首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Background

Cockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria.

Results

We report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence.

Conclusions

The minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the reconstructed networks from the two bacteria helps to refine the functional analysis of the genomes enabling us to postulate how slightly different host metabolic contexts drove their parallel evolution.

  相似文献   

2.
Bacterial endosymbionts of insects play a central role in upgrading the diet of their hosts. In certain cases, such as aphids and tsetse flies, endosymbionts complement the metabolic capacity of hosts living on nutrient-deficient diets, while the bacteria harbored by omnivorous carpenter ants are involved in nitrogen recycling. In this study, we describe the genome sequence and inferred metabolism of Blattabacterium strain Bge, the primary Flavobacteria endosymbiont of the omnivorous German cockroach Blattella germanica. Through comparative genomics with other insect endosymbionts and free-living Flavobacteria we reveal that Blattabacterium strain Bge shares the same distribution of functional gene categories only with Blochmannia strains, the primary Gamma-Proteobacteria endosymbiont of carpenter ants. This is a remarkable example of evolutionary convergence during the symbiotic process, involving very distant phylogenetic bacterial taxa within hosts feeding on similar diets. Despite this similarity, different nitrogen economy strategies have emerged in each case. Both bacterial endosymbionts code for urease but display different metabolic functions: Blochmannia strains produce ammonia from dietary urea and then use it as a source of nitrogen, whereas Blattabacterium strain Bge codes for the complete urea cycle that, in combination with urease, produces ammonia as an end product. Not only does the cockroach endosymbiont play an essential role in nutrient supply to the host, but also in the catabolic use of amino acids and nitrogen excretion, as strongly suggested by the stoichiometric analysis of the inferred metabolic network. Here, we explain the metabolic reasons underlying the enigmatic return of cockroaches to the ancestral ammonotelic state.  相似文献   

3.
Cockroaches harbor the obligate flavobacterial endosymbiont Blattabacterium sp., which resides within the host's bacteriocytes and can recycle ammonia and urea nitrogenous wastes into amino acids for the host. We report the complete genome sequence of the Blattabacterium sp. associated with the giant roach Blaberus giganteus.  相似文献   

4.
Rational engineering of metabolism is important for bio-production using microorganisms. Metabolic design based on in silico simulations and experimental validation of the metabolic state in the engineered strain helps in accomplishing systematic metabolic engineering. Flux balance analysis (FBA) is a method for the prediction of metabolic phenotype, and many applications have been developed using FBA to design metabolic networks. Elementary mode analysis (EMA) and ensemble modeling techniques are also useful tools for in silico strain design. The metabolome and flux distribution of the metabolic pathways enable us to evaluate the metabolic state and provide useful clues to improve target productivity. Here, we reviewed several computational applications for metabolic engineering by using genome-scale metabolic models of microorganisms. We also discussed the recent progress made in the field of metabolomics and 13C-metabolic flux analysis techniques, and reviewed these applications pertaining to bio-production development. Because these in silico or experimental approaches have their respective advantages and disadvantages, the combined usage of these methods is complementary and effective for metabolic engineering.  相似文献   

5.
Members of the cockroach genus Cryptocercus are wood-feeding, subsocial insects that live in temperate forests of the Nearctic and Palaearctic. At present, nine species are recognized: Cryptocercus relictus and Cryptocercus kyebangensis in eastern Asia and Russia, Cryptocercus primarius and Cryptocercus matilei in southwestern China, Cryptocercus clevelandi in the western USA, and Cryptocercus darwini, Cryptocercus garciai, Cryptocercus punctulatus, and Cryptocercus wrighti in the eastern USA. Like all extant cockroaches, Cryptocercus harbor endosymbiotic bacteria, Blattabacterium, in their fat bodies. The endosymbionts in all cockroaches have been considered a single species, Blattabacterium cuenoti, since their discovery about a century ago. However, a recent analysis of DNA sequences from representatives of four cockroach families has indicated that there is considerable DNA sequence divergence among B. cuenoti from different host species. As a part of our studies on the evolution of Cryptocercus, we examined DNA sequence divergence among B. cuenoti from six of the nine known Cryptocercus species. Specifically, we sequenced approximately 2,400 bp of the 16S rRNA and 23S rRNA genes of B. cuenoti from six species of Cryptocercus. We found that B. cuenoti in Cryptocercus has differentiated into multiple monophyletic lineages distinguishable by DNA sequence of rRNA genes and host association. Our sequence divergence estimates were consistent with those reported for other, congeneric bacterial species. We propose the recognition of three new species of Blattabacterium within Cryptocercus species as follows: Blattabacterium relictus sp. nov. in C. relictus, Blattabacterium clevelandi sp. nov. in C. clevelandi, and Blattabacterium punctulatus sp. nov. in C. darwini, C. garciai, C. punctulatus, and C. wrighti.  相似文献   

6.

Background

Flux balance analysis (FBA) is a widely-used method for analyzing metabolic networks. However, most existing tools that implement FBA require downloading software and writing code. Furthermore, FBA generates predictions for metabolic networks with thousands of components, so meaningful changes in FBA solutions can be difficult to identify. These challenges make it difficult for beginners to learn how FBA works.

Results

To meet this need, we present Escher-FBA, a web application for interactive FBA simulations within a pathway visualization. Escher-FBA allows users to set flux bounds, knock out reactions, change objective functions, upload metabolic models, and generate high-quality figures without downloading software or writing code. We provide detailed instructions on how to use Escher-FBA to replicate several FBA simulations that generate real scientific hypotheses.

Conclusions

We designed Escher-FBA to be as intuitive as possible so that users can quickly and easily understand the core concepts of FBA. The web application can be accessed at https://sbrg.github.io/escher-fba.
  相似文献   

7.
How will bioinformatics influence metabolic engineering?   总被引:5,自引:0,他引:5  
Ten microbial genomes have been fully sequenced to date, and the sequencing of many more genomes is expected to be completed before the end of the century. The assignment of function to open reading frames (ORFs) is progressing, and for some genomes over 70% of functional assignments have been made. The majority of the assigned ORFs relate to metabolic functions. Thus, the complete genetic and biochemical functions of a number of microbial cells may be soon available. From a metabolic engineering standpoint, these developments open a new realm of possibilities. Metabolic analysis and engineering strategies can now be built on a sound genomic basis. An important question that now arises; how should these tasks be approached? Flux-balance analysis (FBA) has the potential to play an important role. It is based on the fundamental principle of mass conservation. It requires only the stoichiometric matrix, the metabolic demands, and some strain specific parameters. Importantly, no enzymatic kinetic data is required. In this article, we show how the genomically defined microbial metabolic genotypes can be analyzed by FBA. Fundamental concepts of metabolic genotype, metabolic phenotype, metabolic redundancy and robustness are defined and examples of their use given. We discuss the advantage of this approach, and how FBA is expected to find uses in the near future. FBA is likely to become an important analysis tool for genomically based approaches to metabolic engineering, strain design, and development.  相似文献   

8.
Understanding the symbiotic interaction between Coxiella‐like endosymbionts (CLE) and their tick hosts is challenging due to lack of isolates and difficulties in tick functional assays. Here we sequenced the metagenome of a CLE population from wild Rhipicephalus sanguineus ticks (CRs) and compared it to the previously published genome of its close relative, CLE of R. turanicus (CRt). The tick hosts are closely related sympatric species, and their two endosymbiont genomes are highly similar with only minor differences in gene content. Both genomes encode numerous pseudogenes, consistent with an ongoing genome reduction process. In silico flux balance metabolic analysis (FBA) revealed the excess production of L‐proline for both genomes, indicating a possible proline transport from Coxiella to the tick. Additionally, both CR genomes encode multiple copies of the proline/betaine transporter, proP gene. Modelling additional Coxiellaceae members including other tick CLE, did not identify proline as an excreted metabolite. Although both CRs and CRt genomes encode intact B vitamin synthesis pathway genes, which are presumed to underlay the mechanism of CLE‐tick symbiosis, the FBA analysis indicated no changes for their products. Therefore, this study provides new testable hypotheses for the symbiosis mechanism and a better understanding of CLE genome evolution and diversity.  相似文献   

9.
Metagenomic analyses of microbial communities have revealed a large degree of interspecies and intraspecies genetic diversity through the reconstruction of metagenome assembled genomes (MAGs). Yet, metabolic modeling efforts mainly rely on reference genomes as the starting point for reconstruction and simulation of genome scale metabolic models (GEMs), neglecting the immense intra- and inter-species diversity present in microbial communities. Here, we present metaGEM (https://github.com/franciscozorrilla/metaGEM), an end-to-end pipeline enabling metabolic modeling of multi-species communities directly from metagenomes. The pipeline automates all steps from the extraction of context-specific prokaryotic GEMs from MAGs to community level flux balance analysis (FBA) simulations. To demonstrate the capabilities of metaGEM, we analyzed 483 samples spanning lab culture, human gut, plant-associated, soil, and ocean metagenomes, reconstructing over 14,000 GEMs. We show that GEMs reconstructed from metagenomes have fully represented metabolism comparable to isolated genomes. We demonstrate that metagenomic GEMs capture intraspecies metabolic diversity and identify potential differences in the progression of type 2 diabetes at the level of gut bacterial metabolic exchanges. Overall, metaGEM enables FBA-ready metabolic model reconstruction directly from metagenomes, provides a resource of metabolic models, and showcases community-level modeling of microbiomes associated with disease conditions allowing generation of mechanistic hypotheses.  相似文献   

10.
Flux Balance Analysis (FBA) has been used in the past to analyze microbial metabolic networks. Typically, FBA is used to study the metabolic flux at a particular steady state of the system. However, there are many situations where the reprogramming of the metabolic network is important. Therefore, the dynamics of these metabolic networks have to be studied. In this paper, we have extended FBA to account for dynamics and present two different formulations for dynamic FBA. These two approaches were used in the analysis of diauxic growth in Escherichia coli. Dynamic FBA was used to simulate the batch growth of E. coli on glucose, and the predictions were found to qualitatively match experimental data. The dynamic FBA formalism was also used to study the sensitivity to the objective function. It was found that an instantaneous objective function resulted in better predictions than a terminal-type objective function. The constraints that govern the growth at different phases in the batch culture were also identified. Therefore, dynamic FBA provides a framework for analyzing the transience of metabolism due to metabolic reprogramming and for obtaining insights for the design of metabolic networks.  相似文献   

11.
Insects in the sap-sucking hemipteran suborder Sternorrhyncha typically harbor maternally transmitted bacteria housed in a specialized organ, the bacteriome. In three of the four superfamilies of Sternorrhyncha (Aphidoidea, Aleyrodoidea, Psylloidea), the bacteriome-associated (primary) bacterial lineage is from the class Gammaproteobacteria (phylum Proteobacteria). The fourth superfamily, Coccoidea (scale insects), has a diverse array of bacterial endosymbionts whose affinities are largely unexplored. We have amplified fragments of two bacterial ribosomal genes from each of 68 species of armored scale insects (Diaspididae). In spite of initially using primers designed for Gammaproteobacteria, we consistently amplified sequences from a different bacterial phylum: Bacteroidetes. We use these sequences (16S and 23S, 2105 total base pairs), along with previously published sequences from the armored scale hosts (elongation factor 1alpha and 28S rDNA) to investigate phylogenetic congruence between the two clades. The Bayesian tree for the bacteria is roughly congruent with that of the hosts, with 67% of nodes identical. Partition homogeneity tests found no significant difference between the host and bacterial data sets. Of thirteen Shimodaira-Hasegawa tests, comparing the original Bayesian bacterial tree to bacterial trees with incongruent clades forced to match the host tree, 12 found no significant difference. A significant difference in topology was found only when the entire host tree was compared with the entire bacterial tree. For the bacterial data set, the treelengths of the most parsimonious host trees are only 1.8-2.4% longer than that of the most parsimonious bacterial trees. The high level of congruence between the topologies indicates that these Bacteroidetes are the primary endosymbionts of armored scale insects. To investigate the phylogenetic affinities of these endosymbionts, we aligned some of their 16S rDNA sequences with other known Bacteroidetes endosymbionts and with other similar sequences identified by BLAST searches. Although the endosymbionts of armored scales are only distantly related to the endosymbionts of the other sternorrhynchan insects, they are closely related to bacteria associated with eriococcid and margarodid scale insects, to cockroach and auchenorrynchan endosymbionts (Blattabacterium and Sulcia), and to male-killing endosymbionts of ladybird beetles. We propose the name "Candidatus Uzinura diaspidicola" for the primary endosymbionts of armored scale insects.  相似文献   

12.
Symbiosis has been among the most important evolutionary steps to generate biological complexity. The establishment of symbiosis required an intimate metabolic link between biological systems with different complexity levels. The strict endo-cellular symbiotic bacteria of insects are beautiful examples of the metabolic coupling between organisms belonging to different kingdoms, a eukaryote and a prokaryote. The host (eukaryote) provides the endosymbiont (prokaryote) with a stable cellular environment while the endosymbiont supplements the host's diet with essential metabolites. For such communication to take place, endosymbionts' genomes have suffered dramatic modifications and reconfigurations of proteins' functions. Two of the main modifications, loss of genes redundant for endosymbiotic bacteria or the host and bacterial genome streamlining, have been extensively studied. However, no studies have accounted for possible functional shifts in the endosymbiotic proteomes. Here, we develop a simple method to screen genomes for evidence of functional divergence between two species clusters, and we apply it to identify functional shifts in the endosymbiotic proteomes. Despite the strong effects of genetic drift in the endosymbiotic systems, we unexpectedly identified genes to be under stronger selective constraints in endosymbionts of aphids and ants than in their free-living bacterial relatives. These genes are directly involved in supplementing the host's diet with essential metabolites. A test of functional divergence supports a strong relationship between the endosymbiosis and the functional shifts of proteins involved in the metabolic communication with the insect host. The correlation between functional divergence in the endosymbiotic bacterium and the ecological requirements of the host uncovers their intimate biochemical and metabolic communication and provides insights on the role of symbiosis in generating species diversity.  相似文献   

13.

Background

Genome evolution in intracellular microbial symbionts is characterized by gene loss, generating some of the smallest and most gene-poor genomes known. As a result of gene loss these genomes commonly contain metabolic pathways that are fragmented relative to their free-living relatives. The evolutionary retention of fragmented metabolic pathways in the gene-poor genomes of endosymbionts suggests that they are functional. However, it is not always clear how they maintain functionality. To date, the fragmented metabolic pathways of endosymbionts have been shown to maintain functionality through complementation by host genes, complementation by genes of another endosymbiont and complementation by genes in host genomes that have been horizontally acquired from a microbial source that is not the endosymbiont. Here, we demonstrate a fourth mechanism.

Results

We investigate the evolutionary retention of a fragmented pathway for the essential nutrient pantothenate (vitamin B5) in the pea aphid, Acyrthosiphon pisum endosymbiosis with Buchnera aphidicola. Using quantitative analysis of gene expression we present evidence for complementation of the Buchnera pantothenate biosynthesis pathway by host genes. Further, using complementation assays in an Escherichia coli mutant we demonstrate functional replacement of a pantothenate biosynthesis enzyme, 2-dehydropantoate 2-reductase (E.C. 1.1.1.169), by an endosymbiont gene, ilvC, encoding a substrate ambiguous enzyme.

Conclusions

Earlier studies have speculated that missing enzyme steps in fragmented endosymbiont metabolic pathways are completed by adaptable endosymbiont enzymes from other pathways. Here, we experimentally demonstrate completion of a fragmented endosymbiont vitamin biosynthesis pathway by recruitment of a substrate ambiguous enzyme from another pathway. In addition, this work extends host/symbiont metabolic collaboration in the aphid/Buchnera symbiosis from amino acid metabolism to include vitamin biosynthesis.
  相似文献   

14.
Belda E  Silva FJ  Peretó J  Moya A 《PloS one》2012,7(1):e30652

Background

Genome reduction is a common evolutionary process affecting bacterial lineages that establish symbiotic or pathogenic associations with eukaryotic hosts. Such associations yield highly reduced genomes with greatly streamlined metabolic abilities shaped by the type of ecological association with the host. Sodalis glossinidius, the secondary endosymbiont of tsetse flies, represents one of the few complete genomes available of a bacterium at the initial stages of this process. In the present study, genome reduction is studied from a systems biology perspective through the reconstruction and functional analysis of genome-scale metabolic networks of S. glossinidius.

Results

The functional profile of ancestral and extant metabolic networks sheds light on the evolutionary events underlying transition to a host-dependent lifestyle. Meanwhile, reductive evolution simulations on the extant metabolic network can predict possible future evolution of S. glossinidius in the context of genome reduction. Finally, knockout simulations in different metabolic systems reveal a gradual decrease in network robustness to different mutational events for bacterial endosymbionts at different stages of the symbiotic association.

Conclusions

Stoichiometric analysis reveals few gene inactivation events whose effects on the functionality of S. glossinidius metabolic systems are drastic enough to account for the ecological transition from a free-living to host-dependent lifestyle. The decrease in network robustness across different metabolic systems may be associated with the progressive integration in the more stable environment provided by the insect host. Finally, reductive evolution simulations reveal the strong influence that external conditions exert on the evolvability of metabolic systems.  相似文献   

15.
1. In natural communities, multiple host and parasitoid species are linked to form complex networks of trophic and non‐trophic interactions. Understanding how these networks will respond to global warming is of wide relevance for agriculture and conservation. 2. This study synthesises the emerging evidence surrounding host–parasitoid networks in the context of global warming. The suite of direct and indirect interaction types within host–parasitoid networks is summarised, as well as their sensitivity to temperature changes. The study also compiles and reviews studies investigating the responses of whole host–parasitoid networks to increasing temperatures or proxy variables. The findings reveal there is limited evidence overall for the prediction that parasitism will be reduced under global warming: approximately equal numbers of studies show elevated and reduced parasitism. 3. Increasingly, endosymbiotic bacteria are recognised as influential mediators of host–parasitoid interactions. These endosymbionts can change how individual species respond to global warming, and their effects can cascade to affect whole host–parasitoid networks. The evidence that symbiotic bacteria are likely to affect the response of host–parasitoid networks to global warming is reviewed. Symbionts can protect hosts from their parasitoids or influence thermal tolerance of their host species. Furthermore, the symbionts themselves can be impacted by global warming. 4. Finally, the study considers the most promising avenues for future research into the mechanisms structuring host–parasitoid networks in the context of global warming. Alongside the increasing availability of modern molecular methods to document the structure of real, species‐rich host–parasitoid networks, the study highlights the utility of manipulative experiments and mathematical models.  相似文献   

16.
Genome-scale metabolic models (GEMs) provide a powerful framework for simulating the entire set of biochemical reactions in a cell using a constraint-based modeling strategy called flux balance analysis (FBA). FBA relies on an assumed metabolic objective for generating metabolic fluxes using GEMs. But, the most appropriate metabolic objective is not always obvious for a given condition and is likely context-specific, which often complicate the estimation of metabolic flux alterations between conditions. Here, we propose a new method, called ΔFBA (deltaFBA), that integrates differential gene expression data to evaluate directly metabolic flux differences between two conditions. Notably, ΔFBA does not require specifying the cellular objective. Rather, ΔFBA seeks to maximize the consistency and minimize inconsistency between the predicted flux differences and differential gene expression. We showcased the performance of ΔFBA through several case studies involving the prediction of metabolic alterations caused by genetic and environmental perturbations in Escherichia coli and caused by Type-2 diabetes in human muscle. Importantly, in comparison to existing methods, ΔFBA gives a more accurate prediction of flux differences.  相似文献   

17.
18.
Bacteria of the genus Blattabacterium are intracellular symbionts that reside in specialized cells of cockroaches and the termite Mastotermes darwiniensis. They appear to be obligate mutualists, and are transmitted vertically in the eggs. Such characteristics are expected to lead to equivalent phylogenies for host and symbiont, and we tested this hypothesis using recently accumulated data on relationships among termites and cockroaches and their Blattabacterium spp. Host and symbiont topologies were found to be highly similar, and various tests indicated that they were not statistically different. A close relationship between endosymbionts from termites and members of the wood-feeding cockroach genus Cryptocercus was found, supporting the hypothesis that the former evolved from subsocial, wood-dwelling cockroaches. The majority of the Blattabacterium spp. sequences appear to have undergone similar rates of evolution since their divergence from a common ancestor, and an estimate of this rate was determined based on early Cretaceous host fossils. The results support the idea that the stem group of modern cockroaches radiated sometime between the late Jurassic and early Cretaceous-not the Carboniferous, as has been suggested on the basis of roach-like fossils from this epoch.  相似文献   

19.
Keeling PJ 《Current biology : CB》2011,21(16):R623-R624
A nested set of bacterial endosymbionts within mealybug cells collectively provides amino acids to their host, but their genomes show that some pathways are distributed between both endosymbionts, while other essential proteins are missing altogether. The possibility that additional functions are shared between partners warrants comparisons with organelles.  相似文献   

20.
1. Bacterial symbionts play a prominent role in insect nutritional ecology by aiding in digestion of food or providing nutrients that are limited or lacking in the diet. Thereby, endosymbionts open niches to their insect host that would otherwise be unavailable. 2. Currently, several other ecologically relevant traits mediated by endosymbionts are being investigated, including enhanced parasite resistance, enhanced heat tolerance, and influences on insect–plant interactions such as manipulation of plant physiology to the benefit of the insect. 3. Traits mediated by endosymbionts are often identified by correlative studies where traits are found to be altered in the presence of a particular symbiont. Recent developments in genomic tools offer the opportunity for studying the impact of bacteria–insect symbioses under natural conditions in a population and community ecology context. In vivo experiments specifically testing putative functions of endosymbionts in parallel to population‐level studies on the prevalence of endosymbionts allow disentangling host versus symbiont contribution to phenotypic variability observed in individuals. Effects of symbionts on host phenotype are often large and relevant to host fitness, e.g. by significantly enhancing survival or fecundity in a context‐dependent manner. 4. Predominantly vertically transmitted endosymbionts contribute to the heritable genetic variation present in a host species. Phenotypic variation on which selection can act may be due to differences either among host genomes, symbiont genomes, or genotype × genotype interactions. Therefore the holobiont, i.e. the host including all symbionts, should be regarded as the unit of selection as the association between host and symbionts may affect the fitness of the holobiont depending on the environment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号