首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

High genetic diversity at both inter- and intra-host level are hallmarks of RNA viruses due to the error-prone nature of their genome replication. Several groups have evaluated the extent of viral variability using different RNA virus deep sequencing methods. Although much of this effort has been dedicated to pathogens that cause chronic infections in humans, few studies investigated arthropod-borne, acute viral infections.

Methods and Principal Findings

We deep sequenced the complete genome of ten DENV2 isolates from representative classical and severe cases sampled in a large outbreak in Brazil using two different approaches. Analysis of the consensus genomes confirmed the larger extent of the 2010 epidemic in comparison to a previous epidemic caused by the same viruses in another city two years before (genetic distance = 0.002 and 0.0008 respectively). Analysis of viral populations within the host revealed a high level of conservation. After excluding homopolymer regions of 454/Roche generated sequences, we found 10 to 44 variable sites per genome population at a frequency of >1%, resulting in very low intra-host genetic diversity. While up to 60% of all variable sites at intra-host level were non-synonymous changes, only 10% of inter-host variability resulted from non-synonymous mutations, indicative of purifying selection at the population level.

Conclusions and Significance

Despite the error-prone nature of RNA-dependent RNA-polymerase, dengue viruses maintain low levels of intra-host variability.  相似文献   

2.

Background

Most arthropod-borne viruses (arboviruses) are RNA viruses, which are maintained in nature by replication cycles that alternate between arthropod and vertebrate hosts. Arboviruses appear to experience lower rates of evolution than RNA viruses that replicate in a single host. This genetic stability is assumed to result from a fitness trade-off imposed by host alternation, which constrains arbovirus genome evolution. To test this hypothesis, we used Rift Valley fever virus (RVFV), an arbovirus that can be transmitted either directly (between vertebrates during the manipulation of infected tissues, and between mosquitoes by vertical transmission) or indirectly (from one vertebrate to another by mosquito-borne transmission).

Methodology/Principal Findings

RVFV was serially passaged in BHK21 (hamster) or Aag2 (Aedes aegypti) cells, or in alternation between the two cell types. After 30 passages, these single host-passaged viruses lost their virulence and induced protective effects against a challenge with a virulent virus. Large deletions in the NSs gene that encodes the virulence factor were detectable from the 15th serial passage onwards in BHK21 cells and from the 10th passage in Aag2 cells. The phosphoprotein NSs is not essential to viral replication allowing clones carrying deletions in NSs to predominate as they replicate slightly more rapidly. No genetic changes were found in viruses that were passaged alternately between arthropod and vertebrate cells. Furthermore, alternating passaged viruses presenting complete NSs gene remained virulent after 30 passages.

Conclusions/Significance

Our results strongly support the view that alternating replication is necessary to maintain the virulence factor carried by the NSs phosphoprotein.  相似文献   

3.

Background

Mammalian genomes commonly harbor endogenous viral elements. Due to a lack of comparable genome-scale sequence data, far less is known about endogenous viral elements in avian species, even though their small genomes may enable important insights into the patterns and processes of endogenous viral element evolution.

Results

Through a systematic screening of the genomes of 48 species sampled across the avian phylogeny we reveal that birds harbor a limited number of endogenous viral elements compared to mammals, with only five viral families observed: Retroviridae, Hepadnaviridae, Bornaviridae, Circoviridae, and Parvoviridae. All nonretroviral endogenous viral elements are present at low copy numbers and in few species, with only endogenous hepadnaviruses widely distributed, although these have been purged in some cases. We also provide the first evidence for endogenous bornaviruses and circoviruses in avian genomes, although at very low copy numbers. A comparative analysis of vertebrate genomes revealed a simple linear relationship between endogenous viral element abundance and host genome size, such that the occurrence of endogenous viral elements in bird genomes is 6- to 13-fold less frequent than in mammals.

Conclusions

These results reveal that avian genomes harbor relatively small numbers of endogenous viruses, particularly those derived from RNA viruses, and hence are either less susceptible to viral invasions or purge them more effectively.

Electronic supplementary material

The online version of this article (doi:10.1186/s13059-014-0539-3) contains supplementary material, which is available to authorized users.  相似文献   

4.

Background

To construct safer recombinant flavivirus vaccine, we exploited Japanese encephalitis virus (JEV) replicon-based platform to generate single-round infectious particles (SRIPs) that expressed heterologous neutralizing epitope SP70 derived from enterovirus-71 (EV71). Such pseudo-infectious virus particles, named SRIP-SP70, although are not genuine viable viruses, closely mimic live virus infection to elicit immune responses within one round of viral life cycle.

Results

We found that, besides gaining of full protection to thwart JEV lethal challenge, female outbred ICR mice, when were immunized with SRIP-SP70 by prime-boost protocol, could not only induce SP70-specific and IgG2a predominant antibodies but also provide their newborns certain degree of protection against EV71 lethal challenge.

Conclusions

Our results therefore exemplify that this vaccination strategy could indeed confer an immunized host a dual protective immunity against subsequent lethal challenge from JEV or EV71.  相似文献   

5.

Background

Marine ecosystem function is largely determined by matter and energy transformations mediated by microbial community interaction networks. Viral infection modulates network properties through mortality, gene transfer and metabolic reprogramming.

Results

Here we explore the nature and extent of viral metabolic reprogramming throughout the Pacific Ocean depth continuum. We describe 35 marine viral gene families with potential to reprogram metabolic flux through central metabolic pathways recovered from Pacific Ocean waters. Four of these families have been previously reported but 31 are novel. These known and new carbon pathway auxiliary metabolic genes were recovered from a total of 22 viral metagenomes in which viral auxiliary metabolic genes were differentiated from low-level cellular DNA inputs based on small subunit ribosomal RNA gene content, taxonomy, fragment recruitment and genomic context information. Auxiliary metabolic gene distribution patterns reveal that marine viruses target overlapping, but relatively distinct pathways in sunlit and dark ocean waters to redirect host carbon flux towards energy production and viral genome replication under low nutrient, niche-differentiated conditions throughout the depth continuum.

Conclusions

Given half of ocean microbes are infected by viruses at any given time, these findings of broad viral metabolic reprogramming suggest the need for renewed consideration of viruses in global ocean carbon models.  相似文献   

6.

Background

Despite high potential for HIV-1 genetic variation, the emergence of some mutations is constrained by fitness costs, and may be associated with compensatory amino acid (AA) co-variation. To characterize the interplay between Cytotoxic T Lymphocyte (CTL)-mediated pressure and HIV-1 evolutionary pathways, we investigated AA co-variation in Gag sequences obtained from 449 South African individuals chronically infected with HIV-1 subtype C.

Methodology/Principal Findings

Individuals with CTL responses biased toward Gag presented lower viral loads than individuals with under-represented Gag-specific CTL responses. Using methods that account for founder effects and HLA linkage disequilibrium, we identified 35 AA sites under Human Leukocyte Antigen (HLA)-restricted CTL selection pressure and 534 AA-to-AA interactions. Analysis of two-dimensional distances between co-varying residues revealed local stabilization mechanisms since 40% of associations involved neighboring residues. Key features of our co-variation analysis included sites with a high number of co-varying partners, such as HLA-associated sites, which had on average 55% more connections than other co-varying sites.

Conclusions/Significance

Clusters of co-varying AA around HLA-associated sites (especially at typically conserved sites) suggested that cooperative interactions act to preserve the local structural stability and protein function when CTL escape mutations occur. These results expose HLA-imprinted HIV-1 polymorphisms and their interlinked mutational paths in Gag that are likely due to opposite selective pressures from host CTL-mediated responses and viral fitness constraints.  相似文献   

7.
8.

Background

Haloquadratum walsbyi represents up to 80 % of cells in NaCl-saturated brines worldwide, but is notoriously difficult to maintain under laboratory conditions. In order to establish the extent of genetic diversity in a natural population of this microbe, we screened a H. walsbyi enriched metagenomic fosmid library and recovered seven novel version of its cell-wall associated genomic island. The fosmid inserts were sequenced and analysed.

Results

The novel cell-wall associated islands delineated two major clades within H. walsbyi. The islands predominantly contained genes putatively involved in biosynthesis of surface layer, genes encoding cell surface glycoproteins and genes involved in envelope formation. We further found that these genes are maintained in the population and that the diversity of this region arises through homologous recombination but also through the action of mobile genetic elements, including viruses.

Conclusions

The population of H. walsbyi in the studied saltern brine is composed of numerous clonal lineages that differ in surface structures including the cell wall. This type of variation probably reflects a number of mechanisms that minimize the infection rate of predating viruses.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1794-8) contains supplementary material, which is available to authorized users.  相似文献   

9.
10.

Background

Various patterns of HIV-1 disease progression are described in clinical practice and in research. There is a need to assess the specificity of commonly used definitions of long term non-progressor (LTNP) elite controllers (LTNP-EC), viremic controllers (LTNP-VC), and viremic non controllers (LTNP-NC), as well as of chronic progressors (P) and rapid progressors (RP).

Methodology and Principal Findings

We re-evaluated the HIV-1 clinical definitions, summarized in
LTNP-EC •Asymptomatic HIV Infection over 10 year after seroconversion•Plasma HIV RNA levels without ART that are below the level of detection for the respective assay (e.g., <75 copies/mL by bDNA or <50 by ultrasensitive PCR).•Isolated episodes of viremia up to 1000 copies/mL as long as they are not consecutive and represent the minority of all available determinations.•Longitudinal HIV RNA that includes a minimum of 3 determinations, in the absence of antiretroviral agents, which span at least a 12-month period.
LTNP-VC •Asymptomatic HIV Infection over 10 year after seroconversion.•Plasma HIV RNA levels without ART that are equal or below 2000 copies/mL.•Isolated episodes of viremia above 2000 copies/mL as long as such episodes represent the minority of all available determinations.•Longitudinal HIV RNA that includes a minimum of 3 determinations, in the absence of ART, which span at least a 12-month period.
LTNP-NC •Asymptomatic HIV Infection over 10 year after seroconversion•Plasma HIV RNA levels above 2.000 copies/mL without ART, in more than 50% of the samples.
P •Symptomatic infection or initiation of ART within 10 years after seroconversion•Longitudinal HIV RNA that includes a minimum of 3 determinations, in the absence of ART, with a viral set point above 2000 copies/mL
RP •≥2 CD4 T cell measurements below 350/mm3 within 3 years after seroconversion, with no value ≥350 afterwards in the absence of ART.•And/or, ART initiated within 3 years after seroconversion, and at least one preceding CD4 < 350/mm3.•And/or, AIDS or AIDS-related Death within 3 years after seroconversion and at least one preceding CD4<350/mm3.
Open in a separate windowLTNP-EC: long term non-progressor, elite controllers; LTNP-VC: long term non-progressor, viremic controllers; LTNP-NC: long term non-progressor, viremic non controllers; P: chronic progressors, RP: rapid progressors, ART: antiretroviral therapy. Clinical groups summarize different definitions from the literature [1], [2], [13], [14].

Conclusions

A combination of host genetic and viral factors supports current clinical definitions that discriminate among patterns of HIV-1 progression. The study also emphasizes the need to apply a standardized and accepted set of clinical definitions for the purpose of disease stratification and research.  相似文献   

11.
RNAseq expression analysis of resistant and susceptible mice after influenza A virus infection identifies novel genes associated with virus replication and important for host resistance to infection     
Esther Wilk  Ashutosh K. Pandey  Sarah Rebecca Leist  Bastian Hatesuer  Matthias Preusse  Claudia Pommerenke  Junxi Wang  Klaus Schughart 《BMC genomics》2015,16(1)

Background

The host response to influenza A infections is strongly influenced by host genetic factors. Animal models of genetically diverse mouse strains are well suited to identify host genes involved in severe pathology, viral replication and immune responses. Here, we have utilized a dual RNAseq approach that allowed us to investigate both viral and host gene expression in the same individual mouse after H1N1 infection.

Results

We performed a detailed expression analysis to identify (i) correlations between changes in expression of host and virus genes, (ii) host genes involved in viral replication, and (iii) genes showing differential expression between two mouse strains that strongly differ in resistance to influenza infections. These genes may be key players involved in regulating the differences in pathogenesis and host defense mechanisms after influenza A infections. Expression levels of influenza segments correlated well with the viral load and may thus be used as surrogates for conventional viral load measurements. Furthermore, we investigated the functional role of two genes, Reg3g and Irf7, in knock-out mice and found that deletion of the Irf7 gene renders the host highly susceptible to H1N1 infection.

Conclusions

Using RNAseq analysis we identified novel genes important for viral replication or the host defense. This study adds further important knowledge to host-pathogen-interactions and suggests additional candidates that are crucial for host susceptibility or survival during influenza A infections.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1867-8) contains supplementary material, which is available to authorized users.  相似文献   

12.
Complementation between Two Tospoviruses Facilitates the Systemic Movement of a Plant Virus Silencing Suppressor in an Otherwise Restrictive Host     
Sudeep Bag  Neena Mitter  Sahar Eid  Hanu R. Pappu 《PloS one》2012,7(10)

Background

New viruses pathogenic to plants continue to emerge due to mutation, recombination, or reassortment among genomic segments among individual viruses. Tospoviruses cause significant economic damage to a wide range of crops in many parts of the world. The genetic or molecular basis of the continued emergence of new tospoviruses and new hosts is not well understood though it is generally accepted that reassortment and/or genetic complementation among the three genomic segments of individual viruses could be contributing to this variability since plants infected with more than one tospovirus are not uncommon in nature.

Methodology/Principal Findings

Two distinct and economically important tospoviruses, Iris yellow spot virus (IYSV) and Tomato spotted wilt virus (TSWV), were investigated for inter-virus interactions at the molecular level in dually-infected plants. Datura (Datura stramonium) is a permissive host for TSWV, while it restricts the movement of IYSV to inoculated leaves. In plants infected with both viruses, however, TSWV facilitated the selective movement of the viral gene silencing suppressor (NSs) gene of IYSV to the younger, uninoculated leaves. The small RNA expression profiles of IYSV and TSWV in single- and dually-infected datura plants showed that systemic leaves of dually-infected plants had reduced levels of TSWV N gene-specific small interfering RNAs (siRNAs). No TSWV NSs-specific siRNAs were detected either in the inoculated or systemic leaves of dually-infected datura plants indicating a more efficient suppression of host silencing machinery in the presence of NSs from both viruses as compared to the presence of only TSWV NSs.

Conclusion/Significance

Our study identifies a new role for the viral gene silencing suppressor in potentially modulating the biology and host range of viruses and underscores the importance of virally-coded suppressors of gene silencing in virus infection of plants. This is the first experimental evidence of functional complementation between two distinct tospoviruses in the Bunyaviridae family.  相似文献   

13.
A genome wide association scan of bovine tuberculosis susceptibility in Holstein-Friesian dairy cattle   总被引:1,自引:0,他引:1  
Finlay EK  Berry DP  Wickham B  Gormley EP  Bradley DG 《PloS one》2012,7(2):e30545

Background

Bovine tuberculosis is a significant veterinary and financial problem in many parts of the world. Although many factors influence infection and progression of the disease, there is a host genetic component and dissection of this may enlighten on the wider biology of host response to tuberculosis. However, a binary phenotype of presence/absence of infection presents a noisy signal for genomewide association study.

Methodology/Principal Findings

We calculated a composite phenotype of genetic merit for TB susceptibility based on disease incidence in daughters of elite sires used for artificial insemination in the Irish dairy herd. This robust measure was compared with 44,426 SNP genotypes in the most informative 307 subjects in a genome wide association analysis. Three SNPs in a 65 kb genomic region on BTA 22 were associated (i.e. p<10−5, peaking at position 59588069, p = 4.02×10−6) with tuberculosis susceptibility.

Conclusions/Significance

A genomic region on BTA 22 was suggestively associated with tuberculosis susceptibility; it contains the taurine transporter gene SLC6A6, or TauT, which is known to function in the immune system but has not previously been investigated for its role in tuberculosis infection.  相似文献   

14.
Effect of Natural and ARV-Induced Viral Suppression and Viral Breakthrough on Anti-HIV Antibody Proportion and Avidity in Patients with HIV-1 Subtype B Infection     
Sarah K. Wendel  Caroline E. Mullis  Susan H. Eshleman  Joel N. Blankson  Richard D. Moore  Jeanne C. Keruly  Ron Brookmeyer  Thomas C. Quinn  Oliver Laeyendecker 《PloS one》2013,8(2)

Background

Viral suppression and viral breakthrough impact the humoral immune response to HIV infection. We evaluated the impact of viral suppression and viral breakthrough on results obtained with two cross-sectional HIV incidence assays.

Methods

All samples were collected from adults in the US who were HIV infected for >2 years. Samples were tested with the BED capture enzyme immunoassay (BED-CEIA) which measures the proportion of IgG that is HIV-specific, and with an antibody avidity assay based on the Genetic Systems 1/2+ O ELISA. We tested 281 samples: (1) 30 samples from 18 patients with natural control of HIV-1 infection known as elite controllers or suppressors (2) 72 samples from 18 adults on antiretroviral therapy (ART), with 1 sample before and 2–6 samples after ART initiation, and (3) 179 samples from 20 virally-suppressed adults who had evidence of viral breakthrough receiving ART (>400 copies/ml HIV RNA) and with subsequent viral suppression.

Results

For elite suppressors, 10/18 had BED-CEIA values <0.8 normalized optical density units (OD-n) and these values did not change significantly over time. For patients receiving ART, 14/18 had BED-CEIA values that decreased over time, with a median decrease of 0.42 OD-n (range 0.10 to 0.63)/time point receiving ART. Three patterns of BED-CEIA values were observed during viral breakthrough: (1) values that increased then returned to pre-breakthrough values when viral suppression was re-established, (2) values that increased after viral breakthrough, and (3) values that did not change with viral breakthrough.

Conclusions

Viral suppression and viral breakthrough were associated with changes in BED-CEIA values, reflecting changes in the proportion of HIV-specific IgG. These changes can result in misclassification of patients with long-term HIV infection as recently infected using the BED-CEIA, thereby influencing a falsely high value for cross-sectional incidence estimates.  相似文献   

15.
Dual transcriptomics of virus-host interactions: comparing two Pacific oyster families presenting contrasted susceptibility to ostreid herpesvirus 1     
Amélie Segarra  Florian Mauduit  Nicole Faury  Suzanne Trancart  Lionel Dégremont  Delphine Tourbiez  Philippe Haffner  Valérie Barbosa-Solomieu  Jean-Fran?ois Pépin  Marie-Agnès Travers  Tristan Renault 《BMC genomics》2014,15(1)
  相似文献   

16.
Inducible Bronchus-Associated Lymphoid Tissue Elicited by a Protein Cage Nanoparticle Enhances Protection in Mice against Diverse Respiratory Viruses     
James A. Wiley  Laura E. Richert  Steve D. Swain  Ann Harmsen  Dale L. Barnard  Troy D. Randall  Mark Jutila  Trevor Douglas  Chris Broomell  Mark Young  Allen Harmsen 《PloS one》2009,4(9)

Background

Destruction of the architectural and subsequently the functional integrity of the lung following pulmonary viral infections is attributable to both the extent of pathogen replication and to the host-generated inflammation associated with the recruitment of immune responses. The presence of antigenically disparate pulmonary viruses and the emergence of novel viruses assures the recurrence of lung damage with infection and resolution of each primary viral infection. Thus, there is a need to develop safe broad spectrum immunoprophylactic strategies capable of enhancing protective immune responses in the lung but which limits immune-mediated lung damage. The immunoprophylactic strategy described here utilizes a protein cage nanoparticle (PCN) to significantly accelerate clearance of diverse respiratory viruses after primary infection and also results in a host immune response that causes less lung damage.

Methodology/Principal Findings

Mice pre-treated with PCN, independent of any specific viral antigens, were protected against both sub-lethal and lethal doses of two different influenza viruses, a mouse-adapted SARS-coronavirus, or mouse pneumovirus. Treatment with PCN significantly increased survival and was marked by enhanced viral clearance, accelerated induction of viral-specific antibody production, and significant decreases in morbidity and lung damage. The enhanced protection appears to be dependent upon the prior development of inducible bronchus-associated lymphoid tissue (iBALT) in the lung in response to the PCN treatment and to be mediated through CD4+ T cell and B cell dependent mechanisms.

Conclusions/Significance

The immunoprophylactic strategy described utilizes an infection-independent induction of naturally occurring iBALT prior to infection by a pulmonary viral pathogen. This strategy non-specifically enhances primary immunity to respiratory viruses and is not restricted by the antigen specificities inherent in typical vaccination strategies. PCN treatment is asymptomatic in its application and importantly, ameliorates the damaging inflammation normally associated with the recruitment of immune responses into the lung.  相似文献   

17.
HIV-1 Tropism Dynamics and Phylogenetic Analysis from Longitudinal Ultra-Deep Sequencing Data of CCR5- and CXCR4-Using Variants     
Mariano M. Sede  Franco A. Moretti  Natalia L. Laufer  Leandro R. Jones  Jorge F. Quarleri 《PloS one》2014,9(7)

Objective

Coreceptor switch from CCR5 to CXCR4 is associated with HIV disease progression. The molecular and evolutionary mechanisms underlying the CCR5 to CXCR4 switch are the focus of intense recent research. We studied the HIV-1 tropism dynamics in relation to coreceptor usage, the nature of quasispecies from ultra deep sequencing (UDPS) data and their phylogenetic relationships.

Methods

Here, we characterized C2-V3-C3 sequences of HIV obtained from 19 patients followed up for 54 to 114 months using UDPS, with further genotyping and phylogenetic analysis for coreceptor usage. HIV quasispecies diversity and variability as well as HIV plasma viral load were measured longitudinally and their relationship with the HIV coreceptor usage was analyzed. The longitudinal UDPS data were submitted to phylogenetic analysis and sampling times and coreceptor usage were mapped onto the trees obtained.

Results

Although a temporal viral genetic structuring was evident, the persistence of several viral lineages evolving independently along the infection was statistically supported, indicating a complex scenario for the evolution of viral quasispecies. HIV X4-using variants were present in most of our patients, exhibiting a dissimilar inter- and intra-patient predominance as the component of quasispecies even on antiretroviral therapy. The viral populations from some of the patients studied displayed evidences of the evolution of X4 variants through fitness valleys, whereas for other patients the data favored a gradual mode of emergence.

Conclusions

CXCR4 usage can emerge independently, in multiple lineages, along the course of HIV infection. The mode of emergence, i.e. gradual or through fitness valleys seems to depend on both virus and patient factors. Furthermore, our analyses suggest that, besides becoming dominant after population-level switches, minor proportions of X4 viruses might exist along the infection, perhaps even at early stages of it. The fate of these minor variants might depend on both viral and host factors.  相似文献   

18.
Close to you: embodied simulation for peripersonal space in primary somatosensory cortex     
M Schaefer  HJ Heinze  M Rotte 《PloS one》2012,7(8):e42308

Background

An increasing body of evidence has demonstrated that in contrast to the classic understanding the primary somatosensory cortex (SI) reflects merely seen touch (in the absence of any real touch on the own body). Based on these results it has been discussed that SI may play a role in understanding touch seen on other bodies. In order to further examine this understanding of observed touch, the current study aimed to test if mirror-like responses in SI are affected by the perspective of the seen touch. Thus, we presented touch on a hand and close to the hand either in first-person-perspective or in third-person-perspective.

Principal Findings

Results of functional magnetic resonance imaging (fMRI) revealed stronger vicarious brain responses in SI/BA2 for touch seen in first-person-perspective. Surprisingly, the third-person viewpoint revealed activation in SI both when subjects viewed a hand being stimulated as well as when the space close to the hand was being touched.

Conclusions/Significance

Based on these results we conclude that vicarious somatosensory responses in SI/BA2 are affected by the viewpoint of the seen hand. Furthermore, we argue that mirror-like responses in SI do not only reflect seen touch, but also the peripersonal space surrounding this body (in third-person-perspective). We discuss these findings with recent studies on mirror responses for action observation in peripersonal space.  相似文献   

19.
Broad and Gag-biased HIV-1 epitope repertoires are associated with lower viral loads     
Rolland M  Heckerman D  Deng W  Rousseau CM  Coovadia H  Bishop K  Goulder PJ  Walker BD  Brander C  Mullins JI 《PloS one》2008,3(1):e1424

Background

HLA class-I alleles differ in their ability to control HIV replication through cell-mediated immune responses. No consistent associations have been found between the breadth of Cytotoxic T Lymphocytes (CTL) responses and the control of HIV-1, and it is unknown whether the size or distribution of the viral proteome-wide epitope repertoire, i.e., the intrinsic ability to present fewer, more or specific viral epitopes, could affect clinical markers of disease progression.

Methodology/Principal Findings

We used an epitope prediction model to identify all epitope motifs in a set of 302 HIV-1 full-length proteomes according to each individual''s HLA (Human Leukocyte Antigen) genotype. The epitope repertoire, i.e., the number of predicted epitopes per HIV-1 proteome, varied considerably between HLA alleles and thus among individual proteomes. In a subgroup of 270 chronically infected individuals, we found that lower viral loads and higher CD4 counts were associated with a larger predicted epitope repertoire. Additionally, in Gag and Rev only, more epitopes were restricted by alleles associated with low viral loads than by alleles associated with higher viral loads.

Conclusions/Significance

This comprehensive analysis puts forth the epitope repertoire as a mechanistic component of the multi-faceted HIV-specific CTL response. The favorable impact on markers of disease status of the propensity to present more HLA binding peptides and specific proteins gives impetus to vaccine design strategies that seek to elicit responses to a broad array of HIV-1 epitopes, and suggest a particular focus on Gag.  相似文献   

20.
Study of Human RIG-I Polymorphisms Identifies Two Variants with an Opposite Impact on the Antiviral Immune Response     
Julien Pothlichet  Anne Burtey  Andriy V. Kubarenko  Gregory Caignard  Brigitte Solhonne  Frédéric Tangy  Meriem Ben-Ali  Lluis Quintana-Murci  Andrea Heinzmann  Jean-Daniel Chiche  Pierre-Olivier Vidalain  Alexander N. R. Weber  Michel Chignard  Mustapha Si-Tahar 《PloS one》2009,4(10)

Background

RIG-I is a pivotal receptor that detects numerous RNA and DNA viruses. Thus, its defectiveness may strongly impair the host antiviral immunity. Remarkably, very little information is available on RIG-I single-nucleotide polymorphisms (SNPs) presenting a functional impact on the host response.

Methodology/Principal Findings

Here, we studied all non-synonymous SNPs of RIG-I using biochemical and structural modeling approaches. We identified two important variants: (i) a frameshift mutation (P229fs) that generates a truncated, constitutively active receptor and (ii) a serine to isoleucine mutation (S183I), which drastically inhibits antiviral signaling and exerts a down-regulatory effect, due to unintended stable complexes of RIG-I with itself and with MAVS, a key downstream adapter protein.

Conclusions/Significance

Hence, this study characterized P229fs and S183I SNPs as major functional RIG-I variants and potential genetic determinants of viral susceptibility. This work also demonstrated that serine 183 is a residue that critically regulates RIG-I-induced antiviral signaling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号