共查询到20条相似文献,搜索用时 15 毫秒
1.
Summary Xylose, xylobiose and arabinose were identified as natural and direct inducers of xylanase from a color variant strain ofAureobasidium
pullulans. Arabinose, in contrast to xylose, xylobiose and xylan, induced only the major isozyme of xylanase. Xylanase induction was subject to glucose repression.The mention of firm names or trade products does not imply that they are endorsed or recommended by the U. S. Department of Agriculture over other firms or similar products not mentioned. 相似文献
2.
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp. 相似文献
3.
A new xylanase from a Trichoderma harzianum strain 总被引:1,自引:0,他引:1
F Q de Paula Silveira M V de Sousa C A O Ricart A M F Milagres C L de Medeiros E X F Filho 《Journal of industrial microbiology & biotechnology》1999,23(1):682-685
A new xylanase (XYL2) was purified from solid-state cultures of Trichoderma harzianum strain C by ultrafiltration and gel filtration. SDS-PAGE of the xylanase showed an apparent homogeneity and molecular weight
of 18 kDa. It had the highest activity at pH 5.0 and 45°C and was stable at 50°C and pH 5.0 up to 4 h xylanase. XYL2 had a
low K
m with insoluble oat spelt xylan as substrate. Compared to the amino acid composition of xylanases from Trichoderma spp, xylanase XYL2 presented a high content of glutamate/glutamine, phenylalanine and cysteine, and a low content of serine.
Xylanase XYL2 improved the delignification and selectivity of unbleached hardwood kraft pulp.
Received 02 February 1999/ Accepted in revised form 17 April 1999 相似文献
4.
A new plasmid, pA387, has been isolated from "Amycolatopsis sp." (DSM 43387). This plasmid could be isolated from liquid culture as well as mycelium from agar plates by a modified procedure. Plasmid pA387 is about 29.6 kb and can be cured at low frequency by protoplasting and ethidium bromide and heat treatment. Hybridization experiments showed that this plasmid is present in free form and does not integrate into the chromosome. A hybrid plasmid was constructed by cloning a 5.1-kb fragment of pA387 into the Escherichia coli vector pDM10. This hybrid plasmid, termed pRL1, could be transformed into Amycolatopsis mediterranei and A. orientalis by electroporation. A transformation frequency of 2.2 x 10(3) transformants per micrograms of DNA at 12.5 kV/cm and a pulse duration of 10.8 ms was obtained in A. mediterranei, whereas 1.1 x 10(5) transformants per microgram of DNA were obtained at a field strength of 7.5 kV/cm and a pulse duration of 7.6 ms in A. orientalis. Plasmid pRL1 is the first hybrid plasmid which could be used successfully for the transformation of A. mediterranei. The plasmid has a rather high copy number, is genetically stable, and can be easily reisolated from A. mediterranei. Plasmid pRL1 will be useful for further construction of a shuttle vector for E. coli and A. mediterranei and becomes the basis for the development of gene cloning techniques in Amycolatopsis spp. 相似文献
5.
L Specthrie E Bullitt K Horiuchi P Model M Russel L Makowski 《Journal of molecular biology》1992,228(3):720-724
The intergenic region in the genome of the Ff class of filamentous phage (comprising strains fl, fd and M13) genome constitutes 8% of the viral genome, and has essential functions in DNA replication and phage morphogenesis. The functional domains of this region may be inserted into separate sites of a plasmid to function independently. Here, we demonstrate the construction of a plasmid containing, sequentially, the origin of (+)-strand synthesis, the packaging signal and a terminator of (+)-strand synthesis. When host cells harboring this plasmid (pLS7) are infected with helper phage they produce a microphage particle containing all the structural elements of the mature, native phage. The microphage is 65 A in diameter and about 500 A long. It contains a 221-base single-stranded circle of DNA coated by about 95 copies of the major coat protein (gene 8 protein). 相似文献
6.
Decreased lateral aggregation of a variant recombinant fibrinogen provides insight into the polymerization mechanism 总被引:2,自引:0,他引:2
We analyzed the polymerization of BbetaA68T fibrinogen, the recombinant counterpart of fibrinogen Naples, a variant known to have decreased thrombin binding. When polymerized with equal thrombin concentrations, BbetaA68T fibrinogen had a longer lag time and lower rate of lateral aggregation, V(max), than normal recombinant fibrinogen, but a similar final turbidity. At thrombin concentrations that equalized the rates of fibrinopeptide A release, BbetaA68T fibrinogen polymerized with a lag time and V(max) similar to normal, but reached a significantly lower final turbidity. Similar results were produced when BbetaA68T was polymerized with Ancrod, which cleaves fibrinopeptide A at the same rate from either fibrinogen, and when BbetaA68T desA monomers were polymerized. The polymerization of desAB fibrin monomers, which circumvents fibrinopeptide release, was the same for both fibrinogens. We confirmed that turbidity was indicative of fiber thickness by scanning electron microscopy of fibrin clots. Here, we present the first experimental evidence of fibrin polymerization with a normal period of protofibril formation and rate of lateral aggregation, but with a significantly decreased extent of lateral aggregation. We conclude that the decreased lateral aggregation seen in BbetaA68T fibrinogen is due to an altered step in the enzymatic phase of its polymerization process. We propose that during normal polymerization a subtle conformational change in the E domain occurs, between the release of FpA and FpB, and that this change modulates the mechanism of lateral aggregation. Without this change, the lateral aggregation of BbetaA68T fibrinogen is impaired such that variant clots have thinner fibers than normal clots. 相似文献
7.
A synthetic xylanase as a novel reporter in plants 总被引:2,自引:0,他引:2
Transient gene expression assays are often used to screen promoters before stable transformation. Current transient quantification methods have several problems, including a lack of reporter gene stability and expense. Here we report a synthetic, codon-optimised xylanase gene (sXynA) as a reporter gene for quantitative transient analyses in plants. Azurine-crosslinked xylan (AZCL-xylan) was used as a substrate for assaying xylanase activity. The enzymatic nature of the protein allows for sensitive assays at the low levels of transgene protein found in transiently transformed tissue extracts. The xylanase (XYN) protein is stable, activity slopes are linear over long time periods and assays are cost-effective. Coupled with the GUSPlus reporter gene, the XYN reporter allows sensitive and accurate quantification of gene control sequences in transient expression systems.Abbreviations Act1
Rice actin promoter
- AZCL-xylan
Azurine cross-linked xylan
- AU
absorbance units
- Blt4.9
Barley lipid transfer protein promoter
- GEB
GUS extraction buffer
- GFP
Green fluorescent protein
- GluB-1
Rice glutelin B-1 promoter
- GUS
-Glucuronidase
- LUC
Luciferase
- sXynA
Synthetic xylanase A gene
- Ubi-1
Maize ubiquitin promoter
- XAB
Xylanase assay buffer
- XYN
Xylanase
Communicated by P. Lakshmanan 相似文献
8.
Histone variant macroH2A contains
two distinct macrochromatin domains capable of directing macroH2A
to the inactive X chromosome 总被引:3,自引:0,他引:3
下载免费PDF全文

Brian P. Chadwick Cory
M. Valley Huntington
F. Willard 《Nucleic acids research》2001,29(13):2699-2705
Chromatin on the inactive X chromosome (Xi) of female mammals is enriched for the histone variant macroH2A that can be detected at interphase as a distinct nuclear structure referred to as a macro chromatin body (MCB). Green fluorescent protein-tagged and Myc epitope-tagged macroH2A readily form an MCB in the nuclei of transfected female, but not male, cells. Using targeted disruptions, we have identified two macrochromatin domains within macroH2A that are independently capable of MCB formation and association with the Xi. Complete removal of the non-histone C-terminal tail does not reduce the efficiency of association of the variant histone domain of macroH2A with the Xi, indicating that the histone portion alone can target the Xi. The non-histone domain by itself is incapable of MCB formation. However, when directed to the nucleosome by fusion to core histone H2A or H2B, the non-histone tail forms an MCB that appears identical to that of the endogenous protein. Mutagenesis of the non-histone portion of macroH2A localized the region required for MCB formation and targeting to the Xi to an ~190 amino acid region. 相似文献
9.
Adachi K Ding M Surrey S Rotter M Aprelev A Zakharov M Weng W Ferrone FA 《Journal of molecular biology》2006,362(3):528-538
Polymerization of a 1:1 mixture of hemoglobin S (Hb S) and the artificial mutant HbAbeta73Leu produces a dramatic morphological change in the polymer domains in 1.0 M phosphate buffer that are a characteristic feature of polymer formation. Instead of feathery domains with quasi 2-fold symmetry that characterize polymerization of Hb S and all previously known mixtures such as Hb A/S and Hb F/S mixtures, these domains are compact structures of quasi-spherical symmetry. Solubility of Hb S/Abeta73Leu mixtures was similar to that of Hb S/F mixtures. Kinetics of polymerization indicated that homogeneous nucleation rates of Hb S/Abeta73Leu mixtures were the same as those of Hb S/F mixtures, while exponential polymer growth (B) of Hb S/Abeta73Leu mixtures were about three times slower than those of Hb S/F mixtures. Differential interference contrast (DIC) image analysis also showed that fibers in the mixture appear to elongate between three and five times more slowly than in equivalent Hb S/F mixtures by direct measurements of exponential growth of mass of polymer in a domain. We propose that these results of Hb S/Abeta73Leu mixtures arise from a non-productive binding of the hybrid species of this mixture to the end of the growing polymer. This "cap" prohibits growth of polymers, but by nature is temporary, so that the net effect is a lowered growth rate of polymers. Such a cap is consistent with known features of the structure of the Hb S polymer. Domains would be more spherulitic because slower growth provides more opportunity for fiber bending to spread domains from their initial 2-fold symmetry. Moreover, since monomer depletion proceeds more slowly in this mixture, more homogeneous nucleation events occur, and the resulting gel has a far more granular character than normally seen in mixtures of non-polymerizing hemoglobins with Hb S. This mixture is likely to be less stiff than polymerized mixtures of other hybrids such as Hb S with HbF, potentially providing a novel approach to therapy. 相似文献
10.
11.
Two cellulase-free xylanases were secreted by a thermophile, Bacillus licheniformis A99. Of the two, the predominant one was purified to homogeneity. The enzyme was optimally active at 60 °C, pH 6–7.5, and had a molecular weight of about 45 KDa and isoelectric point of 7.0 ± 0.2. The Km (for birchwood xylan) and Vmax were 3.33 mg/ml and 1.111 mmols mg–1 protein min–1 respectively. The half-life of the enzyme was 5 h at 60 °C. All cations except Hg2+ and Ag+ as well as EDTA were well tolerated and did not adversely affect xylanase activity. However, SDS inhibited the enzyme activity. The release of reducing sugars from unbleached commercial pulp sample on treatment with the enzyme indicated its potential in prebleaching of paper pulp. The enzyme caused saccharification of lignocellulosics such as wheat bran, wheat straw and sawdust. This is the first report on purification and characterization of cellulase-free xylanase from a moderate thermophile Bacillus licheniformis. 相似文献
12.
Construction and characterization of a bifunctional fusion enzyme of Bacillus-sourced beta-glucanase and xylanase expressed in Escherichia coli 总被引:1,自引:0,他引:1
A chimeric gene, Glu-Xyl, encoding Bacillus amyloliquefaciens glucanase (Glu, 24.4 kDa) and Bacillus subtilis xylanase (Xyl, 21.2 kDa), was constructed via end-to-end fusion and expressed successfully in Escherichia coli. The purified fusion protein (46.1 kDa) exhibited both glucanase and xylanase activities. Compared with parental enzymes, the Glu moiety was characterized by kinetic parameters of decreased K(m) (0.66-fold) and increased K(cat) (2.75-fold), whereas the Xyl moiety had an increased K(m) (1.37-fold) and decreased K(cat) (0.79-fold). These indicate a 3.15-fold net increase and a 31% decrease in catalytic efficiency (K(cat)/K(m)) of the Glu and Xyl moieties. Activities and stabilities of both moieties at 40-90 degrees C or pH 3.0-10.0 were compared with those of the parental enzymes. Despite some variations, common optima were 40 degrees C and pH 9.0 for the Glu moiety and parent, and 50-60 degrees C and pH 9.0 for the Xyl counterparts. Thus, the fusion enzyme Glu-Xyl was bifunctional, with greatly enhanced glucanase activity associated with a decrease in xylanase activity. 相似文献
13.
Dieter Kluepfel Nicole Daigneault Rolf Morosoli François Shareck 《Applied microbiology and biotechnology》1992,36(5):626-631
Summary A third extracellular xylanase produced by Streptomyces lividans 66 was isolated from a clone obtained by shotgun cloning through functional complementation of a xylanase- and cellulase-negative mutant using the multicopy vector pIJ702. This enzyme, designated xylanase C, has a relative molecular mass of 22000 and acts on xylan similarly to xylanase B as an endo-type xylanase producing short-chain oligoxylosides. Its specific activity determined at 1100 IU·mg–1 of protein corresponds on a molecular basis to that of xylanase B and is about three times that of xylanase A. The enzyme shows optimal activity at pH 6.0 and 57°C, values that correspond closely to those observed previously for xylanase A and B. Xylanase C appears not to be glycosylated and has a pI > 10.25. Its K
m and V
max on birchwood xylan are 4.1 mg·ml–1 and 3.0 mol·min–1·mg–1 of enzyme respectively. Whereas specific antibodies raised against xylanase A show no cross-reaction with either xylanase B or with xylanase C, the anti-(xylanase C) antibodies react slightly with xylanase B but not with xylanase A. A comparison of hydrolysis products obtained by reacting individually the three enzymes with birchwood xylan showed characteristic endo-activity patterns for xylanases B and C, whereas xylanase A hydrolysed the substrate preferentially into xylobiose and xylotriose. Sequential xylanase action on the same substrates showed synergistic hydrolysis only when endo-xylanase activity was followed by that of xylanase A. 相似文献
14.
15.
16.
A family 11 xylanase from Penicillium funiculosum is strongly inhibited by three wheat xylanase inhibitors 总被引:1,自引:0,他引:1
Furniss CS Belshaw NJ Alcocer MJ Williamson G Elliott GO Gebruers K Haigh NP Fish NM Kroon PA 《Biochimica et biophysica acta》2002,1598(1-2):24-29
Steady-state kinetic approaches were used to investigate the binding of a novel Penicillium funiculosum xylanase, XYNC, with three known xylanase inhibitor proteins from wheat (Triticum aestivum). The xylanase gene (xynC) was cloned from a P. funiculosum genomic library and the deduced amino acid sequence of XYNC exhibited high sequence similarity with fungal family 11 xylanases. xynC was overexpressed in P. funiculosum and the product (XYNC: M(r)=23.6 kDa; pI=3.7) purified and shown to efficiently degrade birchwood xylan [K(m)=0.47% w/v, Vmax=2540 micromol xylose min(-1) (mg protein)(-1) at pH 5.5 and 30 degrees C] and soluble wheat arabinoxylans [K(m)=1.45% w/v, Vmax=7190 micromol xylose min(-1) mg protein)(-1) at pH 5.5 and 30 degrees C]. The xylanase activity of XYNC was inhibited strongly by three xylanase inhibitor proteins from wheat; XIP-I, TAXI I and TAXI II. The inhibition for each was competitive, with very tight binding (K(i)=3.4, 16 and 17 nM, respectively) equivalent to free energy changes (deltaG degrees ) of -49, -45 and -45 kJ mol(-1). This is the first report describing a xylanase that is inhibited by all three wheat xylanase inhibitor proteins described to date. 相似文献
17.
An endo-1,4-beta-xylanase of Schizophyllum commune was purified to homogeneity through a modified procedure employing DEAE-Sepharose CL-6B and gel-filtration chromatography on Sephadex G-50. The role of carboxy groups in the catalytic mechanism was delineated through chemical modification studies. The water-soluble carbodi-imide 1-(4-azonia-4,4-dimethylpentyl)-3-ethylcarbodi-imide iodide (EAC) inactivated the xylanase rapidly and completely in a pseudo-first-order process. Other carbodi-imides and Woodward's Reagent K were less effective in decreasing enzymic activity. Significant protection of the enzyme against EAC inactivation was provided by a mixture of neutral xylo-oligomers. The pH-dependence of the EAC inactivation revealed the presence of a critical ionizable group with a pKa value of 6.6 in the active site of the xylanase. Treatment of the enzyme with diethyl pyrocarbonate resulted in modification of all three histidine residues in the enzyme with 100% retention of original enzymic activity. Titration of the enzyme with 5,5-dithiobis-(2-nitrobenzoic acid) and treatment with iodoacetimide and p-chloromercuribenzoate indicated the absence of free/reactive thiol groups. Reaction of the xylanase with tetranitromethane did not result in a significant activity loss as a result of modification of tyrosine residues. 相似文献
18.
19.
Xylanase inhibitor TAXI-I gene was cloned from wheat (Triticum aestivum L.) and then TAXI-I encoding sequence was expressed in Escherichia coli. The recombinant TAXI-I protein inhibited glycoside hydrolase (GH) family 11 xylanases in Aspergillus niger (Anx; a fungal xylanase), and Thermomonospora fusca (Tfx; a bacterial xylanase), and also inhibited hybrid xylanases Atx (a hybrid xylanase whose parents are T. fusca and A. niger) and Btx (a hybrid xylanase whose parents are T. fusca and Bacillus subtilis). Among the tested xylanases, A. niger xylanase was the most inhibited one by wheat xylanase inhibitor TAXI-I, while T. fusca xylanase was the least inhibited one. The profile of TAXI-I gene expression in wheat in response to phytohormones was also investigated. TAXI-I gene expression was drastically induced
by methyl jasmonate (MeJa), and hardly detected in gibberellic acid (GA) treatment. Therefore, TAXI-I might be involved in
plant defense against fungal and bacteria xylanases. 相似文献
20.
Thermomyces lanuginosus strains RT9 and MH4 were studied to find favourable cultivation conditions and to compare their abilities to produce xylanolytic enzymes in three media on different substrates at 50° C or 55° C under shake-culture conditions. Both organisms produced xylanases free of cellulase at widely different levels in all cultivation conditions employed. Wheat bran, corn cobs and xylan induced xylanases in increasing order of producing with both cultures. T. lanuginosus RT9 demonstrated the highest xylanase production in all cultivation conditions but with lower soluble protein, reducing sugar, -xylosidase and debranching enzymes levels (arabinosidase, acetylxylanesterase, mannanase) when compared to T. lanuginosus MH4. The study reveals that xylanase production was highly influenced by nitrogen sources and their concentrations and by the initial pH in the cultures. The two strains may therefore be unique, when technical application is considered in terms of the quantity and quality of the xylanolytic enzymes produced. 相似文献