首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shea KF  Wells CM  Garner AP  Jones GE 《PloS one》2008,3(10):e3398
Cancer cells migrating within a 3D microenvironment are able to adopt either a mesenchymal or amoeboid mode of migration. Amoeboid migration is characterised by membrane blebbing that is dependent on the Rho effectors, ROCK1/2. We identify LIMK2 as the preferred substrate for ROCK1 but find that LIMK2 did not induce membrane blebbing, suggesting that a LIMK2 pathway is not involved in amoeboid-mode migration. In support of this hypothesis, novel FRET data demonstrate a direct interaction between ROCK1 and LIMK2 in polarised but not blebbing cells. Our results point to a specific role for the ROCK1:LIMK2 pathway in mesenchymal-mode migration.  相似文献   

2.
Tumor cell invasion is the most critical step of metastasis. Determination of the mode of invasion within the particular tumor is critical for effective cancer treatment. Protease-independent amoeboid mode of invasion has been described in carcinoma cells and more recently in sarcoma cells on treatment with protease inhibitors. To analyze invasive behavior, we compared highly metastatic sarcoma cells with parental nonmetastatic cells. The metastatic cells exhibited a functional up-regulation of Rho/ROCK signaling and, similarly to carcinoma cells, an amoeboid mode of invasion. Using confocal and traction force microscopy, we showed that an up-regulation of Rho/ROCK signaling leads to increased cytoskeletal dynamics, myosin light chain localization, and increased tractions at the leading edge of the cells and that all of these contributed to increased cell invasiveness in a three-dimensional collagen matrix. We conclude that cells of mesenchymal origin can use the amoeboid nonmesenchymal mode of invasion as their primary invading mechanism and show the dependence of ROCK-mediated amoeboid mode of invasion on the increased capacity of cells to generate force.  相似文献   

3.
Membrane blebbing‐dependent (blebby) amoeboid migration can be employed by lymphoid and cancer cells to invade 3D‐environments. Here, we reveal a mechanism by which the small GTPase RhoB controls membrane blebbing and blebby amoeboid migration. Interestingly, while all three Rho isoforms (RhoA, RhoB and RhoC) regulated amoeboid migration, each controlled motility in a distinct manner. In particular, RhoB depletion blocked membrane blebbing in ALL (acute lymphoblastic leukaemia), melanoma and lung cancer cells as well as ALL cell amoeboid migration in 3D‐collagen, while RhoB overexpression enhanced blebbing and 3D‐collagen migration in a manner dependent on its plasma membrane localization and down‐stream effectors ROCK and Myosin II. RhoB localization was controlled by endosomal trafficking, being internalized via Rab5 vesicles and then trafficked either to late endosomes/lysosomes or to Rab11‐positive recycling endosomes, as regulated by KIF13A. Importantly, KIF13A depletion not only inhibited RhoB plasma membrane localization, but also cell membrane blebbing and 3D‐migration of ALL cells. In conclusion, KIF13A‐mediated endosomal trafficking modulates RhoB plasma membrane localization to control membrane blebbing and blebby amoeboid migration.  相似文献   

4.
Tumor cells invading three-dimensional matrices need to remodel the extracellular matrix (ECM) in their path. Many studies have focused on the role of extracellular proteases; however, cells with amoeboid or rounded morphologies are able to invade even when these enzymes are inhibited. Here, we describe the mechanism by which cells move through a dense ECM without proteolysis. Amoeboid tumor cells generate sufficient actomyosin force to deform collagen fibers and are able to push through the ECM. Force generation is elevated in metastatic MTLn3E cells, and this correlates with increased invasion and altered myosin light chain (MLC) organization. In metastatic cells, MLC is organized perpendicularly to the direction of movement behind the invading edge. Both the organization of MLC and force generation are dependent upon ROCK function. We demonstrate that ROCK regulates the phosphorylation of MLC just behind the invading margin of the cell. Imaging of live tumors shows that MLC is organized in a similar ROCK-dependent fashion in vivo and that inhibition of ROCK but not matrix-metalloproteases reduces cancer cell motility in vivo.  相似文献   

5.
Tumor cells exhibit two interconvertible modes of cell motility referred to as mesenchymal and amoeboid migration. Mesenchymal mode is characterized by elongated morphology that requires high GTPase Rac activation, whereas amoeboid mode is dependent on actomyosin contractility induced by Rho/Rho-associated protein kinase (ROCK) signaling. While elongated morphology is driven by Rac-induced protrusion at the leading edge, how Rho/ROCK signaling controls amoeboid movement is not well understood. We identified FilGAP, a Rac GTPase-activating protein (GAP), as a mediator of Rho/ROCK-dependent amoeboid movement of carcinoma cells. We show that depletion of endogenous FilGAP in carcinoma cells induced highly elongated mesenchymal morphology. Conversely, forced expression of FilGAP induced a round/amoeboid morphology that requires Rho/ROCK-dependent phosphorylation of FilGAP. Moreover, depletion of FilGAP impaired breast cancer cell invasion through extracellular matrices and reduced tumor cell extravasation in vivo. Thus phosphorylation of FilGAP by ROCK appears to promote amoeboid morphology of carcinoma cells, and FilGAP contributes to tumor invasion.  相似文献   

6.
The functional significance of the widespread down-regulation of Rap1 GTPase-activating protein (Rap1GAP), a negative regulator of Rap activity, in human tumors is unknown. Here we show that human colon cancer cells depleted of Rap1GAP are endowed with more aggressive migratory and invasive properties. Silencing Rap1GAP enhanced the migration of confluent and single cells. In the latter, migration distance, velocity, and directionality were increased. Enhanced migration was a consequence of increased endogenous Rap activity as silencing Rap expression selectively abolished the migration of Rap1GAP-depleted cells. ROCK-mediated cell contractility was suppressed in Rap1GAP-depleted cells, which exhibited a spindle-shaped morphology and abundant membrane protrusions. Tumor cells can switch between Rho/ROCK-mediated contractility-based migration and Rac1-mediated mesenchymal motility. Strikingly, the migration of Rap1GAP-depleted, but not control cells required Rac1 activity, suggesting that loss of Rap1GAP alters migratory mechanisms. Inhibition of Rac1 activity restored membrane blebbing and increased ROCK activity in Rap1GAP-depleted cells, suggesting that Rac1 contributes to the suppression of contractility. Collectively, these findings identify Rap1GAP as a critical regulator of aggressive tumor cell behavior and suggest that the level of Rap1GAP expression influences the migratory mechanisms that are operative in tumor cells.  相似文献   

7.
Cell plasticity is a crucial hallmark leading to cancer metastasis. Upregulation of Rho/ROCK pathway drives actomyosin contractility, protrusive forces, and contributes to the occurrence of highly invasive amoeboid cells in tumors. Cancer stem cells are similarly associated with metastasis, but how these populations arise in tumors is not fully understood. Here, we show that the novel oncogene RASSF1C drives mesenchymal‐to‐amoeboid transition and stem cell attributes in breast cancer cells. Mechanistically, RASSF1C activates Rho/ROCK via SRC‐mediated RhoGDI inhibition, resulting in generation of actomyosin contractility. Moreover, we demonstrate that RASSF1C‐induced amoeboid cells display increased expression of cancer stem‐like markers such as CD133, ALDH1, and Nanog, and are accompanied by higher invasive potential in vitro and in vivo. Further, RASSF1C‐induced amoeboid cells employ extracellular vesicles to transfer the invasive phenotype to target cells and tissue. Importantly, the underlying RASSF1C‐driven biological processes concur to explain clinical data: namely, methylation of the RASSF1C promoter correlates with better survival in early‐stage breast cancer patients. Therefore, we propose the use of RASSF1 gene promoter methylation status as a biomarker for patient stratification.  相似文献   

8.
The high mortality rate of breast cancer is mainly caused by the metastatic ability of cancer cells, resistance to chemotherapy and radiotherapy, and tumor regression capacity. In recent years, it has been shown that the presence of breast cancer stem cells is closely associated with the migration and metastatic ability of cancer cells, as well as with their resistance to chemotherapy and radiotherapy. The tumor microenvironment is one of the main molecular factors involved in cancer and metastatic processes development, in this sense it is interesting to study the role of platelets, one of the main communicator cells in the human body which are activated by the signals they receive from the microenvironment and can generate more than one response. Platelets can ingest and release RNA, proteins, cytokines and growth factors. After the platelets interact with the tumor microenvironment, they are called "tumor-educated platelets." Tumor-educated platelets transport material from the tumor microenvironment to sites adjacent to the tumor, thus helping to create microenvironments conducive for the development of primary and metastatic tumors. It has been observed that the clone capable of carrying out the metastatic process is a cancer cell with stem cell characteristics. Cancer stem cells go through a series of processes, including epithelial-mesenchymal transition, intravasation into blood vessels, movement through blood vessels, extravasation at the site of the establishment of a metastatic focus, and site colonization. Tumor-educated platelets support all these processes.  相似文献   

9.

Background

Mesenchymal and amoeboid movements are two important mechanisms adopted by cancer cells to invade the surrounding environment. Mesenchymal movement depends on extracellular matrix protease activity, amoeboid movement on the RhoA-dependent kinase ROCK. Cancer cells can switch from one mechanism to the other in response to different stimuli, limiting the efficacy of antimetastatic therapies.

Methodology and Principal Findings

We investigated the acquisition and molecular regulation of the invasion capacity of neoplastically transformed human fibroblasts, which were able to induce sarcomas and metastases when injected into immunocompromised mice. We found that neoplastic transformation was associated with a change in cell morphology (from fibroblastic to polygonal), a reorganization of the actin cytoskeleton, a decrease in the expression of several matrix metalloproteases and increases in cell motility and invasiveness. In a three-dimensional environment, sarcomagenic cells showed a spherical morphology with cortical actin rings, suggesting a switch from mesenchymal to amoeboid movement. Accordingly, cell invasion decreased after treatment with the ROCK inhibitor Y27632, but not with the matrix protease inhibitor Ro 28-2653. The increased invasiveness of tumorigenic cells was associated with reduced expression of Rnd3 (also known as RhoE), a cellular inhibitor of ROCK. Indeed, ectopic Rnd3 expression reduced their invasive ability in vitro and their metastatic potential in vivo.

Conclusions

These results indicate that, during neoplastic transformation, cells of mesenchymal origin can switch from a mesenchymal mode of movement to an amoeboid one. In addition, they point to Rnd3 as a possible regulator of mesenchymal tumor cell invasion and to ROCK as a potential therapeutic target for sarcomas.  相似文献   

10.
To metastasize, tumor cells must adopt different morphological responses to resist shear forces encountered in circulating blood and invade through basement membranes. The Rho and Ras GTPases play a critical role in regulating this dynamic behavior. Recently, we demonstrated shear-induced activation of adherent esophageal metastatic cells, characterized by formation of dynamic membrane blebs. Although membrane blebbing has only recently been characterized as a rounded mode of cellular invasion promoted through Rho kinase (ROCK), the role of shear forces in modulating membrane blebbing activity is unknown. To further characterize membrane blebbing in esophageal metastatic cells (OC-1 cell line), we investigated the role of shear in cytoskeletal remodeling and signaling through ROCK and Ras. Our results show that actin and tubulin colocalize to the cortical ring of the OC-1 cell under static conditions. However, under shear, actin acquires a punctuate distribution and tubulin localizes to the leading edge of the OC-1 cell. We show for the first time that dynamic bleb formation is induced by shear alone independent of integrin-mediated adhesion (P < 0.001, compared with OC-1 cells). Y-27632, a specific inhibitor of ROCK, causes a significant reduction in shear-induced bleb formation and inhibits integrin v3-Ras colocalization at the leading edge of the cell. Direct measurement of Ras activation shows that the level of GTP-bound Ras is elevated in sheared OC-1 cells and that the shear-induced increase in Ras activity is inhibited by Y-27632. Finally, we show that shear stress significantly increases OC-1 cell invasion (P < 0.007), an effect negated by the presence of Y-27632. Together our findings suggest a novel physiological role for ROCK and Ras in metastatic cell behavior. cytoskeletal remodeling; dynamic blebs  相似文献   

11.
Plasminogen activator inhibitor-1 (PAI-1) is a physiological inhibitor of urokinase (uPA), a serine protease known to promote cell migration and invasion. Intuitively, increased levels of PAI-1 should be beneficial in downregulating uPA activity, particularly in cancer. By contrast, in vivo, increased levels of PAI-1 are associated with a poor prognosis in breast cancer. This phenomenon is termed the "PAI-1 paradox". Many factors are responsible for the upregulation of PAI-1 in the tumor microenvironment. We hypothesize that there is a breast cancer predisposition to a more aggressive stage when PAI-1 is upregulated as a consequence of Metabolic Syndrome (MetS). MetS exerts a detrimental effect on the breast tumor microenvironment that supports cancer invasion. People with MetS have an increased risk of coronary heart disease, stroke, peripheral vascular disease and hyperinsulinemia. Recently, MetS has also been identified as a risk factor for breast cancer. We hypothesize the existence of the "PAI-1 cycle". Sustained by MetS, adipocytokines alter PAI-1 expression to promote angiogenesis, tumor-cell migration and procoagulant microparticle formation from endothelial cells, which generates thrombin and further propagates PAI-1 synthesis. All of these factors culminate in a chemotherapy-resistant breast tumor microenvironment. The PAI-1 cycle may partly explain the PAI-1 paradox. In this hypothesis paper, we will discuss further how MetS upregulates PAI-1 and how an increased level of PAI-1 can be linked to a poor prognosis.  相似文献   

12.
肿瘤是严重危害人类健康的疾病.研究表明,实体瘤周围环境中的胞外基质蛋白、浸润性免疫细胞和间充质细胞分泌的蛋白质组等均与肿瘤的发生、发展以及肿瘤治疗的耐受性等密切相关.肿瘤微环境中一个重要调控因子,纤溶酶原激活物抑制剂1 (plasminogen activator inhibitor-1,PAI-1),不仅与组织型纤溶酶原激活物(tissue-type plasminogen activators,tPA)构成调节纤溶活性的一对关键物质,而且参与肿瘤的侵袭、浸润和转移等多个环节并扮演重要角色.本文针对近年来PAI-1的结构和功能方面研究新进展及其与肿瘤微环境的相关性进行综述,并提出PAI-1可作为抗肿瘤治疗的重要靶点.同时,本文也分析了PAI-1抑制剂对肿瘤干预的研究现状,指出PAI-1抑制剂对肿瘤治疗的潜在应用价值.  相似文献   

13.
Rho GTPases are key regulators of tumour cell invasion and therefore constitute attractive targets for the design of anticancer agents. Several strategies have been developed to modulate their increased activities during cancer progression. Interestingly, none of these approaches took into account the existence of the well-known antagonistic relationship between RhoA and Rac1. In this study, we first compared the invasiveness of a collection of colorectal cancer cell lines with their RhoA, Rac1 and Cdc42 activities. A marked decrease of active Cdc42 and Rac1 correlated with the high invasive potential of the cell lines established from metastatic sites of colorectal adenocarcinoma (LoVo, SKCo1, SW620 and CoLo205). Conversely, no correlation between RhoA activity and invasiveness was detected, whereas the activity of its kinase effector ROCK was higher in cancer cell lines with a more invasive phenotype. In addition, invasiveness in these colon cancer cell lines was correlated with a typical round and blebbing morphology. We then tested whether treatment with PDGF to restore Cdc42 and Rac1 activities and/or with Y27632, a chemical inhibitor of ROCK, could decrease the invasiveness of SW620 cells. The association of both treatments substantially decreased the invasive potential of SW620 cells and this effect was accompanied by loss of membrane blebbing, restoration of a more elongated cell morphology and re-establishment of E-cadherin-dependent adherens junctions. This study paves the road to the development of therapeutic strategies in which different Rho GTPase modulators are combined to modulate the cross-talk between Rho GTPases and their specific input in metastatic progression.  相似文献   

14.
In three-dimensional matrices cancer cells move with a rounded, amoeboid morphology that is controlled by ROCK-dependent contraction of acto-myosin. In this study, we show that PDK1 is required for phosphorylation of myosin light chain and cell motility, both on deformable gels and in vivo. Depletion of PDK1 alters the localization of ROCK1 and reduces its ability to drive cortical acto-myosin contraction. This form of ROCK1 regulation does not require PDK1 kinase activity, but instead involves direct binding of PDK1 to ROCK1 at the plasma membrane; PDK1 competes directly with RhoE for binding to ROCK1. In the absence of PDK1, negative regulation by RhoE predominates, causing reduced acto-myosin contractility and motility. This work uncovers a novel non-catalytic role for PDK1 in regulating cortical acto-myosin and cell motility.  相似文献   

15.
One characteristic of solid tumors such as malignant melanoma is the acidification of the tumor microenvironment. The deregulation of cancer cell metabolism is considered a main cause of extracellular acidosis. Here, cancer cells utilize aerobic glycolysis instead of oxidative phosphorylation even under normoxic conditions, as originally described by Otto Warburg. These metabolic alterations cause enhanced acid production, especially of lactate and carbon dioxide (CO2). The extensive production of acidic metabolites and the enhanced acid export to the extracellular space cause a consistent acidification of the tumor microenvironment, thus promoting the formation of an acid‐resistant tumor cell population with increased invasive and metastatic potential. As melanoma is one of the deadliest and most metastatic forms of cancer, understanding the effects of this extracellular acidosis on human melanoma cells with distinct metastatic properties is important. The aim of this review was to summarize recent studies of the acidification of the tumor microenvironment, focusing on the specific effects of the acidic milieu on melanoma cells and to give a short overview of therapeutic approaches.  相似文献   

16.
Plasminogen activator inhibitor type I (PAI-1) plays a central role in metastatic behavior by increasing cells' migratory capacities as shown in several tumoral cell lines. Moreover, in vivo high expression of this factor helps tumoral growth, both by its role in extracellular matrix remodeling and by favoring angiogenesis. High levels of PAI-1 are correlated with bad prognosis in several cancers, particularly in breast cancer. The effect of PAI-1 upon angiogenesis is also involved in atherosclerosis, in which high levels of PAI-1 expression are observed. Breast carcinoma MDA MB 231 cells are known for both having important metastatic capacities and expressing high levels of PAI-1. We have demonstrated in these cells that the transfection of PAI-1 specific small interfering RNAs (siRNA) specifically inhibited the expression of this factor by 91%. We evaluated siRNA activity by determining PAI-1 mRNA level, as well as intracellular and extracellular PAI-1 protein by using RT Q-PCR, Western blot and ELISA analyses, respectively. Data confirmed inhibition at mRNA levels (primary aim of interference), intracellular protein, and secreted PAI-1, the latter being operative successfully in the cell microenvironment. The lipidic vector Delivery Liposomes System (DLS) used was adapted to siRNA delivery as observed by particle size distribution analysis, confocal microscopy and transfection into MDA MB 231, in the presence of serum. SiRNA activity was clearly detected at concentrations as low as 10 nM. Moreover, the low cytotoxicity of this vector makes it a good candidate for future in vivo siRNA delivery.  相似文献   

17.
We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1-/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1-/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy (“self-eating”) and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the “Autophagic Tumor Stroma Model of Cancer” and identifies a novel “extracellular matrix”-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.  相似文献   

18.
Tumor cells rely upon membrane pliancy to escape primary lesions and invade secondary metastatic sites. This process relies upon localized assembly and disassembly cycles of F-actin that support and underlie the plasma membrane. Dynamic actin generates both spear-like and bleb structures respectively characterizing mesenchymal and amoeboid motility programs utilized by metastatic cells in three-dimensional matrices. The molecular mechanism and physiological trigger(s) driving membrane plasticity are poorly understood. mDia formins are F-actin assembly factors directing membrane pliancy in motile cells. mDia2 is functionally coupled with its binding partner DIP, regulating cortical actin and inducing membrane blebbing in amoeboid cells. Here we show that mDia2 and DIP co-tether to nascent blebs and this linkage is required for bleb formation. DIP controls mesenchymal/amoeboid cell interconvertability, while CXCL12 induces assembly of mDia2:DIP complexes to bleb cortices in 3D matrices. These results demonstrate how DIP-directed mDia2-dependent F-actin dynamics regulate morphological plasticity in motile cancer cells.  相似文献   

19.
Patients with pancreatic cancer typically develop tumor invasion and metastasis in the early stage. These malignant behaviors might be originated from cancer stem cells (CSCs), but the responsible target is less known about invisible CSCs especially for invasion and metastasis. We previously examined the proteasome activity of CSCs and constructed a real-time visualization system for human pancreatic CSCs. In the present study, we found that CSCs were highly metastatic and dominantly localized at the invading tumor margins in a liver metastasis model. Microarray and siRNA screening assays showed that doublecortin-like kinase 1 (DCLK1) was predominantly expressed with histone modification in pancreatic CSCs with invasive and metastatic potential. Overexpression of DCLK1 led to amoeboid morphology, which promotes the migration of pancreatic cancer cells. Knockdown of DCLK1 profoundly suppressed in vivo liver metastasis of pancreatic CSCs. Clinically, DCLK1 was overexpressed in the metastatic tumors in patients with pancreatic cancer. Our studies revealed that DCLK1 is essential for the invasive and metastatic properties of CSCs and may be a promising epigenetic and therapeutic target in human pancreatic cancer.  相似文献   

20.
The supporting role of urokinase-type plasminogen activator (uPA) and its inhibitor plasminogen activator inhibitor 1 (PAI-1) in migration and invasion is well known. In addition, both factors are key components in cancer cell-related signaling. However, little information is available for uPA and PAI-1-associated signaling pathways in primary cancers and corresponding lymph node metastases. The aim of this study was to compare the expression of uPA and PAI-1-associated signaling proteins in 52 primary breast cancers and corresponding metastases. Proteins were extracted from formalin-fixed paraffin-embedded tissue samples of the primary tumors and metastases. Protein lysates were subsequently analyzed by reverse phase protein array for the expression of members of the PI3K/AKT (FAK, GSK3-β, ILK, pGSK3-β, PI3K, and ROCK) and the MAPK pathways (pp38, pSTAT3, and p38). A solid correlation of uPA expression existed between primary tumors and metastases, whereas PAI-1 expression did not significantly correlate between them. The correlations of uPA and PAI-1 with signaling pathways found in primary tumors did not persist in metastases. Analysis of single molecules revealed that some correlated well between tumors and metastases (FAK, pGSK3-β, ILK, Met, PI3K, ROCK, uPA, p38, and pp38), whereas others did not (PAI-1 and GSK3-β). Whether the expression of a protein correlated between tumor and metastasis or not was independent of the pathway the protein is related to. These findings hint at a complete deregulation of uPA and PAI-1-related signaling in metastases, which might be the reason why uPA and PAI-1 reached clinical relevance only for lymph node-negative breast cancer tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号