首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Although CuZn-superoxide dismutase (CuZnSOD) has been shown to reduce oxidative damage in several systems, the quantitative relationship between the degree of protection and CuZnSOD activity has not been well investigated. Therefore, the ability of cells to tolerate superoxide toxicity was assessed as a function of endogenous CuZnSOD activity in several mouse and human cell lines with progressively higher levels of CuZnSOD activity. In five lines of fetal fibroblasts derived from SOD1-transgenic mice, with CuZnSOD activities of 1.7- to 7.1-fold the nontransgenic level and no changes in the cellular glutathione peroxidase (GSHPx) activity, a direct relationship (r = 0.97) between the LD50 to paraquat and enzyme activity was observed, suggesting that CuZnSOD activity is the single most important factor in determining the paraquat LD50. Mouse trisomy 16 fetal fibroblasts and human trisomy 21 lung fibroblasts, both expressing a 1.5-fold increase in CuZnSOD activity, were 1.5-fold more tolerant to paraquat than were their diploid counterparts. Furthermore, the protective effect of CuZnSOD at the DNA level, as shown by reduced thymine glycol generation, was demonstrated in paraquat-treated transgenic fibroblasts. A direct relationship (r = 0.78) of paraquat LD50 and CuZnSOD activity was also observed with a panel of six lines of SOD1- transfected HeLa cells with 1.6- to 7.3-fold the basal CuZnSOD activity. Moreover, there was no correlation between resistance to paraquat toxicity and the cellular GSHPx and/or catalase activity. Taken together, these results demonstrate a consistently protective effect of endogenous CuZnSOD against superoxide toxicity in both primary and transformed cell lines.  相似文献   

3.
Copper/zinc superoxide dismutase (CuZnSOD) catalyses the conversion of O2•− into H2O2. Constitutive overexpression of CuZnSOD in cells and animals creates an indigenous oxidative stress that predisposes them to added insults. In this study, we used transgenic CuZnSOD (Tg-CuZnSOD) mice with elevated levels of CuZnSOD to determine whether overexpression of CuZnSOD affected the susceptibility of these mice to plasmodium infection. Acute malaria is associated with oxidative stress, mediated by redox-active iron released from the infected RBC. Two independently derived Tg-CuZnSOD lines showed higher sensitivity than control mice to infection by Plasmodium berghei (P. berghei), reflected by an earlier onset and increased rate of mortality. Nevertheless, while Tg-CuZnSOD mice were more vulnerable than control mice, the levels of parasitemia were comparable in both strains. Moreover, treatment of infected red blood cells (RBC) with oxidative stress inducers, such as ascorbate or paraquat, reduced the viability of parasites equally in both transgenic and control RBC. This further confirms that increased CuZnSOD does not support plasmodia development. The data are consistent with the possibility that the combination of increased redox-active iron and elevated H2O2 in the plasmodium-infected Tg-CuZnSOD mice, led to an enhanced Fenton’s reaction-mediated HO production, and the resulting oxidative injury renders the transgenic mice more vulnerable to parasite infection.  相似文献   

4.
Vitamin A (Vit A) is widely suggested to be protective against oxidative stress. However, different studies have been demonstrated the pro-oxidant effects of retinoids in several experimental models. In this work, we used the yeast Saccharomyces cerevisiae as a model organism to study the Vit A effects on superoxide dismutase (SOD)-deficient yeast strains. We report here that Vit A (10, 20 and 40 mg/ml) decreases the survival of exponentially growing yeast cells, especially in strains deficient in CuZnSOD (sod1Δ) and CuZnSOD/MnSOD (sod1Δsod2Δ). We also observed the protective effect of vitamin E against the Vit A-induced toxicity. Possible adaptation effects induced by sub-lethal oxidative stress were monitored by pre-, co- and post-treatment with the oxidative agent paraquat. The enzymatic activities of catalase (CAT) and glutathione peroxidase (GPx), and the total glutathione content were determined after Vit A treatment. Our results showed that CuZnSOD represents an important defence against Vit A-generated oxidative damage. In SOD-deficient strains, the main defence against Vit A-produced reactive oxygen species (ROS) is GPx. However, the induction of GPx activity is not sufficient to prevent the Vit A-induced cell death in these mutants in exponential phase growth.  相似文献   

5.
6.
We report here the isolation of a tandem duplication of a small region of the third chromosome of Drosophila melanogaster containing the Cu-Zn superoxide dismutase (cSOD) gene. This duplication is associated with a dosage-dependent increase in cSOD activity. The biological consequences of hypermorphic levels of cSOD in genotypes carrying this duplication have been investigated under diverse conditions of oxygen stress imposed by acute exposure to ionizing radiation, chronic exposure to paraquat, and the normoxia of standard laboratory culture. We find that a 50% increase in cSOD activity above the normal diploid level confers increased resistance to ionizing radiation and, in contrast, confers decreased resistance to the superoxide-generating agent paraquat. The duplication is associated with a minor increase in adult life-span under conditions of normoxia. These results reveal important features of the biological function of cSOD within the context of the overall oxygen defense system of Drosophila.  相似文献   

7.
The protective role of superoxide dismutases (SODs) against ionizing radiation, which generates reactive oxygen species (ROS) harmful to cellular function, was investigated in the wild-type and in mutant yeast strains lacking cytosolic CuZnSOD (sod1Delta), mitochondrial MnSOD (sod2Delta), or both SODs (sod1Deltasod2Delta). Upon exposure to ionizing radiation, there was a distinct difference between these strains in regard to viability and the level of protein carbonyl content, which is the indicative marker of oxidative damage to protein, intracellular H2O2 level, as well as lipid peroxidation. When the oxidation of 2',7'-dichlorofluorescin was used to examine the hydroperoxide production in yeast cells, the SOD mutants showed a higher degree of increase in fluorescence upon exposure to ionizing radiation as compared to wild-type cells. These results indicated that mutants deleted for SOD genes were more sensitive to ionizing radiation than isogenic wild-type cells. Induction and inactivation of other antioxidant enzymes, such as catalase, glucose 6-phosphate dehydrogenase, and glutathione reductase, were observed after their exposure to ionizing radiation both in wild-type and in mutant cells. However, wild-type cells maintained significantly higher activities of antioxidant enzymes than did mutant cells. These results suggest that both CuZnSOD and MnSOD may play a central role in protecting cells against ionizing radiation through the removal of ROS, as well as in the protection of antioxidant enzymes.  相似文献   

8.
Abstract Paraquat-resistant Escherichia coli mutants were isolated. The mutants were 10- to 50-fold more resistant to paraquat than the wild type. The wild type was more responsive to the presence of paraquat by inducing higher levels of the manganese-containing superoxide dismutase (MnSOD). Thus, in minimal medium, 0.1 mM paraquat caused a 5-fold increase in MnSOD in the wild type while it had no effect on the level of MnSOD in the mutants. Yet, 50 mM paraquat exerted a dramatic induction of SOD in the mutant strains when grown in trypticase soy yeast extract (TSY) medium. In TSY medium, catalase was not significantly affected by paraquat in all the strains tested. Resistance to paraquat in these mutant strains is, therefore, unrelated to their capacity to detoxify superoxide or hydrogen peroxide.  相似文献   

9.
Although cytosolic superoxide dismutases (SODs) are widely distributed among bacteria, only a small number of species contain a periplasmic SOD. One of these is Caulobacter crescentus, which has a copper-zinc SOD (CuZnSOD) in the periplasm and an iron SOD (FeSOD) in the cytosol. The function of periplasmic CuZnSOD was studied by characterizing a mutant of C. crescentus with an insertionally inactivated CuZnSOD gene. Wild-type and mutant strains showed identical tolerance to intracellular superoxide. However, in response to extracellular superoxide, the presence of periplasmic CuZnSOD increased survival by as much as 20-fold. This is the first demonstration that periplasmic SOD defends against external superoxide of environmental origin. This result has implications for those bacterial pathogens that contain a CuZnSOD. C. crescentus was shown to contain a single catalase/peroxidase which, like Escherichia coli KatG catalase/peroxidase, is present in both the periplasmic and cytoplasmic fractions. The growth stage dependence of C. crescentus catalase/peroxidase and SOD activity was studied. Although FeSOD activity was identical in exponential- and stationary-phase cultures, CuZnSOD was induced nearly 4-fold in stationary phase and the catalase/peroxidase was induced nearly 100-fold. Induction of antioxidant enzymes in the periplasm of C. crescentus appears to be an important attribute of the stationary-phase response and may be a useful tool for studying its regulation.  相似文献   

10.
11.
The relationship between dimethylnitrosamine (DMN) demethylase activity and DMN-induced mutagenesis was investigated in Drosophila melanogaster. The activity of DMN-demethylase was at least 10-fold greater in the Hikone-R strain than in three other Drosophila strains. However, the sex-linked recessive lethal (SLRL) mutations induced by DMN in the four strains differed by less than 2-fold. Several possibilities to explain the lack of correlation between DMN-demethylase activity and DMN-induced mutations were tested and eliminated. They include: (i) the presence of inhibitors of DMN-demethylase in extracts of low-activity strains, (ii) a sex bias in the Hikone-R strain in which the enzyme activity is confined to the females, (iii) the possibility that DMN treatment induces DMN-demethylase activity in the low-activity strains and (iv) the possibility that Hikone-R has a much more efficient DNA repair system than the other strains. The results are discussed in terms of what is known about the role of DMN-demethylase in the metabolic activation of DMN in other systems.  相似文献   

12.
Effects of the absence of Cu,Zn-superoxide dismutase (CuZnSOD) on the replicative life span of the yeast Saccharomyces cerevisiae were studied under different oxygen conditions. In both strains, replicative life span and the rate of cell divisions were found to be similar under the atmosphere of air and under hypoxic (3% oxygen) and anoxic conditions. These results indicate that deleterious consequences of the lack of CuZnSOD are not limited to elevation of superoxide concentration and involve function(s) other than superoxide scavenging.  相似文献   

13.
Two plasmid-containing Escherichia coli strains which overproduce manganese superoxide dismutase by 4- to 5-fold and iron superoxide dismutase by about 7-fold were not more resistant than parent strains to 1 mM paraquat (a known generator of superoxide) as measured by effects on growth, survival and induction of stringency. These results indicate that overproduction of superoxide dismutase does not mitigate the growth-inhibitory effects of 1 mM paraquat, including those which are expressed through induction of the stringency mechanism.  相似文献   

14.
Drosophila melanogaster (fruit fly) is a well-established model organism for genetic studies of development and aging. We examined the effects of lethal ionizing radiation on male and female adult Drosophila of different ages, using doses of radiation from 200 to 1500 Gy. Fifty percent lethality 2 days postirradiation (LD(50/2)) in wild-type 1-day-old adult fruit flies was approximately 1238 Gy for males and 1339 Gy for females. We observed a significant age-dependent decline in the radiation resistance of both males and females. Radiation damage is postulated to occur by the generation of oxygen radicals. An age-related decline in the ability of flies to resist an agent that induces oxygen radicals, paraquat, was observed when comparing 10- and 20-day adults. Female flies are more resistant to paraquat than male flies. Oxidative stress mediated by paraquat was additive with sublethal exposures to radiation in young adults. Therefore, the ability to repair the damage caused by oxygen radicals seems to decline with the age of the flies. Because Drosophila adults are largely post-mitotic, our data suggest that adult Drosophila melanogaster can serve as an excellent model to study the factors responsible for radiation resistance in post-mitotic tissue and age-dependent changes in this resistance.  相似文献   

15.
The amount of manganese superoxide dismutase (MnSOD) and the activity of copper-zinc superoxide dismutase (CuZnSOD) have been studied in five karyotypically normal human fibroblast strains, using nuclear magnetic resonance (NMR) and polarographic methods. A significant correlation between the two enzyme activities, and a linear increase of MnSOD with the increase of CuZnSOD have been demonstrated. Both enzymes are present in nuclei, mitochondria, lysosome-microsome fraction and cytosol. These findings suggest that the two enzymes dismutate the O-2 cooperatively and that a common genetic control maintains the relative amounts of the two enzymes constant.  相似文献   

16.
Flavonoids and oxidative stress in Drosophila melanogaster   总被引:1,自引:0,他引:1  
Flavonoids are a family of antioxidants that are widely represented in fruits, vegetables, dry legumes, and chocolate, as well as in popular beverages, such as red wine, coffee, and tea. The flavonoids chlorogenic acid, kaempferol, quercetin and quercetin 3β-d-glycoside were investigated for genotoxicity using the wing somatic mutation and recombination test (SMART). This test makes use of two recessive wing cell markers: multiple wing hairs (mwh) and flare (flr(3)), which are mutations located on the left arm of chromosome 3 of Drosophila melanogaster and are indicative of both mitotic recombination and various types of mutational events. In order to test the antioxidant capacities of the flavonoids, experiments were conducted with various combinations of oxidants and polyphenols. Oxidative stress was induced using hydrogen peroxide, the Fenton reaction and paraquat. Third-instar transheterozygous larvae were chronically treated for all experiments. The data obtained in this study showed that, at the concentrations tested, the flavonoids did not induce somatic mutations or recombination in D. melanogaster with the exception of quercetin, which proved to be genotoxic at only one concentration. The oxidants hydrogen peroxide and the Fenton reaction did not induce mutations in the wing somatic assay of D. melanogaster, while paraquat and combinations of flavonoids produced significant numbers of small single spots. Quercetin 3β-d-glycoside mixed with paraquat was shown to be desmutagenic. Combinations of the oxidants with the other flavonoids did not show any antioxidant activity.  相似文献   

17.
Mutations in copper-zinc superoxide dismutase (CuZnSOD) cause 25% of familial amyotrophic lateral sclerosis (FALS) cases. This paper examines one such mutant, H46R, which has no superoxide dismutase activity yet presumably retains the gain-of-function activity that leads to disease. We demonstrate that Cu(2+) does not bind to the copper-specific catalytic site of H46R CuZnSOD and that Cu(2+) competes with other metals for the zinc binding site. Most importantly, Cu(2+) was found to bind strongly to a surface residue near the dimer interface of H46R CuZnSOD. Cysteine was identified as the new binding site on the basis of multiple criteria including UV-vis spectroscopy, RR spectroscopy, and chemical derivatization. Cysteine 111 was pinpointed as the position of the reactive ligand by tryptic digestion of the modified protein and by mutational analysis. This solvent-exposed residue may play a role in the toxicity of this and other FALS CuZnSOD mutations. Furthermore, we propose that the two cysteine 111 residues, found on opposing subunits of the same dimeric enzyme, may provide a docking location for initial metal insertion during biosynthesis of wild-type CuZnSOD in vivo.  相似文献   

18.
19.
The sensitivity of Drosophila melanogaster to ultraviolet light has been studied in wild type and recombination-deficient strains. Survival was measured as the proportion of irradiated embryos or larvae which developed to adult flies. In view of the fact that males of this species do not participate in meiotic recombination, emphasis was placed on the relative sensitivity of males and females. The results show that young wild type male larvae are more sensitive to UV radiation than are young female larvae. This difference in sensitivity, however, is not apparent in some recombination-deficient strains. In addition, young embryos of the recombination-deficient strain Df(3)sbd105/T(2;E)Xa are exceptionally sensitive to UV radiation.  相似文献   

20.
Andean wetlands are characterized by their extreme environmental conditions such as high UV radiation, elevated heavy metal content and salinity. We present here the first study on UV tolerance and antioxidant defense of four Acinetobacter strains: Ver3, Ver5 and Ver7, isolated from Lake Verde, and N40 from Lake Negra, both lakes located 4400 m above sea level. All four isolates displayed higher UV resistance compared with collection strains, with Ver3 and Ver7 being the most tolerant strains not only to UV radiation but also to hydrogen peroxide (H(2)O(2)) and methyl viologen (MV) challenges. A single superoxide dismutase band with similar activity was detected in all studied strains, whereas different electrophoretic pattern and activity levels were observed for catalase. Ver3 and Ver7 displayed 5-15 times higher catalase activity levels than the control strains. Analysis of the response of antioxidant enzymes to UV and oxidative challenges revealed a significant increase in Ver7 catalase activity after H(2)O(2) and MV exposure. Incubation of Ver7 cultures with a catalase inhibitor resulted in a significant decrease of tolerance against UV radiation. We conclude that the high catalase activity displayed by Ver7 isolate could play an important role in UV tolerance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号