共查询到20条相似文献,搜索用时 0 毫秒
1.
Streptococcus salivarius is a Gram-positive bacterial commensal and pioneer colonizer of the human oral cavity. Many strains produce ribosomally synthesized proteinaceous antibiotics (bacteriocins), and some strains have been developed for use as oral probiotics. Here, we present the draft genome sequence of the bacteriocin-producing oral probiotic S. salivarius strain M18. 相似文献
2.
Unlike Streptococcus salivarius subspecies thermophilus, Streptococcus salivarius subspecies salivarius fails to grow symbiotically in milk in the presence of Lacto-bacillus bulgaricus , does not produce large quantities of the flavour volatiles, acetal-dehyde or diacetyl and is unable to stimulate growth of Lact. bulgaricus by producing formate. Although Strep, salivarius subspecies salivarius and thermophilus have similar DNA base composition and belong in the same DNA homology group, the former is unsuitable for milk fermentations such as yoghurt because fermentation of milk using this organism results in products with poor flavour, aroma and texture. 相似文献
3.
The hydrophobicity and adhesion to saliva-coated hydroxyapatite of Streptococcus salivarius HB and the mutants HB7, HBV5 and HBV51 were measured. The mutants HB7 and HBV51 showed a significant reduction in adhesion to salivacoated hydroxyapatite and hydrophobicity compared with the mutant HBV5 and the parent strain. This supports the view that hydrophobic interactions are important for bacterial attachment in the oral cavity and is in contrast to previous studies on the hydrophobicity of these strains. 相似文献
4.
A total of eighteen strains of Streptococcus salivarius, which formed rough gelatinous, rough mucoid or smooth mucoid colonies on sucrose agar media, were isolated from the saliva and tongue dorsum of adults. All of the isolates produced glucans as well as fructans from sucrose. The bulk of the glucans was synthesized by the extracellular enzyme fraction and was water insoluble, whereas most of the fructans were synthesized by the cell-associated enzyme fraction and were water soluble. All strains formed microbial deposits on wire and glass surfaces when cultured in sucrose broth, but their sucrose-dependent adhesion was apparently looser than that produced by a cariogenic S. sobrinus strain. The rough gelatinous colony forming strains possessed a greater ability to synthesize water-insoluble glucans and produced heavier deposits with higher cohesion. Preliminary studies showed that the S. salivarius of such characteristic forms of colony were detected primarily in the saliva and tongue dorsum: the smooth mucoid colony formers appeared to predominate in the tongue coat and the rough mucoid and rough gelatinous colony formers were prominent in saliva. Isolation of these S. salivarius from dental plaques was low. 相似文献
5.
目的 本研究从中国健康儿童口腔分离得到2株唾液链球菌SB3和ICDC2,研究其对口腔微生态环境有益作用的机制,为预防和治疗口腔疾病提供理论依据.方法 将唾液链球菌K12作为标准益生菌株,具核梭杆菌作为阳性对照,通过共聚集试验、挥发性硫化物抑制试验及FaDu细胞感染试验,评价唾液链球菌SB3和ICDC2作为益生菌的潜能.... 相似文献
6.
The phosphoenolpyruvate:sugar phosphotransferase system (PTS) is made of several proteins. Two of them are designated general proteins because they are required for the transport and phosphorylation of all sugars of the PTS. These two proteins are found in the soluble fraction of cellular extracts and are termed HPr and enzyme I (EI). We reported in this work the purification and the characterization of these two proteins from Streptococcus salivarius ATCC 25975. HPr was purified by DEAE-cellulose chromatography, molecular sieving on Ultrogel AcA44, and carboxymethylcellulose chromatography. Sodium dodecyl sulfate electrophoresis in the presence of urea revealed a single band with a molecular weight of 6700. The protein contained no tryptophan and had a pI of 4.8. The purification scheme of EI was as follows: DEAE-cellulose chromatography, hydroxylapatite chromatography, DEAE-Sephadex A-50 chromatography, preparative electrophoresis, and molecular sieving on Ultrogel AcA34. The five-step purification for EI produced a 199-fold purified preparation with a specific activity of 530 mumol of HPr phosphorylated per minute per milligram of protein at 37 degrees C. The fraction obtained after filtration on Ultrogel AcA34 gave one band (68 000) on sodium dodecyl sulfate - polyacrylamide gel electrophoresis. The molecular weight of the native enzyme determined by gel filtration at 4 degrees C was 135 000, suggesting that it was a dimer. Enzyme I had a pI of 4.2, a pH optimum of 6.7, a Km for HPr of about 27 microM, a Km for phosphoenolpyruvate of 0.48 mM, and kinetics that were consistent with a Ping-Pong mechanism. Evidence had been obtained which indicated that S. salivarius enzyme I was antigenically very similar to enzyme I from various strains of Streptococcus mutans, but not to the enzyme from Bacillus subtilis, Staphylococcus aureus, Streptococcus faecalis, and Escherichia coli. 相似文献
7.
E. TSAKALIDOU AND G. KALANTZOPOULOS. 1992. An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89 000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35°C with K m= 1.80 mmol/l; above 55°C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N -terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity. 相似文献
8.
An intracellular aminopeptidase from Streptococcus salivarius subsp. thermophilus strain ACA-DC 114, isolated from traditional Greek yoghurt, was purified by chromatography on DEAE-cellulose and Sephadex G-100. The enzyme had a molecular weight of 89,000. It was active over a pH range 4.5-9.5 and had optimum activity on L-lysyl-4-nitroanilide at pH 6.5 and 35 degrees C with Km = 1.80 mmol/l; above 55 degrees C the enzyme activity declined rapidly. The aminopeptidase was capable of degrading substrates by hydrolysis of the N-terminal amino acid; it had very low endopeptidase and no carboxypeptidase activity. The enzyme was strongly inactivated by EDTA. Serine and sulphydryl group reagents had no effect on enzyme activity. 相似文献
9.
Changes in bacterial composition of nasal microbiota may alter the host’s susceptibility to several infectious and allergic diseases such as chronic rhinosinusitis and allergic rhinitis. The aim of this study was to evaluate the effects of 1-week administration of a probiotic product, composed by a combination of Streptococcus salivarius 24SMBc and Streptococcus oralis 89a, on the nostril microbiota. Differences in the nasal microbiota composition were investigated by using a next-generation sequencing approach. A strong and significant decrease in Staphylococcus aureus abundance was detected immediately after the bacterial administration. Moreover, comparing the microbial networks of nostril microbiota before and 1 month after the end of treatment, we detected an increase in the total number of both bacterial nodes and microbial correlations, with particular regard to the beneficial ones. Furthermore, a less abundance of microbial genera commonly associated to potential harmful bacteria has been observed. These results suggest a potential ability of S. salivarius 24SMBc and S. oralis 89a to regulate and reorganize the nasal microbiota composition, possibly favoring those microorganisms that may be able to limit the overgrowth of potential pathogens. 相似文献
10.
In Streptococcus salivarius, the phosphoenolpyruvate (PEP):mannose-glucose phosphotransferase system, which concomitantly transports and phosphorylates mannose, glucose, fructose, and 2-deoxyglucose, is composed of the general energy-coupling proteins EI and HPr, the specific membrane-bound IIIMan, and two forms of a protein called IIIMan, with molecular weights of 38,900 (IIIManH) and 35,200 (IIIManL), that are found in the cytoplasm as well as associated with the membrane. Several lines of evidence suggest that IIIManH and/or IIIManL are involved in the control of sugar metabolism. To determine whether other bacteria possess these proteins, we tested for their presence in 28 oral streptococcus strains, 3 nonoral streptococcus strains, 2 lactococcus strains, 2 enterococcus strains, 2 bacillus strains, 1 lactobacillus strain, Staphylococcus aureus, and Escherichia coli. Three approaches were used to determine whether the IIIMan proteins were present in these bacteria: (i) Western blot (immunoblot) analysis of cytoplasmic and membrane proteins, using anti-IIIManH and anti-IIIManH rabbit polyclonal antibodies; (ii) analysis of PEP-dependent phosphoproteins by polyacrylamide gel electrophoresis; and (iii) inhibition by anti-IIIMan antibodies of the PEP-dependent phosphorylation of 2-deoxyglucose (a mannose analog) by crude cellular extracts. Only the species S. salivarius and Streptococcus vestibularis possessed the two forms of IIIMan. Fifteen other streptococcal species possessed one protein with a molecular weight between 35,200 and 38,900 that cross-reacted with both antibodies. In the case of 9 species, a protein possessing the same electrophoretic mobility was phosphorylated at the expense of PEP. No such phosphoprotein, however, could be detected in the other six species. A III(Man)-like protein with a molecular weight of 35,500 was also detected in Lactobacillus casei by Western blot experiments as well as by PEP-dependent phosphoprotein analysis, and a protein with a molecular weight of 38,900 that cross-reacted with anti-III(Man) antibodies was detected in Lactococcus lactis. In several cases, the involvement of these putative III(Man) proteins in the PEP-dependent phosphorylation of 2-deoxyglucose was substantiated by the inhibition of phosphorylation activity of anti-III(Man) antibodies. No proteins cross-reacting with anti-III(Man) antibodies were detected in enterococci, bacilli, and E. coli. In S. aureus, a membrane protein with a molecular weight of 50,000 reacted strongly with the antibodies. This protein, however, was not phosphorylated at the expense of PEP. 相似文献
11.
The commercial probiotic Streptococcus salivarius strain K12 is the prototype of those S. salivarius strains that are the most strongly inhibitory in a standardized test of streptococcal bacteriocin production and has been shown to produce the 2,368-Da salivaricin A2 (SalA2) and the 2,740-Da salivaricin B (SboB) lantibiotics. The previously uncharacterized SboB belongs to the type AII class of lantibiotic bacteriocins and is encoded by an eight-gene cluster. The genetic loci encoding SalA2 and SboB in strain K12 have been fully characterized and are localized to nearly adjacent sites on pSsal-K12, a 190-kb megaplasmid. Of 61 strongly inhibitory strains of S. salivarius, 19 (31%) were positive for the sboB structural gene. All but one (strain NR) of these 19 strains were also positive for salA2, and in each of these cases of double positivity, the two loci were separated by fewer than 10 kb. This is the first report of a single streptococcus strain producing two distinct lantibiotics. 相似文献
12.
The surface properties of nine Streptococcus mitis and four Peptostreptococcus micros strains from the oral cavity were examined and compared with a large group of oral streptococci. Zeta potential and contact angle measurements were employed to determine physico-chemical cell surface properties. In addition, elemental surface concentration ratios were obtained via X-ray photoelectron spectroscopy, and surface structures were examined with transmission electron microscopy. The S. mitis and P. micros strains were found to have higher isoelectric points, higher hydrophobicities and higher N/C surface concentration ratios than some other oral streptococci. The combined data suggest that both species possess large amounts of surface protein. All the S. mitis strains displayed abundant surface fibrils in negative staining, but the P. micros strains were devoid of surface appendages indicating that surface protein is present in different forms in the two species. The surfaces of S. mitis and P. micros type strains differed significantly from the other strains examined. 相似文献
14.
Oral candidiasis is often accompanied by severe inflammation, resulting in a decline in the quality of life of immunosuppressed individuals and elderly people. To develop a new oral therapeutic option for candidiasis, a nonpathogenic commensal oral probiotic microorganism, Streptococcus salivarius K12, was evaluated for its ability to modulate Candida albicans growth in vitro, and its therapeutic activity in an experimental oral candidiasis model was tested. In vitro inhibition of mycelial growth of C. albicans was determined by plate assay and fluorescence microscopy. Addition of S. salivarius K12 to modified RPMI 1640 culture medium inhibited the adherence of C. albicans to the plastic petri dish in a dose-dependent manner. Preculture of S. salivarius K12 potentiated its inhibitory activity for adherence of C. albicans. Interestingly, S. salivarius K12 was not directly fungicidal but appeared to inhibit Candida adhesion to the substratum by preferentially binding to hyphae rather than yeast. To determine the potentially anti-infective attributes of S. salivarius K12 in oral candidiasis, the probiotic was administered to mice with orally induced candidiasis. Oral treatment with S. salivarius K12 significantly protected the mice from severe candidiasis. These findings suggest that S. salivarius K12 may inhibit the process of invasion of C. albicans into mucous surfaces or its adhesion to denture acrylic resins by mechanisms not associated with the antimicrobial activity of the bacteriocin. S. salivarius K12 may be useful as a probiotic as a protective tool for oral care, especially with regard to candidiasis. 相似文献
15.
There is an increasing interest in the intestinal and immunological effects of probiotics. The aim of the present study is to evaluate the tolerance and beneficial effects in healthy adults of the strain, Lactobacillus salivarius CECT5713 isolated from breast milk. A phase II, randomized, double-blinded, placebo-controlled human clinical trial was carried out in 40 healthy adults. The Probiotic group received a daily dose of 2 × 10 8 CFU of L. salivarius CECT5713 in capsules during 4 weeks while volunteers of the control received only a placebo. Gastrointestinal and immunological parameters were analyzed. Results showed that L. salivarius CECT5713 was well tolerated and no adverse effects were detected. Consumption of the probiotic strain increased fecal lactobacilli counts (7.9 ± 0.1 vs. 7.05 ± 0.2 CFU/g feces, P = 0.001). Also, an improvement in the frequency of defecation ( P = 0.04) was observed. Probiotic treatment induced significantly the percentage of NK cells and monocytes, as well as the plasmatic levels of immunoglobulins M, A and G, and the regulatory cytokine IL-10 (72.3 ± 11.7 in probiotic group vs. 27.3 ± 6.4 pg/mL in control group, P < 0.01). Thus, it can be concluded that daily administration of L. salivarius CECT5713 to healthy adults is safe and improve gut microbiota and different parameters related to immune response. 相似文献
19.
Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. Despite their critical roles, membrane lipids have not been fully elucidated for many pathogens. Here, we report the discovery of a novel cationic glycolipid, lysyl-glucosyl-diacylglycerol (Lys-Glc-DAG), which is synthesized in high abundance by the bacterium Streptococcus agalactiae (Group B Streptococcus, GBS). To our knowledge, Lys-Glc-DAG is more positively charged than any other known lipids. Lys-Glc-DAG carries 2 positive net charges per molecule, distinct from the widely described lysylated phospholipid lysyl-phosphatidylglycerol (Lys-PG) that carries one positive net charge due to the presence of a negatively charged phosphate moiety. We use normal phase liquid chromatography (NPLC) coupled with electrospray ionization (ESI) high-resolution tandem mass spectrometry (HRMS/MS) and genetic approaches to determine that Lys-Glc-DAG is synthesized by the enzyme MprF in GBS, which covalently modifies the neutral glycolipid Glc-DAG with the cationic amino acid lysine. GBS is a leading cause of neonatal meningitis, which requires traversal of the endothelial blood–brain barrier (BBB). We demonstrate that GBS strains lacking mprF exhibit a significant decrease in the ability to invade BBB endothelial cells. Further, mice challenged with a GBSΔ mprF mutant developed bacteremia comparably to wild-type (WT) infected mice yet had less recovered bacteria from brain tissue and a lower incidence of meningitis. Thus, our data suggest that Lys-Glc-DAG may contribute to bacterial uptake into host cells and disease progression. Importantly, our discovery provides a platform for further study of cationic lipids at the host–pathogen interface.Bacterial membrane lipids are critical for membrane bilayer formation, cell division, protein localization, stress responses, and pathogenesis. This study shows that the enzyme MprF in Streptococcus agalactiae synthesizes a novel cationic lipid, Lysyl-Glucosyl-Diacylglycerol, which aids meningitis progression in vivo. 相似文献
20.
为了筛选到具有抗炎特性的有益菌,研究者通常将待测细菌的发酵液上清和热致死菌体与TNF-α刺激下的人类结肠腺癌细胞HT29共孵育,并测量细菌是否能够减少HT29细胞分泌的炎症因子。该测试的前提之一是待测细菌的发酵液上清或菌体不杀死或杀死<10%的HT29细胞。在前期的工作中,我们从人母乳中分离得到Streptococcus salivarius F286和S.parasanguinis F278两株菌。在研究这两株菌的抗炎能力之前,我们利用MTT法摸索不同浓度的S.salivarius F286和S.parasanguinis F278的发酵液上清和热致死菌体对HT29细胞的细胞毒性。实验表明,两株菌的发酵液上清的原液和稀释液对HT29细胞均没有细胞毒性;浓度5×10^5~7.5×10^6cfu/mL的F286热致死菌体、浓度5×10^5~2.5×10^6cfu/mL的F278热致死菌体对HT29细胞的细胞毒性低于10%,而浓度1×10^8cfu/mL的热致死F286和F278菌体分别杀死(23±5.3)%和(22±5.3)%的HT29细胞。因此,S.salivarius F286和S.parasanguinis F278的发酵液上清原液、以及浓度5×10^5~7.5×10^6cfu/mL的F286热致死菌体和5×10^5-2.5×10^6cfu/mL的F278热致死菌体可在HT29细胞模型中进行抗炎能力测试。本研究的方法可用于确定其他细菌在HT29细胞模型中进行抗炎能力测试的合理浓度范围。 相似文献
|