首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The hypervariable D3 domain of Salmonella flagellin, composed of residues 190-283, is situated at the outer surface of flagellar filaments. A flagellin mutant deprived of the complete D3 domain (ΔD3_FliC) exhibited a significantly decreased thermal stability (Tm 41.9 °C) as compared to intact flagellin (Tm 47.3 °C). However, the stability of filaments formed from ΔD3_FliC subunits was virtually identical with that of native flagellar filaments. While D3 comprises the most stable part of monomeric flagellin playing an important role in the stabilization of the other two (D1 and D2) domains, the situation is reversed in the polymeric state. Upon filament formation, ordering of the disordered terminal regions of flagellin in the core part of the filament results in the stabilization of the radially arranged D1 and D2 domains, and there is a substantial increase of stability even in the distant outermost D3 domain, which is connected to D2 via a pair of short antiparallel β-strands. Our experiments revealed that crosslinking the ends of the isolated D3 domain through a disulfide bridge gives rise to a stabilization effect reminiscent of that observed upon polymerization. It appears that the short interdomain linker between domains D2 and D3 serves as a stabilization center that facilitates propagation of the conformational signal from the filament core to the outer part of filament. Because D3 is a largely independent part of flagellin, its replacement by heterologous proteins or domains might offer a promising approach for creation of various fusion proteins possessing polymerization ability.  相似文献   

2.
Common prokaryotic motility modes are swimming by means of rotating internal or external flagellar filaments or gliding by means of retracting pili. The archaeabacterial flagellar filament differs significantly from the eubacterial flagellum: (1) Its diameter is 10-14 nm, compared to 18-24 nm for eubacterial flagellar filaments. (2) It has 3.3 subunits/turn of a 1.9 nm pitch left-handed helix compared to 5.5 subunits/turn of a 2.6 nm pitch right-handed helix for plain eubacterial flagellar filaments. (3) The archaeabacterial filament is glycosylated, which is uncommon in eubacterial flagella and is believed to be one of the key elements for stabilizing proteins under extreme conditions. (4) The amino acid composition of archaeabacterial flagellin, although highly conserved within the group, seems unrelated to the highly conserved eubacterial flagellins. On the other hand, the archaeabacterial flagellar filament shares some fundamental properties with type IV pili: (1) The hydrophobic N termini are largely homologous with the oligomerization domain of pilin. (2) The flagellin monomers follow a different mode of transport and assembly. They are synthesized as pre-flagellin and have a cleavable signal peptide, like pre-pilin and unlike eubacterial flagellin. (3) The archaeabacterial flagellin, like pilin, is glycosylated. (4) The filament lacks a central channel, consistent with polymerization occurring at the cell-proximal end. (5) The diameter of type IV pili, 6-9 nm, is closer to that of the archaeabacterial filament, 10-14 nm. A large body of data on the biochemistry and molecular biology of archaeabacterial flagella has accumulated in recent years. However, their structure and symmetry is only beginning to unfold. Here, we review the structure of the archaeabacterial flagellar filament in reference to the structures of type IV pili and eubacterial flagellar filaments, with which it shares structural and functional similarities, correspondingly.  相似文献   

3.
Although the phenomenology and mechanics of swimming are very similar in eubacteria and archaeabacteria (e.g. reversible rotation, helical polymorphism of the filament and formation of bundles), the dynamic flagellar filaments seem completely unrelated in terms of morphogenesis, structure and amino acid composition. Archeabacterial flagellar filaments share important features with type IV pili, which are components of retractable linear motors involved in twitching motility and cell adhesion. The archeabacterial filament is unique in: (1) having a relatively smooth surface and a small diameter of approximately 100A as compared to approximately 240A of eubacterial filaments and approximately 50A of type IV pili; (2) being glycosylated and sulfated in a pattern similar to the S-layer; (3) being synthesized as pre-flagellin with a signal-peptide cleavable by membrane peptidases upon transport; and (4) having an N terminus highly hydrophobic and homologous with that of the olygomerization domain of pilin.The synthesis of archeabacterial flagellin monomers as pre-flagellin and their post-translational, extracellular glycosylation suggest a different mode of monomer transport and polymerization at the cell-proximal end of the filament, similar to pili rather than to eubacterial flagellar filaments. The polymerization mode and small diameter may indicate the absence of a central channel in the filament.Using low-electron-dose images of cryo-negative-stained filaments, we determined the unique symmetry of the flagellar filament of the extreme halophile Halobacterium salinarum strain R1M1 and calculated a three-dimensional density map to a resolution of 19A. The map is based on layer-lines of order n=0, +10, -7, +3, -4, +6, and -1. The cross-section of the density map has a triskelion shape and is dominated by seven outer densities clustered into three groups, which are connected by lower-density arms to a dense central core surrounded by a lower-density shell. There is no evidence for a central channel. On the basis of the homology with the oligomerization domain of type IV pilin and the density distribution of the filament map, we propose a structure for the central core.  相似文献   

4.
Construction of a minimum-size functional flagellin of Escherichia coli.   总被引:23,自引:10,他引:13       下载免费PDF全文
Various deletions were introduced into the central region of Escherichia coli flagellin (497 residues) without destroying its ability to form flagellar filaments. The smallest flagellin retained only the N-terminal 193 residues and the C-terminal 117 residues, which are suggested to be the domains essential for filament formation.  相似文献   

5.
Role of the flaR gene in flagellar hook formation in Salmonella spp.   总被引:14,自引:11,他引:3       下载免费PDF全文
Flagellar filaments were reconstituted by polymerization with exogenously supplied flagellin monomers at the tips of normal hooks on Salmonella cells which were missing the filaments because of mutations in either the flaL or flaU gene or the flagellin genes H1 and H2. Reconstitution did not occur at the tips of polyhooks of the flaR mutant cells. Thus, the absence of flagellar filaments in the flaR mutant cells was probably caused by the inability of the polyhooks to work as polymerization nuclei for flagellin. A Phf+ mutant which produced polyhooks with flagellar filaments was isolated from a flaR polyhook mutant. Genetic analysis of the Phf+ mutant showed that it carried an intracistronic suppressor mutation of the original flaR mutation. This result indicated that the flaR gene regulates hook length and initiates flagellin formation.  相似文献   

6.
"Cap" on the tip of Salmonella flagella   总被引:5,自引:0,他引:5  
Flagellar filaments isolated intact from a Salmonella short-flagella mutant are unable to serve as nuclei for flagellin polymerization in vitro, whereas the filaments reconstructed in vitro from the mutant flagellin are able to do so. The inability of intact flagella to nucleate flagellin polymerization appears to be common to wild-type bacteria and thus suggests that the tip of intact flagella are generally inactivated or capped in vivo. Careful observations of the tips of intact flagella and reconstructed flagellar filaments of a wild-type species have revealed marked difference between them: the intact flagella usually have blunt ends, whereas reconstructed filaments have concave, "fish-tail" ends. Moreover, a thin structure is often observed attaching to the very end of the intact flagella. We suspect that this "capping" structure is essential to the elongation mechanism of flagellar filaments.  相似文献   

7.
Terminal regions of flagellin from Salmonella typhimurium, residues 1 to 65 and 451 to 494, have no ordered tertiary structure in solution, which makes them very susceptible to proteolytic degradation. Flagellin was subjected to mild controlled proteolytic treatment with highly specific proteases to remove terminal segments from the disordered regions. It is demonstrated here that various fragments can be readily prepared that differ from each other in 1 x 10(3) to 2 x 10(3) Mr segments in their NH2- or COOH-terminal regions. Terminally deleted fragments of flagellin were used to clarify the role of the disordered regions in the self-assembly of flagellin. The polymerization ability of the fragments was tested by inducing filament formation with ammonium sulfate. We found that fragments of flagellin containing large terminal deletions could form straight filaments, although the stability of these filaments required high salt concentrations. Even a fragment lacking the whole mobile COOH-terminal part of flagellin and 36 residues from the NH2-terminal region could form long filaments. The fragments could be also polymerized onto native flagellar seeds, suggesting that the subunit packing of the filaments of fragments is similar to that of the native ones. The fragments could also copolymerize with native flagellin, resulting in various helical forms. Filaments of fragments were found to be straight at both pH 4.0 and pH 12.5, indicating that they might have lost their polymorphic ability. Our results show that the major part of the disordered terminal regions of flagellin is not essential for polymerization, but it does play an important role in stabilization of the filaments and in influencing their polymorphic conformation.  相似文献   

8.
Flagellar motility in Rhodobacter sphaeroides is notably different from that in other bacteria. R. sphaeroides moves in a series of runs and stops produced by the intermittent rotation of the flagellar motor. R. sphaeroides has a single, plain filament whose conformation changes according to flagellar motor activity. Conformations adopted during swimming include coiled, helical, and apparently straight forms. This range of morphological transitions is larger than that in other bacteria, where filaments alternate between left- and right-handed helical forms. The polymorphic ability of isolated R. sphaeroides filaments was tested in vitro by varying pH and ionic strength. The isolated filaments could form open-coiled, straight, normal, or curly conformations. The range of transitions made by the R. sphaeroides filament differs from that reported for Salmonella enterica serovar Typhimurium. The sequence of the R. sphaeroides fliC gene, which encodes the flagellin protein, was determined. The gene appears to be controlled by a sigma(28)-dependent promoter. It encodes a predicted peptide of 493 amino acids. Serovar Typhimurium mutants with altered polymorphic ability usually have amino acid changes at the terminal portions of flagellin or a deletion in the central region. There are no obvious major differences in the central regions to explain the difference in polymorphic ability. In serovar Typhimurium filaments, the termini of flagellin monomers have a coiled-coil conformation. The termini of R. sphaeroides flagellin are predicted to have a lower probability of coiled coils than are those of serovar Typhimurium flagellin. This may be one reason for the differences in polymorphic ability between the two filaments.  相似文献   

9.
Flagella contribute to the virulence of pathogenic bacteria through chemotaxis, adhesion to and invasion of host surfaces. Flagellin is the structural protein that forms the major portion of flagellar filaments. Thus, flagellin consists of a conserved domain that is widespread in bacterial species and is dedicated to filament polymerization. Conversely, mammalian hosts detect the conserved domain on flagellin monomers through Toll-like receptor (TLR) 5, which triggers proinflammatory and adaptive immune responses. This review describes the relationships among flagellin molecular structure, bacterial virulence and host defenses, with special emphasis on mucosal tissues.  相似文献   

10.
We obtained a three-dimensional reconstruction of the flagellar filament of Caulobacter crescentus CB15 from electron micrographs of negatively stained preparations. The C. crescentus filament appears, both in negative stain and in the frozen-hydrated state, significantly smoother and narrower than other filaments. Its helical symmetry, and unit cell size, however, are similar to that of other filaments. Although the molecular weight of the C. crescentus flagellin is about half that of other plain flagellins, there is only one monomer per unit cell as indicated by diffraction studies and by linear mass density measurements with the scanning transmission electron microscope. Alignment of the primary amino acid sequences of Salmonella typhimurium (serotype i) and C. crescentus (29,000 Mr) flagellins shows that whereas there is homology at the amino and carboxyterminal ends of the two sequences, the central segment of the S. typhimurium sequence has no homology to that of C. crescentus. A correlated comparison between the three-dimensional reconstructions of the two filaments and primary amino acid sequences of the two flagellins suggests that: (1) the C. crescentus subunit is missing the outer molecular domain but is, otherwise, similar to that of S. typhimurium; (2) the outer molecular domain in S. typhimurium corresponds, therefore, to a central stretch of the primary amino acid sequence; and (3) the outer molecular domain, missing in C. crescentus, is not obligatory for flagellar motility.  相似文献   

11.
Bacterial flagellar filaments grow at their distal ends, from flagellin that travels through a central channel ~2 nm in diameter. The flagellin is extruded from the cytoplasm by a pump powered by a proton motive force (PMF). We measured filament growth in cells near the mid-exponential-phase with flagellin bearing a specific cysteine-for-serine substitution, allowing filaments to be labeled with sulfhydryl-specific fluorescent dyes. We labeled filaments first with a green maleimide dye and then, following an additional period of growth, with a red maleimide dye. The contour lengths of the green and red segments were measured. The average lengths of red segments (~2.3 μm) were the same regardless of the lengths of the green segments from which they grew (ranging from less than 1 to more than 9 μm in length). Thus, flagellar filaments do not grow at a rate that decreases exponentially with length, as formerly supposed. If flagellar filaments were broken by viscous shear, the broken filaments continued to grow. Identical results were obtained whether flagellin was expressed from fliC on the chromosome under the control of its native promoter or on a plasmid under the control of the arabinose promoter.  相似文献   

12.
Serological Study of Bacterial Flagellar Hooks   总被引:10,自引:10,他引:0       下载免费PDF全文
Bacterial hooks were partially purified from flagella isolated from Salmonella SJ25, by treatment with heat to depolymerize flagellar filaments and with n-butanol and calcium chloride to remove membranes. Antihook serum was obtained from a rabbit inoculated with a preparation of hooks. The serum contained antibodies directed against the flagellar filament and cell membrane. These antibodies could be removed from the serum by absorption with purified flagellar filaments and cells of a nonflagellated mutant strain. It was shown by electron microscopy that anti-SJ25-hook antibody reacts with hooks from a number of strains of Salmonella which differed from SJ25 in H and O antigens, flagellar shape, and motility. Hooks possessed by various strains of Salmonella have a common antigenicity. In addition, anti-SJ25-hook cross-reacted with hooks from Escherichia coli W3110 but did not react at all which those from strains of Serratia, Proteus, Aerobacter, and Klebsiella. It is well known that bacteria stop moving upon addition of antiflagella serum to the medium. However, the addition of purified antihook was found to have little effect on motility. At physiological ionic strength and pH, flagellin (Salmonella) can polymerize into flagellar filaments only in the presence of seeds. It was shown that a crude preparation of hooks was able to initiate in vitro polymerization of flagellin.  相似文献   

13.
Premature polymerization of flagellin (FliC), the main component of flagellar filaments, is prevented by the FliS chaperone in the cytosol. Interaction of FliS with flagellin was characterized by isothermal titration calorimetry producing an association constant of 1.9x10(7) M-1 and a binding stoichiometry of 1:1. Experiments with truncated FliC fragments demonstrated that the C-terminal disordered region of flagellin is essential for FliS binding. As revealed by thermal unfolding experiments, FliS does not function as an antifolding factor keeping flagellin in a secretion-competent conformation. Instead, FliS binding facilitates the formation of alpha-helical secondary structure in the chaperone binding region of flagellin.  相似文献   

14.
Bacterial flagellin is a surface protein with numerous advantages for the presentation of exogenous peptides. However, the production of recombinant bacteria and the expression of fusion proteins is laborious and time consuming. Here, we present a simple way to produce modified bacteria. Partially deleted, non-functional, chromosomal flagellin gene (fliC ) was changed using homologous recombination by a functional linear fliC gene in which we introduced an exogenous oligonucleotide encoding for the peptide of interest. The modified fliC gene was produced by polymerase chain amplification. Linear amplicons were introduced into the non-motile E. coli by electroporation. The formation of functional flagellar filaments allowed the discrimination of motile transformants from non-motile, non-transformed cells. Thus antibiotic selection and gene expression inductors are not required since transformed bacteria can be easily isolated and used as a vector and adjuvant for immunization. To validate this hypothesis, we studied the immune response against the N-terminal peptide of Clostridium tyrobutyricum flagellin fragment. BALB/c mice were immunized either with the protein displayed as flagellin fusion protein on the surface of E. coli, with the recombinant protein in Freund's adjuvant (FA), or with the pcDNA3 vector bearing the DNA fragment encoding this protein. Immunization with the flagellin recombinant bacteria induced a strong Th1 response as measured by high level of IFN-gamma production and the lack of IL-4 production. The results indicate that the flagellar filament protein carrying a specific epitope can be a potent inducer of the Th1 cellular response.  相似文献   

15.
Among motile revertants isolated from flagellar hook-deficient ( flgE ) mutants of Salmonella typhimurium one produced only short flagellar filaments in L broth, despite the fact that flagellin itself has the ability to polymerize into long filaments in vitro . This pseudorevertant has an intragenic suppressor, resulting in a two-amino-acid substitution (Asp-Gln→Ala-Arg) in the C-terminal region of the hook protein, FlgE. The flagellation of the pseudorevertant was greatly affected by the concentration of NaCl in the culture media: we observed no filaments in the absence of NaCl, short filaments in 1% NaCl and full-length filaments in 2% NaCl. Electron microscopy of osmotically shocked cells showed that the number of hook–basal bodies on cells was constant under various NaCl conditions. Furthermore, we found that the mutant hook was straight rather than curved. We monitored the cellular flagellin level of this pseudorevertant under various NaCl concentrations by immunoblotting. It was revealed that little flagellin was present under NaCl-free conditions in contrast with the ordinary amounts of flagellin present in 2% NaCl. As the expression of flagellin is regulated by competitive interaction of a sigma factor, FliA, and a corresponding anti-sigma factor, FlgM, we also observed the effect of NaCl on the secretion of FlgM. FlgM was secreted into the media in more than 1% NaCl but accumulated inside the cells in the absence of NaCl, indicating that the failure of secretion of FlgM in the absence of salt was the cause of the impaired elongation of filaments.  相似文献   

16.
Escherichia coli morphotype E flagellar filaments have a characteristic surface pattern of short-pitch loops when examined by electron microscopy. Seven of the 50 known E. coli H (flagellar antigen) serotypes (H1, H7, H12, H23, H45, H49, and H51) produce morphotype E filaments. Polymerase chain reaction was used to amplify flagellin structural (fliC) genes from E. coli strains producing morphotype E flagellar filaments and from strains with flagellar filaments representing other morphotypes. A single DNA fragment was obtained from each strain, and the size of the amplified DNA correlated with the molecular mass of the corresponding flagellin protein. This finding and hybridization data suggest that these bacteria are monophasic. fliC genes from three E. coli serotypes (H1, H7, and H12) possessing morphotype E flagellar filaments were sequenced in order to assess the contribution of conserved flagellin primary sequence to the characteristic filament architecture. The H1 and H12 fliC sequences were identical in length (1,788 bp), while the H7 fliC sequence was shorter (1,755 bp). The deduced molecular masses of the FliC proteins were 60,857 Da (H1), 59,722 Da (H7), and 60,978 Da (H12). The H1, H7, and H12 flagellins demonstrated 98 to 99% identity over the amino-terminal region (190 amino acid residues) and 89% (H7) to 99% (H1 and H12) identity in the carboxy-terminal region (100 amino acid residues). The complete primary amino acid sequences for H1 and H12 flagellins differed by only 10 amino acids, accounting for previously reported serological cross-reactions. However, the central region of H7 flagellin had only 38% identity with H1 and H12 flagellins.The characteristic morphology of morphotype E flagellar filaments is therefore not dependent on a highly conserved primary sequence within the exposed central region. Comparison of morphotype E E. coli flagellins with those from E. coli K-12, Serratia marcescens, and several Salmonella serovars supported the established concept of highly conserved terminal regions flanking a variable central region.  相似文献   

17.
The polymerization of bacterial flagellin protein (Salmonella strain SJ814) into flagellar filaments has been found by direct calorimetric measurement to be exothermic at 25° in .15M KCl, pH 6.8 with a ΔH of ?12.7 ± 0.6 kcal per mole of monomer polymerized. The calorimetric result at 25° contrasts sharply with the endothermic ΔH of +38 kcal/mole inferred from temperature dependence of the critical monomer concentration near 40°C. Comparison between these two values implies that unless a different mechanism of polymerization prevails at the two temperatures the heat capacity change for flagellin polymerization may be as large as 3.3 kcal/mole deg.  相似文献   

18.
Bacterial flagellar filaments are assembled by tens of thousands flagellin subunits, forming 11 helically arranged protofilaments. Each protofilament can take either of the two bistable forms L‐type or R‐type, having slightly different conformations and inter‐protofilaments interactions. By mixing different ratios of L‐type and R‐type protofilaments, flagella adopt multiple filament polymorphs and promote bacterial motility. In this study, we investigated the hydrogen bonding networks at the flagellin crystal packing interface in Salmonella enterica serovar typhimurium (S. typhimurium) by site‐directed mutagenesis of each hydrogen bonded residue. We identified three flagellin mutants D108A, N133A and D152A that were non‐motile despite their fully assembled flagella. Mutants D108A and D152A trapped their flagellar filament into inflexible right‐handed polymorphs, which resemble the previously predicted 3L/8R and 4L/7R helical forms in Calladine’s model but have never been reported in vivo. Mutant N133A produces floppy flagella that transform flagellar polymorphs in a disordered manner, preventing the formation of flagellar bundles. Further, we found that the hydrogen bonding interactions around these residues are conserved and coupled to flagellin L/R transition. Therefore, we demonstrate that the hydrogen bonding networks formed around flagellin residues D108, N133 and D152 greatly contribute to flagellar bending, flexibility, polymorphisms and bacterial motility.  相似文献   

19.
Experimental manipulations of gametes of Chlamydomonas reinhardi and ultrastructural observation were used to examine the composition of the microfilaments in the fertilization tubule, their probable mode of formation, and their interaction with intracellular signals. Decoration with myosin subfragment-1 was used to demonstrate that the microfilaments in the fertilization tubule were actin filaments having uniform polarity: Myosin subfragment-1 arrowheads pointed away from the membrane at the tip of the process. Filaments were attached to the cone- shaped "doublet zone" at the base of the process by their pointed ends. Discrete attachment sites for filaments on the surface of the doublet zone were seen in stereo view. To test whether actin polymerization might accompany elongation of the fertilization tubule, mating gametes were exposed to cytochalasin D in an attempt to block actin polymerization. Treatment of mating type "plus" gametes with cytochalasin D prior to and during mating inhibited the appearance of actin filaments in fertilization tubules, suppressed fertilization tubule outgrowth, and lowered mating efficiency from 90 to 15%. The role of signals generated by flagellar adhesion in maintaining the structural integrity of the microfilament-doublet zone complex was examined by correlating flagellar disadhesion with the kinetics of breakdown of the complex. In zygotes, where flagellar disadhesion occurred after cell fusion, the complex disassembled within 3 h after mating. In gametes that had been agglutinated by isolated mating type "minus" flagella, microfilaments and fertilization tubules progressively disassembled over a 3-h time course following flagellar disadhesion. Disassembly of microfilaments was inhibited by maintaining flagellar agglutination, suggesting that signals generated by flagellar adhesion were necessary to maintain microfilaments intact.  相似文献   

20.
Domain structure of flagellin   总被引:2,自引:0,他引:2  
The chemotaxis of bacteria such as Salmonella and Escherichia coli involves smooth swimming punctuated by periods of tumbling. In smooth swimming the flagellar filaments are left-handed, in tumbling they are right-handed with a different wavelength. The filaments are constructed from a globular protein, flagellin, by a process of self-assembly. The existing models assume that the flagellin molecule is bistable and longitudinal rows of subunits take one of the two possible conformations. Such a model explains the observed different morphology of the flagellum. We have studied Salmonella and E. coli flagellins in polymeric and monomeric forms by scanning microcalorimetry and circular dichroism. We have inferred that a flagellin molecule consists of several domains, two of which are structured at physiological temperatures and are in the monomeric form, while the others acquire a regular form only in the process of polymerization. This phenomenon may be the basis of a process during which the flagellin molecule, fitting into the flagellum, acquires a conformation analogous to that of the neighbouring molecule in the longitudinal row.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号