as follows: 5-hydroperoxy acid, 3.5%, 12-hydroperoxy acid, 22%, and 15-hydroperoxy acid, 30%.  相似文献   

4.
Arachidonate 5-lipoxygenase is an enzyme that catalyzes the oxygenation of arachidonic acid, producing 5-hydroperoxy acid. This enzymatic reaction initiates the biosynthesis of various bioactive leukotrienes. An antiserum was raised in a rabbit against the purified 5-lipoxygenase of porcine leukocytes, and various types of porcine leukocytes were immunostained by use of the antibody. As examined by light and electron microscopy, neutrophils and eosinophils were positively stained. The 5-lipoxygenase was localized in the cytoplasm but not in the plasma membrane and subcellular organelles of the positively stained cells. In contrast, lymphocytes were unstained. In porcine ileum, the majority of 5-lipoxygenase-positive cells were eosinophils and mast cells resident in the lamina propria mucosae, whereas parenchymal cells were not stained. In porcine lung, certain bronchiolar or bronchial epithelial cells were clearly immunostained, in addition to eosinophils and mast cells found in the interstitium.  相似文献   

5.
Arachidonate 12-lipoxygenase of porcine leukocytes, which was purified to homogeneity by immunoaffinity chromatography, was analyzed for iron content by atomic absorption spectrophotometry. The enzyme contained 0.70 +/- 0.09 g atom of iron per mol of enzyme (mean +/- S.D., n = 4). Inorganic iron, which was added to the enzyme solution as an internal standard, was recovered in almost 100% yield. Among various iron chelators tested, only 2,2'-dipyridyl at 1 mM inactivated the enzyme by 87%, but the enzyme was not reactivated by the addition of excess ferrous or ferric iron.  相似文献   

6.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, and 5,6-dihydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]-labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

7.
Two different proteins with arachidonate 15-lipoxygenase activity have been purified to near homogeneity from human leukocytes. Both have the same molecular mass (74 kDa) on SDS/PAGE and appear to be equally active with three different fatty acid substrates. The N-terminal amino acid sequences of both forms were identical to the sequence of human reticulocyte 15-lipoxygenase [Sigal, E., Craik, C.S., Highland, E., Grunberger, D., Costello, L.L., Dixon, R.A.F. & Nadel, J.A. (1988) Biochem. Biophys. Res. Commun. 157, 457-464]. The two forms of 15-lipoxygenase could be clearly separated by cation-exchange chromatography. Of particular interest, the relative amounts of the two forms differed markedly between leukocytes obtained from normal donors and leukocytes from an individual with eosinophilia.  相似文献   

8.
Arachidonate 12-lipoxygenase was purified to near homogeneity from the cytosol fraction of porcine leukocytes by ammonium sulfate fractionation, DEAE-cellulose chromatography, and immunoaffinity chromatography using a monoclonal antibody against the enzyme. The purified enzyme was unstable (half-life of about 24 h at 4 degrees C) but was markedly protected from the inactivation by storage in the presence of ferrous ion or in the absence of air. The lag phase which was observed before the start of the enzyme reaction was abolished by the presence of 12-hydroperoxy-5,8,10,14-eicosatetraenoic acid. An apparent substrate inhibition was observed with arachidonic acid and other active substrates; however, the substrate concentration curve was normalized by the presence of 0.03% Tween 20. Arachidonic acid was transformed to the omega-9 oxygenation product 12-hydroperoxy-5Z,8Z,10Z,14Z-eicosatetraenoic acid. C-12 oxygenation also occurred with 5-hydroxy- and 5-hydroperoxyeicosatetraenoic acids; the respective maximal velocities were 60 and 150% of the rate with arachidonic acid. Octadecaenoic acids were also good substrates. gamma-Linolenic acid was oxygenated in the omega-9 position (C-10), while linoleic and alpha-linolenic acids were subject to omega-6 oxygenation (C-13). A far more complex reaction was observed using 15-hydroperoxy-5,8,11,13-eicosatetraenoic acid as substrate. Reaction occurred at 70% of the rate with arachidonic acid. The dihydroperoxy and dihydroxy products were identified by their UV absorption spectra, high performance liquid chromatography, and gas chromatography-mass spectrometry. Among these products, (8S,15S)-dihydroperoxy-5Z,9E,11Z,13E-eicos atetraenoic acid and (14R,15S)-erythro-dihydroperoxy-5Z,8Z,10E, 12E-eicosatetraenoic acid were produced in larger amounts than the (8R)- and (14S,15S)-threo isomers, respectively; these products were attributed to 8- and 14-oxygenation of the 15-hydroperoxy acid. Furthermore, formation of 14,15-leukotriene A4 was inferred from the characteristic pattern of its hydrolysis products comprised of equal amounts of (8R,15S)- and (8S,15S)-dihydroxy-5Z,9E,11E,13E-eicosatetraenoi c acids together with smaller amounts of (14R,15S)-erythro- and (14S,15S)-threo-dihydroxy-5Z,8Z,10E,12E-eicosate traenoic acids. Thus, both lipoxygenase and leukotriene synthase activities were demonstrated with the homogeneous preparation of porcine leukocyte 12-lipoxygenase.  相似文献   

9.
H Mita  Y Yui  N Taniguchi  H Yasueda  T Shida 《Life sciences》1985,37(10):907-914
The formation of 5-lipoxygenase products of arachidonic acid, 5-HETE and 5,12-diHETE, was determined in 100,000 X g supernatant of polymorphonuclear leukocytes from 17 healthy subjects, 17 patients with extrinsic asthma and 15 patients with intrinsic asthma. After the supernatant was incubated with 14C-arachidonic acid in the presence of calcium and indomethacin, the lipoxygenase products of arachidonic acid were separated by thin layer chromatography. The results were expressed as the percentage conversion of 14C-arachidonic acid into the product per 10(7) cells. The formation of 5,12-diHETE, but not of 5-HETE, was significantly increased in the cells from the group of patients with extrinsic asthma (4.38 +/- 0.78%, mean +/- S.E.; p less than 0.01) and intrinsic asthma (6.09 +/- 1.11%; p less than 0.01), when compared to normal subjects (1.74 +/- 0.30%). Both extrinsic and intrinsic asthmatics had significantly enhanced 5-lipoxygenase activity, which was expressed as the sum of percentage conversion of 14C-arachidonic acid into 5-HETE and 5,12-diHETE. The percentage conversion in normal subjects was 4.19 +/- 0.39%, 6.24 +/- 0.84% for 17 patients with extrinsic asthma (p less than 0.05), and 8.59 +/- 1.29% for 15 patients with intrinsic asthma (p less than 0.01). There was no significant difference between these asthmatic groups. These results indicate that 5-lipoxygenase activity is increased in patients with bronchial asthma.  相似文献   

10.
Arachidonate 5-lipoxygenase purified from porcine leukocytes transformed arachidonic acid to 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid. By the leukotriene A synthase activity of the same enzyme the product was further metabolized to leukotriene A4 (actually detected as 6-trans-leukotriene B4, 12-epi-6-trans-leukotriene B4, abd 5,6-duhydroxy-7,9,11,14-eicosatetraenoic acids). The enzyme was incubated with [10-DR-3H]- or [10-LS-3H]- labeled arachidonic acid, and 6-trans-LTB4 and its 12-epimer were analyzed. More than 90% of 10-DR-hydrogen was lost while about 100% of 10-LS-hydrogen was retained, indicating a stereospecific hydrogen elimination from C-10 during the formation of leukotriene A4.  相似文献   

11.
12-Lipoxygenase oxygenates the 12 position of arachidonic acid and produces its 12-hydroperoxy derivative. The enzyme is found in greatest amounts in porcine leukocytes and is distributed widely in various other tissues. An anti-12-lipoxygenase antibody was raised in rabbits with the immunoaffinity-purified enzyme as an antigen and was used in immunohisto- and cytochemical studies on the enzyme, the physiological significance of which remains to be clarified. When peripheral blood cells were examined by immunoelectron microscopy, the enzyme was found in neutrophils and monocytes but was not detected in lymphocytes, platelets, and erythrocytes. In immunostained neutrophils and monocytes the enzyme was localized in the cytosol but was not clearly detected in the plasma membrane, nuclear membrane, endoplasmic reticulum, and other organelles. Several other organs known to contain considerable amounts of 12-lipoxygenase were also investigated immunohistochemically, i.e., alimentary tract (ileum and jejunum), lymphatic organs (spleen, lymph node, and thymus), ovary, lung, liver, and others. In these organs, resident mast cells and granulocytes infiltrating the interstitial tissues were positively immunostained. The enzyme was not detected in parenchymal cells of these organs under our experimental conditions.  相似文献   

12.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1alpha promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11, 14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on alpha-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and gamma-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 micromol/45 min per mg protein by nickel-nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11, 14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

13.
Flavonoids: potent inhibitors of arachidonate 5-lipoxygenase   总被引:2,自引:0,他引:2  
Various flavonoids were found to be relatively selective inhibitors of arachidonate 5-lipoxygenase which initiates the biosynthesis of leukotrienes with the activity of slow reacting substance of anaphylaxis. Cirsiliol (3',4',5-trihydroxy-6,7-dimethoxyflavone) was most potent, and the enzyme partially purified from rat basophilic leukemia cells was inhibited by 97% at a concentration of 10 microM (IC50, about 0.1 microM). 12-Lipoxygenases from bovine platelets and porcine leukocytes were also inhibited but at higher concentrations (IC50, about 1 microM), and fatty acid cyclooxygenase purified from bovine vesicular gland was scarcely affected. The compound at 10 microM suppressed by 99% the immunological release of slow reacting substance of anaphylaxis from passively sensitized guinea pig lung (IC50, about 0.4 microM).  相似文献   

14.
The cytosol fraction of porcine leukocytes contained 5-lipoxygenase, the activity of which was masked by a predominant activity of 12-lipoxygenase. The 5-lipoxygenase was partially purified to a specific activity of about 10 nmol of arachidonic acid oxygenated/min/mg of protein and given to mice as an antigen to prepare monoclonal antibodies against the enzyme. Two species of antibodies recognized separate sites of the 5-lipoxygenase protein and did not cross-react with 12-lipoxygenase. They were utilized to develop a peroxidase-linked immunoassay of sandwich-type, which allowed a quantitative determination of the 5-lipoxygenase protein. The assay was applied to a screening of the 5-lipoxygenase content in various porcine tissues. By far the highest content of 5-lipoxygenase was found in leukocytes. About one-tenth the amount of the enzyme was found in lung, pancreas, ileum, and thymus, which could not be attributed to the contaminating leukocytes in these tissues.  相似文献   

15.
Arachidonate 5-lipoxygenase of a 10,000 x g supernatant from RBL-1 cell homogenate was studied by a continuous assay measuring enzyme-catalysed oxygen consumption. Parallel HPLC and TLC analysis of arachidonic acid metabolites revealed that the oxygen consumption measured is solely due to 5-lipoxygenation of arachidonic acid. Oxygen consumption by this lipoxygenase was strictly dependent upon Ca2+, ATP and 5-HPETE. Removal of any of these three cofactors caused a complete inhibition of enzyme activity. Addition of the missing cofactor instantly restored the 5-lipoxygenase-dependent consumption of oxygen which remained linear for 10-20 s. Later on the velocity of the reaction decreased and after 2-3 min the enzyme became inactivated. Kinetic data were obtained from the initial velocity of the reaction using constant and saturating concentrations of CaCl2 and ATP. From Lineweaver-Burk plots substrate inhibition is evident for arachidonic acid concentrations greater than 45-50 microM. Km(app) for arachidonic acid is 182 +/- 16 microM (mean +/- SD, n = 5) and Vmax(app) is 425 +/- 140 nmol O2/(min x mg protein) (mean +/- SD, n = 5).  相似文献   

16.
Mouse skin 8-lipoxygenase was expressed in COS-7 cells by transient transfection of its cDNA in pEF-BOS carrying an elongation factor-1α promoter. When crude extract of the transfected COS-7 cells was incubated with arachidonic acid, 8-hydroxy-5,9,11,14-eicosatetraenoic acid was produced as assessed by reverse- and straight-phase high performance liquid chromatographies. The recombinant enzyme also reacted on α-linolenic and docosahexaenoic acids at almost the same rate as that with arachidonic acid. Eicosapentaenoic and γ-linolenic acids were also oxygenated at 43% and 56% reaction rates of arachidonic acid, respectively. In contrast, linoleic acid was a poor substrate for this enzyme. The 8-lipoxygenase reaction with these fatty acids proceeded almost linearly for 40 min. The 8-lipoxygenase was also expressed in an Escherichia coli system using pQE-32 carrying six histidine residues at N-terminal of the enzyme. The expressed enzyme was purified over 380-fold giving a specific activity of approximately 0.2 μmol/45 min per mg protein by nickel–nitrilotriacetate affinity chromatography. The enzymatic properties of the purified 8-lipoxygenase were essentially the same as those of the enzyme expressed in COS-7 cells. When the purified 8-lipoxygenase was incubated with 5-hydroperoxy-6,8,11,14-eicosatetraenoic acid, two epimers of 6-trans-leukotriene B4, degradation products of unstable leukotriene A4, were observed upon high performance liquid chromatography. Thus, the 8-lipoxygenase catalyzed synthesis of leukotriene A4 from 5-hydroperoxy fatty acid. Reaction rate of the leukotriene A synthase was approximately 7% of arachidonate 8-lipoxygenation. In contrast to the linear time course of 8-lipoxygenase reaction with arachidonic acid, leukotriene A synthase activity leveled off within 10 min, indicating suicide inactivation.  相似文献   

17.
12-Lipoxygenases oxygenate arachidonic acid producing its 12S-hydroperoxy derivative and are well known as platelet and leukocyte enzymes. When a peroxidase-linked immunoassay of the enzyme according to the avidin-biotin method was applied to the cytosol fractions from various parts of porcine brain, a considerable amount of the enzyme was found in the anterior pituitary. The enzyme level (about 200 ng/mg cytosol protein) corresponded to about 6% of the enzyme content in porcine peripheral leukocytes. Posterior and intermediate lobes showed about one-tenth of the enzyme level of anterior pituitary. Other parts of porcine brain contained the 12-lipoxygenase in amounts below 7 ng/mg cytosol protein. The cytosol fraction (0.7 mg of protein) of anterior pituitary produced 12S-hydroxy-5,8,10,14-eicosatetraenoic acid from 25 microM arachidonic acid in about 34% conversion at 24 degrees C for 5 min, giving a specific enzyme activity about 3 nmol/min/mg protein. Furthermore, various octadecapolyenoic acids were oxygenated almost as fast as the arachidonate 12-oxygenation. When anterior pituitary was investigated immunohistochemically with anti-12-lipoxygenase antibody, most of the immunostained cells were certain parenchymal cells with granules, which were not blood cells. These biochemical and immunohistochemical results provide a good reason for considering that 12-lipoxygenase does play an important role in pituitary function.  相似文献   

18.
19.
The arachidonate lipoxygenase from rat basophilic leukemia cells (RBL-1) is widely utilized as a model to dissect the primary enzymatic reactions leading to leukotriene formation. The purpose of the present study was to optimize the specific activity of 5-lipoxygenase prepared from a high speed supernatant of RBL-1 cell homogenates. Activation of 5-lipoxygenase was observed in the presence of micromolar levels of calcium. A synergistic enhancement of 5-lipoxygenase was observed upon addition of equally low levels of ATP; maximal activation was induced by 5 microM CaCl2 plus 5 microM ATP. Addition of a microsomal-membrane preparation and NADPH further augmented 5-HETE biosynthesis. High concentrations (330 microM) of NADPH reversed the microsomal-induced stimulation of RBL-1 5-lipoxygenase, resulting in enzyme inhibition.  相似文献   

20.
The influence of the glutathione status of human polymorphonuclear leukocytes (PMN) on 5-lipoxygenase activity was studied by treating cells with increasing concentrations of 1-chloro-2,4-dinitrobenzene (Dnp-Cl) or azodicarboxylic acid bis(dimethylamide) (Diamide). Subsequent incubation with arachidonate resulted in an up to tenfold-stimulated formation of 5-hydroxyeicosatetraenoic acid, leukotriene B4, leukotriene B4 isomers and omega-hydroxyleukotriene B4. Higher concentrations of the GSH reagents were inhibitory. At maximal stimulation by Dnp-Cl, 5-hydroperoxyeicosatetraenoic acid started to be built up at the expense of 5-HETE at glutathione levels which were diminished by about 50% compared to resting cells. No increase in cytosolic Ca2+ could be measured under these conditions by the fura-2 method. In PMN homogenates Dnp-Cl and Diamide were without effect and even caused inhibition when 5-lipoxygenase was stimulated by Ca2+ and ATP. 15-Lipoxygenase was either unchanged in the case of Diamide, or even increased after pretreatment with Dnp-Cl. The results allow us to conclude that 5-lipoxygenase activity in intact PMN is regulated not only by Ca2+ but in a complex manner also by the glutathione redox status. Conditions of oxidative stress increase the activity which may reflect the in vivo situation under phagocytosis and oxidative burst.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号