首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Van Lunteren, Erik, and Michelle Moyer. Effects of DAPon diaphragm force and fatigue, including fatigue due toneurotransmission failure. J. Appl.Physiol. 81(5): 2214-2220, 1996.Among theaminopyridines, 3,4-diaminopyridine (DAP) is a more effectiveK+ channel blocker than is4-aminopyridine (4-AP), and, furthermore, DAP enhances neuromusculartransmission. Because 4-AP improves muscle contractility, wehypothesized that DAP would also increase force and, in addition,ameliorate fatigue and improve the neurotransmission failure componentof fatigue. Rat diaphragm strips were studied in vitro (37°C). Infield-stimulated muscle, 0.3 mM DAP significantly increased diaphragmtwitch force, prolonged contraction time, and shifted theforce-frequency relationship to the left without altering peak tetanicforce, resulting in increased force at stimulation frequencies 50 Hz.During 20-Hz intermittent stimulation, DAP increased diaphragm peakforce compared with control during a 150-s fatigue run and,furthermore, significantly improved maintenance of intratrain force.The relative contribution of neurotransmission failure to fatigue wasestimated by comparing the force generated by phrenic nerve-stimulatedmuscles with that generated by curare-treated field-stimulated muscles.DAP significantly increased force in nerve-stimulated muscles and, inaddition, reduced the neurotransmission failure contribution todiaphragm fatigue. Thus DAP increases muscle force atlow-to-intermediate stimulation frequencies, improves overall force andintratrain fatigue during 20-Hz intermittent stimulation, and reducesneurotransmission failure.

  相似文献   

3.
Nurses working 12-h shifts complain of fatigue and insufficient/poor-quality sleep. Objectively measured sleep times have not been often reported. This study describes sleep, sleepiness, fatigue, and neurobehavioral performance over three consecutive 12-h (day and night) shifts for hospital registered nurses. Sleep (actigraphy), sleepiness (Karolinska Sleepiness Scale [KSS]), and vigilance (Performance Vigilance Task [PVT]), were measured serially in 80 registered nurses (RNs). Occupational fatigue (Occupational Fatigue Exhaustion Recovery Scale [OFER]) was assessed at baseline. Sleep was short (mean 5.5?h) between shifts, with little difference between day shift (5.7?h) and night shift (5.4?h). Sleepiness scores were low overall (3 on a 1-9 scale, with higher score indicating greater sleepiness), with 45% of nurses having high level of sleepiness (score >?7) on at least one shift. Nurses were progressively sleepier each shift, and night nurses were sleepier toward the end of the shift compared to the beginning. There was extensive caffeine use, presumably to preserve or improve alertness. Fatigue was high in one-third of nurses, with intershift fatigue (not feeling recovered from previous shift at the start of the next shift) being most prominent. There were no statistically significant differences in mean reaction time between day/night shift, consecutive work shift, and time into shift. Lapsing was traitlike, with rare (39% of sample), moderate (53%), and frequent (8%) lapsers. Nurses accrue a considerable sleep debt while working successive 12-h shifts with accompanying fatigue and sleepiness. Certain nurses appear more vulnerable to sleep loss than others, as measured by attention lapses.  相似文献   

4.
Liu JZ  Brown RW  Yue GH 《Biophysical journal》2002,82(5):2344-2359
A dynamical model is presented as a framework for muscle activation, fatigue, and recovery. By describing the effects of muscle fatigue and recovery in terms of two phenomenological parameters (F, R), we develop a set of dynamical equations to describe the behavior of muscles as a group of motor units activated by voluntary effort. This model provides a macroscopic view for understanding biophysical mechanisms of voluntary drive, fatigue effect, and recovery in stimulating, limiting, and modulating the force output from muscles. The model is investigated under the condition in which brain effort is assumed to be constant. Experimental validation of the model is performed by fitting force data measured from healthy human subjects during a 3-min sustained maximal voluntary handgrip contraction. The experimental results confirm a theoretical inference from the model regarding the possibility of maximal muscle force production, and suggest that only 97% of the true maximal force can be reached under maximal voluntary effort, assuming that all motor units can be recruited voluntarily. The effects of different motor unit types, time-dependent brain effort, sources of artifacts, and other factors that could affect the model are discussed. The applications of the model are also discussed.  相似文献   

5.
Findings from five separate studies of EMG changes and muscle fatigue during prolonged low-level static contractions are summarized, and the possible mechanisms behind the changes are briefly discussed. Sustained static contractions (10%, 7% and 5% MVC) of up to 1 h duration were performed by finger flexors, elbow flexors and extensors, and knee extensors. In one experiment, intermittent static arm pulling (triceps) (10 s contraction and 5 s rest, average work load 14% and 10% MVC) was performed for 7 h. The endurance time for the sustained contractions was around one hour for 10% MVC, and it was shown--all in all--that the concept of "indefinite" endurance times at contractions below 15-20% MVC cannot be maintained. After 5% MVC sustained contractions for one hour a 12% reduction in MVC was seen, and significant increases in EMG amplitude and decreases in the mean spectral frequency of the EMG-power spectrum were found. Marked differences were also seen in the EMG changes in the elbow flexors and extensors, and transcutaneous electrical stimulation of the knee extensors showed that low frequency fatigue was present after the contraction. With intermittent contractions similar changes in the EMG parameters were seen after 2-3 h of contractions at 14% MVC. On average, during contractions of 10% MVC no EMG changes were detected. Increased extracellular potassium concentration in the contracting muscles is suggested as a possible explanation of these findings.  相似文献   

6.

Background

In a previous randomized controlled trial, we found that sitting isometric yoga improves fatigue in patients with chronic fatigue syndrome (CFS) who are resistant to conventional therapy. The aim of this study was to investigate possible mechanisms behind this finding, focusing on the short-term fatigue-relieving effect, by comparing autonomic nervous function and blood biomarkers before and after a session of isometric yoga.

Methods

Fifteen patients with CFS who remained symptomatic despite at least 6 months of conventional therapy practiced sitting isometric yoga (biweekly 20 min practice with a yoga instructor and daily home practice) for eight weeks. Acute effects of sitting isometric yoga on fatigue, autonomic function, and blood biomarkers were investigated after the final session with an instructor. The effect of a single session of sitting isometric yoga on fatigue was assessed by the Profile of Mood Status (POMS) questionnaire immediately before and after the session. Autonomic nervous function (heart rate (HR) variability) and blood biomarkers (cortisol, DHEA-S, TNF-α, IL-6, IFN-γ, IFN-α, prolactin, carnitine, TGF-β1, BDNF, MHPG, and HVA) were compared before and after the session.

Results

Sitting isometric yoga significantly reduced the POMS fatigue score (p?<?0.01) and increased the vigor score (p?<?0.01). It also reduced HR (p?<?0.05) and increased the high frequency power (p?<?0.05) of HR variability. Sitting isometric yoga increased serum levels of DHEA-S (p?<?0.05), reduced levels of cortisol (p?<?0.05) and TNF-α (p?<?0.05), and had a tendency to reduce serum levels of prolactin (p?<?0.1). Decreases in fatigue scores correlated with changes in plasma levels of TGF-β1 and BDNF. In contrast, increased vigor positively correlated with HVA.

Conclusions

A single session of sitting isometric yoga reduced fatigue and increased vigor in patients with CFS. Yoga also increased vagal nerve function and changed blood biomarkers in a pattern that suggested anti-stress and anti-inflammatory effects. These changes appear to be related to the short-term fatigue-relieving effect of sitting isometric yoga in patients with CFS. Furthermore, dopaminergic nervous system activation might account for sitting isometric yoga-induced increases in energy in this patient population.

Trial registration

University Hospital Medical Information Network (UMIN CTR) UMIN000009646. Registered Dec 27, 2012.
  相似文献   

7.
The aim of this study was to investigate the concepts of electromyographic (EMG) threshold (EMGT) by integrated EMG (iEMG) signals and neuromuscular fatigue threshold (NMFT) concepts in trained male athletes. Nine competitive national-level male rowers (21.8 +/- 4.4 years; 186.2 +/- 4.6 cm; 79.6 +/- 8.4 kg) took part in this investigation. Subjects were asked to participate in the graded exercise test to volitional exhaustion and 500-, 1,000-, and 2,000-m all-out rowing ergometer tests on a rowing ergometer. During all tests, oxygen consumption parameters, average power, and iEMG of the musculus vastus lateralis were recorded. The second ventilatory threshold (248.9 +/- 26.67 W) and EMGT (258.89 +/- 27.13 W) were not significantly different but were significantly lower than the NMFT (302.25 +/- 45.10 W). During 1,000- and 2,000-m all-out distances, VO(2) increased during the first minute and then leveled on a plateau with a slight decrease at the end of the exercise. Vastus lateralis activity showed a slight increase during all distances that was accompanied by a remarkable increase towards the end of the distance. All measured threshold values were significantly correlated (r > 0.70; p < 0.05) to the rowing ergometer performance characteristics. It was concluded that EMGT is closely related to the aerobic-anaerobic transition phase, because NMFT represents the local fatigue accumulation in the muscle. NMFT indicates the performance capacity of the muscles; therefore, it helps coaches to better predict top athletes' performance.  相似文献   

8.
Skeletal muscles cope with a large range of activities, from being able to support the body weight during long periods of upright standing to perform explosive movements in response to an unexpected threat. This requires systems for energy metabolism that can provide energy during long periods of moderately increased energy consumption as well as being able to rapidly increasing the rate of energy production more than 100-fold in response to explosive contractions. In this short review we discuss how muscles can deal with these divergent demands. We first outline the major energy metabolism pathways in skeletal muscle. Next we describe metabolic differences between different muscle fiber types. Contractile performance declines during intense activation, i.e. fatigue develops, and we discuss likely underlying mechanisms. Finally, we discuss the ability of muscle fibers to adapt to altered demands, and mechanisms behind these adaptations. The accumulated experimental evidence forces us to conclude that most aspects of energy metabolism involve multiple and overlapping signaling pathways, which indicates that the control of energy metabolism is too important to depend on one single molecule or mechanism.  相似文献   

9.
Twitch tension and phosphate incorporation into the phosphorylatable light chains (P-light chains) of myosin were studied during a 10-min recovery period following a 10- or 60-s maximal voluntary isometric contraction (MVC) in 18 subjects. Analysis of muscle biopsy samples obtained before, immediately after, 1 min, and 10 min following the 10-s MVC revealed that the 10-s MVC produced a modest but transient metabolic displacement from rest, a 35% decrease in phosphocreatine, and a threefold elevation in lactate concentration. Immediately after the 60-s MVC, ATP was decreased by 20%, phosphocreatine decreased by 84%, and lactate was elevated by 15-fold. Lactate remained elevated over the 10-min recovery period. Twitch force was maximally potentiated following the 10-s MVC and declined to rest by 10 min of recovery. Twitch force was 0.66 of rest value immediately after the 60-s MVC, then increased over the next 4 min to reach a potentiated value 21% greater than rest, before declining. Significant phosphate incorporation into P-light chains was observed immediately after both contractions, but dephosphorylation to rest values at the end of recovery was only noted for the 60-s condition. These results demonstrate an inconsistent relationship between twitch tension enhancement and P-light chain phosphorylation in the in vivo human model.  相似文献   

10.
11.
12.
The study examined the relationship between psychometric status, neuromuscular, and biochemical markers of fatigue in response to an intensified training (IT) period in soccer. Fifteen professional soccer players volunteered to participate in the study (mean ± SD: age: 25 ± 1 years; body height: 179 ± 7 cm, body mass: 73.7 ± 16.2 kg, experience: 13.2 ± 3 years). Training load, monotony, strain, Hooper index and total quality recovery (TQR) were determined for each training session during a 2-week of IT. Counter-movement jump (CMJ) and biochemical responses [testosterone, cortisol, testosterone-to-cortisol ratio (T/C ratio), creatine kinase, and C-reactive protein] were collected before and after IT. Results showed that IT induced significant increases in cortisol, creatine kinase and C-reactive protein and significant decreases in T/C ratio and CMJ performance from before to after IT (p < 0.01, p < 0.001, p < 0.001, p < 0.01, p < 0.05, respectively). However, testosterone did not differ from before to after IT (p > 0.05). Training loads were positively correlated with Hooper index (p < 0.05) and negatively correlated with total quality recovery (p < 0.05). Hooper index was positively correlated with cortisol (p < 0.05), T/C ratio (p < 0.01), and creatine kinase (p < 0.01), and negatively correlated with CMJ (p < 0.05). Furthermore, TQR was negatively correlated with T/C ratio (p < 0.01), creatine kinase (p < 0.001), and C-reactive protein (p < 0.05), and positively correlated with CMJ (p < 0.01). Neuromuscular fatigue, muscle damage, and change in the anabolic/catabolic state induced by the IT were related to well-being and perceived recovery state among professional soccer players.  相似文献   

13.
This study tests three hypotheses regarding mechanisms that produce rapid shallow breathing during a severe inspiratory resistive load (IRL): 1) an intact vagal afferent pathway is necessary; 2) diaphragm fatigue contributes to tachypnea; and 3) hypoxia may alter the pattern of respiration. We imposed a severe IRL on pentobarbital sodium-anesthetized dogs, followed by bilateral vagotomy, then by supplemental O2. IRL alone produced rapid shallow breathing associated with hypercapnia and hypoxia. After the vagotomy, the breathing pattern became slow and deep, restoring arterial PCO2 but not arterial PO2 toward the control values. Relief of hypoxia had no effect, and at no time was there any evidence of fatigue of the diaphragm as measured by the response to phrenic nerve stimulation. We conclude that an intact afferent vagal pathway is necessary for the tachypnea resulting from a severe IRL, neither hypoxia nor diaphragm fatigue played a role, and, although we cannot rule out stimulation of vagal afferents, the simplest explanation for the increased frequency in our experiments is increased respiratory drive due to hypercapnia.  相似文献   

14.
Free radicals and muscle fatigue: Of ROS, canaries, and the IOC   总被引:6,自引:0,他引:6  
Skeletal muscle fibers continually generate reactive oxygen species (ROS) at a slow rate that increases during muscle contraction. This activity-dependent increase in ROS production contributes to fatigue of skeletal muscle during strenuous exercise. Existing data suggest that muscle-derived ROS primarily act on myofibrillar proteins to inhibit calcium sensitivity and depress force. Decrements in calcium sensitivity and force are acutely reversible by dithiothreitol, a thiol-selective reducing agent. These observations suggest that thiol modifications on one or more regulatory proteins are responsible for oxidant-induced losses during fatigue. More intense ROS exposure leads to losses in calcium regulation that mimic pathologic changes and are not reversible. Studies in humans, quadrupeds, and isolated muscle preparations indicate that antioxidant pretreatment can delay muscle fatigue. In humans, this phenomenon is best defined for N-acetylcysteine (NAC), a reduced thiol donor that supports glutathione resynthesis. NAC has been shown to inhibit fatigue in healthy adults during electrical muscle activation, inspiratory resistive loading, handgrip exercise, and intense cycling. These findings identify ROS as endogenous mediators of muscle fatigue and highlight the importance of future research to (a) define the cellular mechanism of ROS action and (b) develop antioxidants as novel therapeutic interventions for treating fatigue.  相似文献   

15.
Tests of hand grip strength and hand grip muscle fatigue were conducted on Ngisonyoka Turkana pastoralists of northwest Kenya to explore some of the functional relationships between activity and body composition. The test of maximal voluntary contraction (MVC) of hand grip flexors was conducted on 151 Turkana and 38 U.S. men and women. The fatigue test was conducted on the same number of subjects who were instructed to attempt to maintain 80% of the MVC for 90 seconds. The results of these tests, combined with arm measurements of size and body composition, were used to evaluate muscle size and strength relationships and to estimate muscle fiber type distribution in the forearm. MVC values of Turkana men were low by U.S. and European standards. The low values resulted from smaller Turkana muscle areas. MVC values of Turkana women were comparable to those of U.S. and European women, reflecting comparable muscle areas. The fatigue curves of Turkana and U.S. men and women suggest that slow-twitch aerobic muscle fibers predominate for the hand grip flexors of the Turkana pastoralists.  相似文献   

16.
Verbitsky, O., J. Mizrahi, M. Levin, and E. Isakov.Effect of ingested sodium bicarbonate on muscle force, fatigue, and recovery. J. Appl. Physiol. 83(2):333-337, 1997.The influence of acute ingestion ofNaHCO3 on fatigue and recovery ofthe quadriceps femoris muscle after exercise was studied in six healthymale subjects. A bicycle ergometer was used for exercising under three loading conditions: test A, loadcorresponding to maximal oxygen consumption; testB, load in test A + 17%; test C, load intest B but performed 1 h after acuteingestion of NaHCO3.Functional electrical stimulation (FES) was applied to provokeisometric contraction of the quadriceps femoris. The resulting kneetorque was monitored during fatigue (2-min chronic FES) and recovery (10-s FES every 10 min, for 40 min). Quadriceps torques were higher inthe presence of NaHCO3(P < 0.05): withNaHCO3 the peak, residual, andrecovery (after 40 min) normalized torques were, respectively, 0.68 ± 0.05 (SD), 0.58 ± 0.05, and 0.73 ± 0.05; withoutNaHCO3 the values were 0.45 ± 0.04, 0.30 ± 0.06, and 0.63 ± 0.06. The increasedtorques obtained after acute ingestion ofNaHCO3 indicate the possibleexistence of improved nonoxidative glycolysis in isometric contraction,resulting in reduced fatigue and enhanced recovery.

  相似文献   

17.
18.
The present review addresses mechanisms of importance for hyperthermia-induced fatigue during short intense activities and prolonged exercise in the heat. Inferior performance during physical activities with intensities that elicit maximal oxygen uptake is to a large extent related to perturbation of the cardiovascular function, which eventually reduces arterial oxygen delivery to the exercising muscles. Accordingly, aerobic energy turnover is impaired and anaerobic metabolism provokes peripheral fatigue. In contrast, metabolic disturbances of muscle homeostasis are less important during prolonged exercise in the heat, because increased oxygen extraction compensates for the reduction in systemic blood flow. The decrease in endurance seems to involve changes in the function of the central nervous system (CNS) that lead to fatigue. The CNS fatigue appears to be influenced by neurotransmitter activity of the dopaminergic system, but may primarily relate to inhibitory signals from the hypothalamus arising secondary to an increase in brain temperature. Fatigue is an integrated phenomenon, and psychological factors, including the anticipation of fatigue, should not be neglected and the interaction between central and peripheral physiological factors also needs to be considered.  相似文献   

19.
20.
Individuals with chronic fatigue syndrome (CFS) have been shown to have reduced activity levels associated with heightened feelings of fatigue. Previous research has demonstrated that exercise training has beneficial effects on fatigue-related symptoms in individuals with CFS. PURPOSE: The aim of this study was to sustain an increase in daily physical activity in CFS patients for 4 weeks and assess the effects on fatigue, muscle pain and overall mood. METHODS: Six CFS and seven sedentary controls were studied. Daily activity was assessed by a CSA accelerometer. Following a two week baseline period, CFS subjects were asked to increase their daily physical activity by 30% over baseline by walking a prescribed amount each day for a period of four weeks. Fatigue, muscle pain and overall mood were reported daily using a 0 to 100 visual analog scale and weekly using the Profile of Mood States (Bipolar) questionnaire. RESULTS: CFS patients had significantly lower daily activity counts than controls (162.5 +/- 51.7 x 103 counts/day vs. 267.2 +/- 79.5 x 103 counts/day) during a 2-week baseline period. At baseline, the CFS patients reported significantly (P < 0.01) higher fatigue and muscle pain intensity compared to controls but the groups did not differ in overall mood. CFS subjects increased their daily activity by 28 +/- 19.7% over a 4 week period. Overall mood and muscle pain worsened in the CFS patients with increased activity. CONCLUSION: CFS patients were able to increase their daily physical activity for a period of four weeks. In contrast to previous studies fatigue, muscle pain, and overall mood did not improve with increased activity. Increased activity was not presented as a treatment which may account for the differential findings between this and previous studies. The results suggest that a daily "activity limit" may exist in this population. Future studies on the impact of physical activity on the symptoms of CFS patients are needed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号