首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The lysyl oxidase family of proteins is primarily known for its critical role in catalyzing extracellular oxidative deamination of hydroxylysine and lysine residues in collagens, and lysine residues in elastin required for connective tissue structure and function. Lysyl oxidases have additional important biological functions in health and disease. While the enzyme domains are highly conserved, the propeptide regions are less uniform, and have biological activity, some of which are independent of their respective enzymes. This review summarizes what has been published regarding the functions of the propeptide regions of this family of proteins in the context of extracellular matrix biosynthesis, fibrosis and cancer biology. Although much has been learned, there is a need for greater attention to structure/function relationships and mechanisms to more fully understand these multifunctional proteins.  相似文献   

2.
RAS mutations or its activation by upstream receptor tyrosine kinases are frequently associated with poor response of carcinomas to chemotherapy. The 18 kDa propeptide domain of lysyl oxidase (LOX‐PP) released from the secreted precursor protein (Pro‐LOX) has been shown to inhibit RAS signaling and the transformed phenotype of breast, pancreatic, lung, and prostate cancer cells in culture, and formation of tumors by Her‐2/neu‐driven breast cancer cells in a mouse xenograft model. Here, we tested the effects of LOX‐PP on MIA PaCa‐2 pancreatic cancer cells, driven by mutant RAS. In MIA PaCa‐2 cells in culture, LOX‐PP attenuated the ERK and AKT activities and decreased the levels of the NF‐κB p65 and RelB subunits and cyclin D1, which are activated by RAS signaling. In mouse xenograft growth, LOX‐PP reduced growth of tumors by these pancreatic cancer cells, and the nuclear levels of the p65 NF‐κB subunit and cyclin D1 proteins. While biological agents attenuate tumor growth when used alone, often they have additive or synergistic effects when used in combination with chemotherapeutic agents. Thus, we next tested the hypotheses that LOX‐PP sensitizes pancreatic and breast cancer cells to the chemotherapeutic agent doxorubicin. Purified LOX‐PP enhanced the cytotoxic effects of doxorubicin in pancreatic and breast cancer cells, as judged by ATP production, Cell Death ELISA assays, caspase 3 activation, PARP cleavage, and Annexin V staining. Thus, LOX‐PP potentiates the cytotoxicity of doxorubicin on breast and pancreatic cancer cells, warranting additional studies with a broader spectrum of current cancer treatment modalities. J. Cell. Biochem. 111: 1160–1168, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
Lysyl oxidase plays a critical role in the formation of the extracellular matrix, and its activity is required for the normal maturation and cross-linking of collagen and elastin. An 18-kDa lysyl oxidase propeptide (LOPP) is generated from 50-kDa prolysyl oxidase by extracellular proteolytic cleavage during the biosynthesis of active 30-kDa lysyl oxidase enzyme. The fate and the functions of the LOPP are largely unknown, although intact LOPP was previously observed in osteoblast cultures. We investigated the spatial localization of molecular forms of lysyl oxidase, including LOPP in proliferating and differentiating osteoblasts, by using confocal immunofluorescence microscopy and Western blots of cytoplasmic and nuclear extracts. In the present study, a stage-dependent intracellular distribution of LOPP in the osteoblastic cell was observed. In proliferating osteoblasts, LOPP epitopes were principally associated with the Golgi and endoplasmic reticulum, and mature lysyl oxidase epitopes were found principally in the nucleus and perinuclear region. In differentiating cells, LOPP and mature lysyl oxidase immunostaining showed clear colocalization with the microtubule network. The subcellular distribution of LOPP and its temporal and physical association with microtubules were confirmed by Western blot and far Western blot studies. We also report that N-glycosylated and nonglycosylated LOPP are present in MC3T3-E1 cell cultures. We conclude that LOPP has a stage-dependent intracellular distribution in osteoblastic cells. Future studies are needed to investigate whether the LOPP associations with microtubules or the osteoblast nucleus have functional effects for osteoblast differentiation and bone formation. microtubules; confocal immunofluorescence microscopy; extracellular matrix; osteoblast differentiation  相似文献   

4.
Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related mortality. Curcumin is involved in various biological pathways leading to inhibition of NSCLC growth. The purpose of this study was to evaluate the effect of curcumin on expression of nuclear factor κB-related proteins in vitro and in vivo and on growth and metastasis in an intralung tumor mouse model.H1975 NSCLC cells were treated with curcumin (0–50 μM) alone, or combined with gemcitabine or cisplatin. The effects of curcumin were evaluated in cell cultures and in vivo, using ectopic and orthotopic lung tumor mouse models. Twenty mice were randomly selected into two equal groups, one that received AIN-076 control diet and one that received the same food but with the addition of 0.6% curcumin 14 days prior to cell implantation and until the end of the experiment. To generate orthotopic tumor, lung cancer cells in Matrigel were injected percutaneously into the left lung of CD-1 nude mice. Western blot analysis showed that the expressions of IkB, nuclear p65, cyclooxygenase 2 (COX-2) and p-ERK1/2 were down-regulated by curcumin in vitro. Curcumin potentiated the gemcitabine- or cisplatin-mediated antitumor effects. Curcumin reduced COX-2 expression in subcutaneous tumors in vivo and caused a 36% decrease in weight of intralung tumors (P=.048) accompanied by a significant survival rate increase (hazard ratio=2.728, P=.036). Curcumin inhibition of COX-2, p65 expression and ERK1/2 activity in NSCLC cells was associated with decreased survival and increased induction of apoptosis. Curcumin significantly reduced tumor growth of orthotopic human NSCLC xenografts and increased survival of treated athymic mice. To evaluate the role of curcumin in chemoprevention and treatment of NSCLC, further clinical trials are required.  相似文献   

5.
6.
Lysyl oxidase is an extracellular enzyme critical for the normal biosynthesis of collagens and elastin. In addition, lysyl oxidase reverts ras-mediated transformation, and lysyl oxidase expression is down-regulated in human cancers. Since suramin inhibits growth factor signaling pathways and induces lysyl oxidase in ras-transformed NIH3T3 cells (RS485 cells), we sought to investigate the effects of suramin on the phenotype of transformed cells and the role of lysyl oxidase in mediating these effects. Suramin treatment resulted in a more normal phenotype as judged by growth rate, cell cycle parameters, and morphology. beta-aminopropionitrile, the selective inhibitor of lysyl oxidase enzyme activity, was remarkably unable to block suramin-induced reversion. By contrast, ectopic antisense lysyl oxidase demonstrated that lysyl oxidase gene expression mediated phenotypic reversion. Since lysyl oxidase is synthesized as a 50 kDa precursor and processed to a 30 kDa active enzyme and 18 kDa propeptide, the effects of these two products on the transformed phenotype of RS485 cells were then directly assessed in the absence of suramin. Here we report, for the first time, that the lysyl oxidase propeptide, and not the lysyl oxidase enzyme, inhibits ras-dependent transformation as determined by effects on cell proliferation assays, growth in soft agar, and Akt-dependent induction of NF-kappaB activity. Thus, the lysyl oxidase propeptide, which is released during extracellular proteolytic processing of pro-lysyl oxidase, functions to inhibit ras-dependent cell transformation.  相似文献   

7.
Osteoporosis caused by estrogen deficiency is characterized by enhanced bone resorption mediated by osteoclasts. Adhesion to bone matrix and survival of differentiated osteoclasts is necessary to resorb bone. The aim of our study was to investigate the in vitro effects of estradiol on murine osteoclasts. RAW 264.7 cells treated with 30 ng/ml RANK-L were used as a model for osteoclastogenesis. Estradiol (10−8 M) for 5 days induced an inhibition of osteoclast differentiation and β3 expression. Estradiol inhibited significantly the adhesion of mature osteoclasts by 30%. Furthermore estradiol-induced apoptosis shown by with nuclear condensation and Bax/Bcl2 ratio. In addition, estradiol enhanced caspase-3, -8 and -9 activities. This effect completely disappeared using specific caspase-8 inhibitor. However, increased caspase-3 activity by estradiol was observed in the presence of caspase-9 inhibitor, indicating the preferential involvement of caspase-8 pathway. Fas and FasL mRNA expression was not regulated by estradiol. However, estradiol enhanced caspase-3 activity in Fas-induced apoptosis on mature osteoclasts, suggesting that this might interact with the Fas-signaling pathway. These data suggest that estradiol decreases bone resorption by several mechanisms including adhesion and apoptosis of osteoclasts.  相似文献   

8.
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.  相似文献   

9.
Lysyl oxidase is required for the normal biosynthesis and maturation of collagen and elastin. It is expressed by vascular smooth muscle cells, and its increased expression has been previously found in atherosclerosis and in models of balloon angioplasty. The lysyl oxidase propeptide (LOX-PP) has more recently been found to have biological activity as a tumor suppressor, and it inhibits Erk1/2 Map kinase activation. We reasoned that LOX-PP may have functions in normal non-transformed cells. We, therefore, investigated its effects on smooth muscle cells, focusing on important biological processes mediated by Erk1/2-dependent signaling pathways including proliferation and matrix metalloproteinase-9 (MMP-9) expression. In addition, we investigated whether evidence for accumulation of LOX-PP could be found in vivo in a femoral artery injury model. Recombinant LOX-PP was expressed and purified, and was found to inhibit primary rat aorta smooth muscle cell proliferation and DNA synthesis by more than 50%. TNF-α-stimulated MMP-9 expression and Erk1/2 activation were both significantly inhibited by LOX-PP. Immunohistochemistry studies carried out with affinity purified anti-LOX-PP antibody showed that LOX-PP epitopes were expressed at elevated levels in vascular lesions of injured arteries. These novel data suggest that LOX-PP may provide a feedback control mechanism that serves to inhibit properties associated with the development of vascular pathology.  相似文献   

10.
Xanthohumol (XN), a natural polyphenol present in beer, is known to exert anti-cancer effects. However, its precise mechanisms are not yet clearly defined. The aim of this study was to investigate the effect of oral administration of XN in breast cancer xenografts in nude mice. Proliferation and apoptosis were first examined in MCF7 cell cultures after incubation with XN by trypan blue exclusion assay, [3H]-thymidine incorporation, KI67 immunostaining and TUNEL. Morphological and histological characteristics of tumours from XN-treated or control (vehicle-treated) mice were compared. Immunohistochemistry for proliferative, inflammatory and endothelial cell markers was performed and activation of nuclear factor kappa B (NFkappaB) pathway was assessed by ELISA. In vitro MCF7 cell proliferation decreased in a dose-dependent manner. Oral administration of XN to nude mice inoculated with MCF7 cells resulted in central necrosis within tumours, reduced inflammatory cell number, focal proliferation areas, increased percentage of apoptotic cells and decreased microvessel density. Anti-angiogenic effects of XN were further confirmed by immunoblotting for factor VIII expression in XN-treated tumours as compared to controls. Decreased immunostaining for NFkappaB, phosphorylated-inhibitor of kappa B and interleukin-1beta were also observed as well as a significant decrease in NFkappaB activity to 60% of control values. These novel findings indicate that XN is able to target both breast cancer and host cells, namely inflammatory and endothelial cells, suggesting its potential use as a double-edge anti-cancer agent.  相似文献   

11.
12.
Corilagin is a component of Phyllanthus urinaria extract and has been found of possessing anti‐inflammatory, anti‐oxidative, and anti‐tumour properties in clinic treatments. However, the underlying mechanisms in anti‐cancer particularly of its induction of cell death in human breast cancer remain undefined. Our research found that corilagin‐induced apoptotic and autophagic cell death depending on reactive oxygen species (ROS) in human breast cancer cell, and it occurred in human breast cancer cell (MCF‐7) only comparing with normal cells. The expression of procaspase‐8, procaspase‐3, PARP, Bcl‐2 and procaspase‐9 was down‐regulated while caspase‐8, cleaved PARP, caspase‐9 and Bax were up‐regulated after corilagin treatment, indicating apoptosis mediated by extrinsic and mitochondrial pathways occurred in MCF‐7 cell. Meanwhile, autophagy mediated by suppressing Akt/mTOR/p70S6K pathway was detected with an increase in autophagic vacuoles and LC3‐II conversion. More significantly, inhibition of autophagy by chloroquine diphosphate salt (CQ) remarkably enhanced apoptosis, while the caspase inhibitor z‐VAD‐fmk failed in affecting autophagy, suggesting that corilagin‐induced autophagy functioned as a survival mechanism in MCF‐7 cells. In addition, corilagin induced intracellular reactive oxygen species (ROS) generation, when reduced by ROS scavenger NAC, apoptosis and autophagy were both down‐regulated. Nevertheless, in SK‐BR3 cell which expressed RIP3, necroptosis inhibitor Nec‐1 could not alleviate cell death induced by corilagin, indicating necroptosis was not triggered. Subcutaneous tumour growth in nude mice was attenuated by corilagin, consisting with the results in vitro. These results imply that corilagin inhibits cancer cell proliferation through inducing apoptosis and autophagy which regulated by ROS release.  相似文献   

13.
14.
It has been reported that lncRNA POU3F3 was upregulated in esophageal squamous-cell carcinomas, indicating its role as an oncogene in this disease. However, the mechanism of its function and its involvement in other malignancies is unknown. In the present study we found that expression levels of lncRNA POU3F3 were higher in tumor tissues than in adjacent healthy tissues of triple negative breast cancer (TNBC) patients and were significantly and inversely correlated with levels of cleaved caspase 9 only in tumor tissues. In addition, plasma levels of lncRNA POU3F3 were higher in TNBC patients than in healthy controls and were significantly and inversely correlated with levels of cleaved caspase 9 only in TNBC patients. In addition, treatment of exogenous Cleaved Caspase-9 significantly attenuated the effects of lncRNA POU3F3 overexpression on cancer cell proliferation and apoptosis. lncRNA POU3F3 may promote proliferation and inhibit apoptosis of cancer cells in triple-negative breast cancer.  相似文献   

15.
16.
Breast cancer is the most commonly diagnosed cancer type worldwide among women and more than 90% of patients die from tumor metastasis. Lycorine, a natural alkaloid, has been widely reported possessing potential efficacy against cancer proliferation and metastasis. In our study, the anti-tumor potency on breast cancer was evaluated in vitro and in vivo for the first time. Our results indicated that lycorine inhibited breast cancer cells growth, migration and invasion as well as induced their apoptosis.In in vivo study, lycorine not only suppressed breast tumor growth in xenograft models and inhibited breast tumor metastasis in MDA-MB-231 tail vein model. More importantly, we found lycorine had less toxicity than first-line chemotherapy drug paclitaxel at the same effective dose in vivo. Furthermore, on mechanism, lycorine inhibited tumor cell migration and invasion via blocking the Src/FAK(focal adhesion kinase)-involved pathway. In conclusion, our study implied lycorine was a potential candidate for the treatment of breast cancer by inhibition of tumor growth and metastasis.  相似文献   

17.
Abstract

The pineal hormone, melatonin (MLT), has been shown to have therapeutic effects in patients with gastric cancer; however, the mechanisms for the anti-cancer effects are unknown. We investigated the effects of melatonin on cell proliferation, apoptosis, colony formation and cell migration in the gastric adenocarcinoma cell line, SGC7901, using MTT assay, Hoechst 33258 staining, flow cytometry, western blot, caspase-3 activity assay, soft agar colony formation assay, and scratch-wound assay. Our results showed that melatonin could inhibit cell proliferation, colony formation and migration efficiency, and it promoted apoptosis of SGC7901 cells. Our findings suggest that the anti-cancer effects of melatonin may be due to both inhibition of tumor cell proliferation and reduction of the metastatic potential of tumor cells.  相似文献   

18.
Lysyl oxidase (LOX) is an extracellular copper dependent enzyme catalyzing lysine-derived cross-links in extracellular matrix proteins. Recent molecular cloning has revealed the existence of a LOX family consisting of LOX and four lysyl oxidase-like proteins (LOXLs; LOXL, LOXL2, LOXL3, and LOXL4). Each member of the LOX family contains a copper-binding domain, residues for lysyl-tyrosyl quinone, and a cytokine receptor-like domain. Very recently, novel functions, such as tumor suppression, cellular senescence, and chemotaxis, have been attributed to this family of amine oxidases, but functional differences among the family members have yet to be determined. For efficient expression and purification, we cloned the cDNAs corresponding to proteolytically processed forms of LOX (LOX-p) and LOXL (LOXL-p1 and LOXL-p2) into a bacterial expression vector pET21a with six continuous histidine codons attached to the 3 of the gene. The recombinant proteins were purified with nickel-chelating affinity chromatography and converted into enzymatically active forms by stepwise dialysis in the presence of N-lauroylsarcosinate and Cu2+. The purified LOX-p, LOXL-p1, and LOXL-p2 proteins showed specific amine oxidase activity of 0.097, 0.054, and 0.150 U/mg, respectively, which was inhibited by β-aminopropionitrile (BAPN), a specific inhibitor of LOX. Availability of these pure and active forms of LOX and LOXLs will be significantly helpful in functional studies related to substrate specificity and crystal structures of this family of amine oxidases.  相似文献   

19.
Zhang M  Wang B  Ni YH  Liu F  Fei L  Pan XQ  Guo M  Chen RH  Guo XR 《Life sciences》2006,79(15):1428-1435
Uncoupling proteins are a family of mitochondrial proteins involved in energy metabolism. We previously showed that uncoupling protein 4 (UCP4) is differentially expressed in omental adipose tissue in diet-induced obese and normal rats. However, the effect of UCP4 on adipocytes is unclear. In this work, we established a stable preadipocyte cell line overexpressing UCP4 to observe the direct effect of UCP4 on adipocytes. Cells overexpressing UCP4 showed significantly attenuated differentiation of preadipocytes into adipocytes. During differentiation, expression of adipogenesis-associated markers such as fatty acid synthetase, peroxisome proliferator-activated receptor gamma, CCAAT enhancer binding protein alpha, adipocyte lipid binding protein and lipoprotein lipase were downregulated. Preadipoctes expressing UCP4 grew faster and more of them stayed in S phase compared to control cells. In addition, UCP4 overexpression protected preadipocytes from apoptosis induced by serum deprivation. Our results demonstrate that overexpression of UCP4 can promote proliferation and inhibit apoptosis and differentiation of preadipocytes.  相似文献   

20.
An ideal approach to treat cancers with dysfunctional p53 tumor suppressor gene is to reinstate p53 functionality by directly using p53 protein as a therapeutic agent. However, this has not been possible because the cells cannot readily internalize the protein. We constructed a fusion protein consisting of gonadotropin-releasing hormone (GnRH-p53) and p53 moieties. The recombinant protein was directly used to treat human breast cancer cells and athymic nude mice bearing breast cancer xenografts, with or without DNA synthesis-arresting agent 5-fluorouracil (5-FU). Treatments of cells from breast cancer cell-lines MDA-MB-231, T47D, or SKBR-3 with GnRH-p53 in combination with 5-FU significantly enhanced p53-activated apoptosis signals, including PUMA expression, BAX translocation to mitochondria, and activated caspase-3. Intratumoral injection of the GnRH-p53 protein inhibited MDA-MB-231 xenograft growth and induced p53-mediated apoptosis in the tumors. Systemic treatment of the tumor-bearing mice via tail vein injection of GnRH-p53 markedly augmented the anticancer efficacy of 5-FU. Substitution of GnRH-p53 with wild type p53 protein had no effect. Recombinant GnRH-p53 is able to function as a surrogate of p53 with regard to its apoptosis-inducing activity. Combination of GnRH-p53 with DNA-damaging drugs may be of important therapeutic value for cancer treatment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号