首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Epigenetic hypothesis of dynamic genomic parental imprinting, explaining the mechanisms of formation and inheritance of quantitative characters in multicellular organisms, is proposed. Method for analyzing the compliance of quantitative characters of organisms with the hypothesis of dynamic genomic parental imprinting is developed. Examples of human characters and characters of other mammals inherited in accordance with the proposed model are given. It is concluded that the hypothesis can be used for studying ontogeny and explaining the mechanisms of inheritance of the morphoses providing the stability and evolution of species. Possible ways of further experimental verification of the hypothesis and areas of its practical application are discussed.  相似文献   

2.
Jianping Xu 《Génome》2005,48(6):951-958
Unlike nuclear genes and genomes, the inheritance of organelle genes and genomes does not follow Mendel's laws. In this mini-review, I summarize recent research progress on the patterns and mechanisms of the inheritance of organelle genes and genomes. While most sexual eukaryotes show uniparental inheritance of organelle genes and genomes in some progeny at least part of the time, increasing evidence indicates that strictly uniparental inheritance is rare and that organelle inheritance patterns are very diverse and complex. In contrast with the predominance of uniparental inheritance in multicellular organisms, organelle genes in eukaryotic microorganisms, such as protists, algae, and fungi, typically show a greater diversity of inheritance patterns, with sex-determining loci playing significant roles. The diverse patterns of inheritance are matched by the rich variety of potential mechanisms. Indeed, many factors, both deterministic and stochastic, can influence observed patterns of organelle inheritance. Interestingly, in multicellular organisms, progeny from interspecific crosses seem to exhibit more frequent paternal leakage and biparental organelle genome inheritance than those from intraspecific crosses. The recent observation of a sex-determining gene in the basidiomycete yeast Cryptococcus neoformans, which controls mitochondrial DNA inheritance, has opened up potentially exciting research opportunities for identifying specific molecular genetic pathways that control organelle inheritance, as well as for testing evolutionary hypotheses regarding the prevalence of uniparental inheritance of organelle genes and genomes.  相似文献   

3.
This article critically analyzes the arguments of the ‘generalized Darwinism’ recently proposed for the analysis of social-economical systems. We argue that ‘generalized Darwinism’ is both restrictive and empty. It is restrictive because it excludes alternative (non-selectionist) evolutionary mechanisms such as orthogenesis, saltationism and mutationism without any examination of their suitability for modeling socio-economic processes and ignoring their important roles in the development of contemporary evolutionary theory. It is empty, because it reduces Darwinism to an abstract triple-principle scheme (variation, selection and inheritance) thus ignoring the actual structure of Darwinism as a complex and dynamic theoretical structure inseparable from a very detailed system of theoretical constraints. Arguing against ‘generalised Darwinism’ we present our vision of the history of evolutionary biology with the help of the ‘hourglass model’ reflecting the internal dynamic of competing theories of evolution.  相似文献   

4.
Sewall Wright first encountered the complex systems characteristic of gene combinations while a graduate student at Harvard’s Bussey Institute from 1912 to 1915. In Mendelian breeding experiments, Wright observed a hierarchical dependence of the organism’s phenotype on dynamic networks of genetic interaction and organization. An animal’s physical traits, and thus its autonomy from surrounding environmental constraints, depended greatly on how genes behaved in certain combinations. Wright recognized that while genes are the material determinants of the animal phenotype, operating with great regularity, the special nature of genetic systems contributes to the animal phenotype a degree of spontaneity and novelty, creating unpredictable trait variations by virtue of gene interactions. As a result of his experimentation, as well as his keen interest in the philosophical literature of his day, Wright was inspired to see genetic systems as conscious, living organisms in their own right. Moreover, he decided that since genetic systems maintain ordered stability and cause unpredictable novelty in their organic wholes (the animal phenotype), it would be necessary for biologists to integrate techniques for studying causally ordered phenomena (experimental method) and chance phenomena (correlation method). From 1914 to 1921 Wright developed his “method of path coefficient” (or “path analysis”), a new procedure drawing from both laboratory experimentation and statistical correlation in order to analyze the relative influence of specific genetic interactions on phenotype variation. In this paper I aim to show how Wright’s philosophy for understanding complex genetic systems (panpsychic organicism) logically motivated his 1914–1921 design of path analysis.  相似文献   

5.
Receptor tyrosine kinases (RTKs) are key components of cell–cell signalling required for growth and development of multicellular organisms. It is therefore likely that the divergence of RTKs and associated components played a significant role in the evolution of multicellular organisms. We have carried out the present study in hydra, a diploblast, to investigate the divergence of RTKs after parazoa and before emergence of triploblast phyla. The domain-based screening using Hidden Markov Models (HMMs) for RTKs in Genomescan predicted gene models of the Hydra magnipapillata genome resulted in identification of 15 RTKs. These RTKs have been classified into eight families based on domain architecture and homology. Only 5 of these RTKs have been previously reported and a few of these have been partially characterized. A phylogeny-based analysis of these predicted RTKs revealed that seven subtype duplications occurred between ‘parazoan–eumetazoan split’ and ‘diploblast–triploblast split’ in animal phyla. These results suggest that most of the RTKs evolved before the radiata–bilateria divergence during animal evolution.  相似文献   

6.
Selection response in traits with maternal inheritance   总被引:1,自引:0,他引:1  
Maternal inheritance is the non-Mendelian transmission of traits from mothers to their offspring. Despite its presence in virtually all organisms, acting through a variety of mechanisms, the evolutionary consequences of maternal inheritance are not well understood. Here we review and extend a model of the inheritance and evolution of multiple quantitative characters with complex pathways of maternal effects. Extensions of the earlier model include common family environmental effects not associated with maternal phenotype, sexual dimorphism, and paternal effects (non-Mendelian influence of the father on offspring traits). We find that, in contrast to simple Mendelian inheritance, maternal inheritance produces qualitatively different evolutionary dynamics for two reasons: (1) the response to selection on a set of characters depends not only on their additive genetic variances and covariances, but also on maternal characters that influence them, and (2) time lags in the response to selection create a form of evolutionary momentum. These results have important implications for evolution in natural populations and practical applications in the economic improvement of domesticated species. We derive selection indices that maximize either the economic improvement in a single generation of artificial selection or the asymptotic rate of improvement in long-term selection programmes, based on individual merit or a combination of individual and family merit. Numerical examples show that accounting for maternal inheritance can lead to considerable increases in the efficiency of artificial selection.  相似文献   

7.
8.
9.
Studies of our Laboratory in the field of molecular and evolutionary endocrinology have allowed us to put forward a hypothesis about evolutionary origin of endocrine and other diseases of human and animals. This hypothesis is considered using a model of hormonal signaling systems. It is based on the concept formulated by the authors about molecular defects in hormonal signaling systems as the key causes of endocrine diseases; on evolutionary conservatism of hormonal signaling systems, which stems logically from the authors’ concept of the prokaryotic genesis and endosymbiotic emergence in the course of evolution of chemosignaling systems in the higher eukaryotes; from the fact that the process of formation of hormonal signaling systems with participation of endosymbiosis including the horizontal transfer of genes is accompanied by transfer not only of normal, but also of the defected genetic material. There are considered examples of the principal possibility of transfer of defected genes between bacteria and eukaryotic organisms. Analysis of the current literature allows suggesting inheritance of pathogenic factors from evolutionary ancestors in the lineage prokaryotes—lower eukaryotes—higher eukaryotes.  相似文献   

10.
The article reevaluates the reception of Mendelism in France, and more generally considers the complex relationship between Mendelism and plant breeding in the first half on the 20th century. It shows on the one side that agricultural research and higher education institutions have played a key role in the development and institutionalization of genetics in France, whereas university biologists remained reluctant to accept this approach on heredity. But on the other side, plant breeders, and agricultural researchers, despite an interest in Mendelism, never came to see it as the breeders’ panacea, and regarded it instead as of only limited value for plant breeding. I account for this judgment in showing that the plant breeders and Mendelism designed two contrasting kinds of experimental systems and inhabited distinct experimental cultures. While Mendelian geneticists designed experimental systems that allowed the production of definite ratios of different forms that varied in relation to a few characters, plant breeders’ experimental systems produced a wide range of variation, featuring combinations between hundreds of traits. Rather than breaking this multiple variation down into simple elements, breeders designed and monitored a genetic lottery. The gene was a unit in a Mendelian experimental culture, an “epistemic thing” as Rheinberger put it, that could be grasped by means of statistical regularities, but it remained of secondary importance for French plant breeders, for whom the strain or the variety – not the gene – was the fundamental unit of analysis and manipulation.  相似文献   

11.
Japanese agricultural scientist Toyama Kametaro’s report about the Mendelian inheritance of silkworm cocoon color in Studies on the Hybridology of Insects (1906) spurred changes in Japanese silk production and thrust Toyama and his work into a scholarly exchange with American entomologist Vernon Kellogg. Toyama’s work, based on research conducted in Japan and Siam, came under international scrutiny at a time when analyses of inheritance flourished after the “rediscovery” of Mendel’s laws of heredity in 1900. The hybrid silkworm studies in Asia attracted the attention of Kellogg, who was concerned with how experimental biology would be used to study the causes of natural selection. He challenged Toyama’s conclusions that Mendelism alone could explain the inheritance patterns of silkworm characters such as cocoon color because they had been subject to hundreds of years of artificial selection, or breeding. This examination of the intersection of Japanese sericulture and American entomology probes how practical differences in scientific interests, societal responsibilities, and silkworm materiality were negotiated throughout the processes of legitimating Mendelian genetics on opposite sides of the Pacific. The ways in which Toyama and Kellogg assigned importance to certain silkworm properties show how conflicting intellectual orientations arose in studies of the same organism. Contestation about Mendelism took place not just on a theoretical level, but the debate was fashioned through each scientist’s rationale about the categorization of silkworm breeds and races and what counted as “natural.” This further mediated the acceptability of the silkworm not as an experimental organism, but as an appropriately “natural” insect with which to demonstrate laws of inheritance. All these shed light on the challenges that came along with the use of agricultural animals to convincingly articulate new biological principles.  相似文献   

12.
The origin of new genes: glimpses from the young and old   总被引:2,自引:0,他引:2  
Genome data have revealed great variation in the numbers of genes in different organisms, which indicates that there is a fundamental process of genome evolution: the origin of new genes. However, there has been little opportunity to explore how genes with new functions originate and evolve. The study of ancient genes has highlighted the antiquity and general importance of some mechanisms of gene origination, and recent observations of young genes at early stages in their evolution have unveiled unexpected molecular and evolutionary processes.  相似文献   

13.
Darwin’s contributions to evolutionary biology are well known, but his contributions to genetics are much less known. His main contribution was the collection of a tremendous amount of genetic data, and an attempt to provide a theoretical framework for its interpretation. Darwin clearly described almost all genetic phenomena of fundamental importance, such as prepotency (Mendelian inheritance), bud variation (mutation), heterosis, reversion (atavism), graft hybridization (Michurinian inheritance), sex-limited inheritance, the direct action of the male element on the female (xenia and telegony), the effect of use and disuse, the inheritance of acquired characters (Lamarckian inheritance), and many other observations pertaining to variation, heredity and development. To explain all these observations, Darwin formulated a developmental theory of heredity — Pangenesis — which not only greatly influenced many subsequent theories, but also is supported by recent evidence.  相似文献   

14.
15.
August Weismann rejected the inheritance of acquired characters on the grounds that changes to the soma cannot produce the kind of changes to the germ-plasm that would result in the altered character being transmitted to subsequent generations. His intended distinction, between germ-plasm and soma, was closer to the modern distinction between genotype and phenotype than to the modern distinction between germ cells and somatic cells. Recently, systems of epigenetic inheritance have been claimed to make possible the inheritance of acquired characters. I argue that the sense in which these claims are true does not challenge fundamental tenets of neo-Darwinism. Epigenetic inheritance expands the range of options available to genes but evolutionary adaptation remains the product of natural selection of ‘random’ variation.  相似文献   

16.
The colonization and radiation of multicellular plants on land that started over 470 Ma was one of the defining events in the history of this planet. For the first time, large amounts of primary productivity occurred on the continental surface, paving the way for the evolution of complex terrestrial ecosystems and altering global biogeochemical cycles; increased weathering of continental silicates and organic carbon burial resulted in a 90 per cent reduction in atmospheric carbon dioxide levels. The evolution of plants on land was itself characterized by a series of radical transformations of their body plans that included the formation of three-dimensional tissues, de novo evolution of a multicellular diploid sporophyte generation, evolution of multicellular meristems, and the development of specialized tissues and organ systems such as vasculature, roots, leaves, seeds and flowers. In this review, we discuss the evolution of the genes and developmental mechanisms that drove the explosion of plant morphologies on land. Recent studies indicate that many of the gene families which control development in extant plants were already present in the earliest land plants. This suggests that the evolution of novel morphologies was to a large degree driven by the reassembly and reuse of pre-existing genetic mechanisms.  相似文献   

17.
Myxobacteria are Gram-negative soil microorganisms that prey on other microorganisms. Myxobacteria have significant potential for applications in biotechnology because of their extraordinary ability to produce natural products such as secondary metabolites. Myxobacteria also stand out as model organisms for the study of cell–cell interactions and multicellular development during their complex life cycle. Cellular morphogenesis during multicellular development in myxobacteria is very similar to that in the eukaryotic soil amoebae. Recent studies have started uncovering molecular mechanisms directing the myxobacterial life cycle. We describe recent studies on signal transduction and gene expression during multicellular development in the myxobacterium Myxococcus xanthus. We provide our current model for signal transduction pathways mediated by a two-component His–Asp phosphorelay system and a Ser/Thr kinase cascade.  相似文献   

18.
The transitions to multicellularity mark the most pivotal and distinctive events in life’s history on Earth. Although several transitions to “simple” multicellularity (SM) have been recorded in both bacterial and eukaryotic clades, transitions to complex multicellularity (CM) have only happened a few times in eukaryotes. A large number of cell types (associated with large body size), increased energy consumption per gene expressed, and an increment of non-protein-coding DNA positively correlate with CM. These three factors can indeed be understood as the causes and consequences of the regulation of gene expression. Here, we discuss how a vast expansion of non-protein-coding RNA (ncRNAs) regulators rather than large numbers of novel protein regulators can easily contribute to the emergence of CM. We also propose that the evolutionary advantage of RNA-based gene regulation derives from the robustness of the RNA structure that makes it easy to combine genetic drift with functional exploration. We describe a model which aims to explain how the evolutionary dynamic of ncRNAs becomes dominated by the accessibility of advantageous mutations to innovate regulation in complex multicellular organisms. The information and models discussed here outline the hypothesis that pervasive ncRNA-based regulatory systems, only capable of being expanded and explored in higher eukaryotes, are prerequisite to complex multicellularity. Thereby, regulatory RNA molecules in Eukarya have allowed intensification of morphological complexity by stabilizing critical phenotypes and controlling developmental precision. Although the origin of RNA on early Earth is still controversial, it is becoming clear that once RNA emerged into a protocellular system, its relevance within the evolution of biological systems has been greater than we previously thought.  相似文献   

19.
Apoptosis is essential for complex multicellular organisms and its failure is associated with genome instability and cancer. Interactions between apoptosis and genome-maintenance mechanisms have been extensively documented and include transactivation-independent and -dependent functions, in which the tumor-suppressor protein p53 works as a ‘molecular node’ in the DNA-damage response. Although apoptosis and genome stability have been identified as ancient pathways in eukaryote phylogeny, the biological evolution underlying the emergence of an integrated system remains largely unknown. Here, using computational methods, we reconstruct the evolutionary scenario that linked apoptosis with genome stability pathways in a functional human gene/protein association network. We found that the entanglement of DNA repair, chromosome stability and apoptosis gene networks appears with the caspase gene family and the antiapoptotic gene BCL2. Also, several critical nodes that entangle apoptosis and genome stability are cancer genes (e.g. ATM, BRCA1, BRCA2, MLH1, MSH2, MSH6 and TP53), although their orthologs have arisen in different points of evolution. Our results demonstrate how genome stability and apoptosis were co-opted during evolution recruiting genes that merge both systems. We also provide several examples to exploit this evolutionary platform, where we have judiciously extended information on gene essentiality inferred from model organisms to human.  相似文献   

20.
Paramutation is the result of heritable changes in gene expression that occur upon interaction between alleles. Whereas Mendelian rules, together with the concept of genetic transmission via the DNA sequence, can account for most inheritance in sexually propagating organisms, paramutation-like phenomena challenge the exclusiveness of Mendelian inheritance. Most paramutation-like phenomena have been observed in plants but there is increasing evidence for its occurrence in other organisms, including mammals. Our knowledge of the underlying mechanisms, which might involve RNA silencing, physical pairing of homologous chromosomal regions or both, is still limited. Here, we discuss the characteristics of different paramutation-like interactions in the light of arguments supporting each of these alternative mechanisms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号