首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Scavenger receptor class B type I (SR-BI) mediates the selective uptake of HDL cholesteryl esters (CEs) and facilitates the efflux of unesterified cholesterol. SR-BI expression in macrophages presumably plays a role in atherosclerosis. The role of SR-BI for selective CE uptake and cholesterol efflux in macrophages was explored. Macrophages and HDL originated from wild-type (WT) or SR-BI knockout (KO; homozygous) mice. For uptake, macrophages were incubated in medium containing 125I-/3H-labeled HDL. For lipid removal, [3H]cholesterol efflux was analyzed using HDL as acceptor. Selective uptake of HDL CE ([3H]cholesteryl oleyl ether - 125I-tyramine cellobiose) was similar in WT and SR-BI KO macrophages. Radiolabeled SR-BI KO-HDL yielded a lower rate of selective uptake compared with WT-HDL in WT and SR-BI KO macrophages. Cholesterol efflux was similar in WT and SR-BI KO cells using HDL as acceptor. SR-BI KO-HDL more efficiently promoted cholesterol removal compared with WT-HDL from both types of macrophages. Macrophages selectively take up HDL CE independently of SR-BI. Additionally, in macrophages, there is substantial cholesterol efflux that is not mediated by SR-BI. Therefore, SR-BI-independent mechanisms mediate selective CE uptake and cholesterol removal. SR-BI KO-HDL is an inferior donor for selective CE uptake compared with WT-HDL, whereas SR-BI KO-HDL more efficiently promotes cholesterol efflux.  相似文献   

2.
Apolipoprotein F (ApoF) modulates lipoprotein metabolism by selectively inhibiting cholesteryl ester transfer protein activity on LDL. This ApoF activity requires that it is bound to LDL. How hyperlipidemia alters total plasma ApoF and its binding to LDL are poorly understood. In this study, total plasma ApoF and LDL-bound ApoF were quantified by ELISA (n = 200). Plasma ApoF was increased 31% in hypercholesterolemic plasma but decreased 20% in hypertriglyceridemia. However, in donors with combined hypercholesterolemia and hypertriglyceridemia, the elevated triglyceride ameliorated the rise in ApoF caused by hypercholesterolemia alone. Compared with normolipidemic LDL, hypercholesterolemic LDL contained ~2-fold more ApoF per LDL particle, whereas ApoF bound to LDL in hypertriglyceridemia plasma was <20% of control. To understand the basis for altered association of ApoF with hyperlipidemic LDL, the physiochemical properties of LDL were modified in vitro by cholesteryl ester transfer protein ± LCAT activities. The time-dependent change in LDL lipid composition, proteome, core and surface lipid packing, LDL surface charge, and LDL size caused by these factors were compared with the ApoF binding capacity of these LDLs. Only LDL particle size correlated with ApoF binding capacity. This positive association between LDL size and ApoF content was confirmed in hyperlipidemic plasmas. Similarly, when in vitro produced and enlarged LDLs with elevated ApoF binding capacity were incubated with LPL to reduce their size, ApoF binding was reduced by 90%. Thus, plasma ApoF levels and the activation status of this ApoF are differentially altered by hypercholesterolemia and hypertriglyceridemia. LDL size is a key determinate of ApoF binding and activation.  相似文献   

3.
4.
In familial hypercholesterolemia (FH), low HDL cholesterol (HDL-C) levels are associated with functional alterations of HDL particles that reduce their capacity to mediate the reverse cholesterol transport (RCT) pathway. The objective of this study was to evaluate the consequences of LDL apheresis on the efficacy of the RCT pathway in FH patients. LDL apheresis markedly reduced abnormal accelerated cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer from HDL to LDL, thus reducing their CE content. Equally, we observed a major decrease (-53%; P < 0.0001) in pre-β1-HDL levels. The capacity of whole plasma to mediate free cholesterol efflux from human macrophages was reduced (-15%; P < 0.02) following LDL apheresis. Such reduction resulted from a marked decrease in the ABCA1-dependent efflux (-71%; P < 0.0001) in the scavenger receptor class B type I-dependent efflux (-21%; P < 0.0001) and in the ABCG1-dependent pathway (-15%; P < 0.04). However, HDL particles isolated from FH patients before and after LDL apheresis displayed a similar capacity to mediate cellular free cholesterol efflux or to deliver CE to hepatic cells. We demonstrate that rapid removal of circulating lipoprotein particles by LDL apheresis transitorily reduces RCT. However, LDL apheresis is without impact on the intrinsic ability of HDL particles to promote either cellular free cholesterol efflux from macrophages or to deliver CE to hepatic cells.  相似文献   

5.
Plasma phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) are homologous molecules that mediate neutral lipid and phospholipid exchange between plasma lipoproteins. Biochemical experiments suggest that only CETP can transfer neutral lipids but that there could be overlap in the ability of PLTP and CETP to transfer or exchange phospholipids. Recently developed PLTP gene knock-out (PLTP0) mice have complete deficiency of plasma phospholipid transfer activity and markedly reduced high density lipoprotein (HDL) levels. To see whether CETP can compensate for PLTP deficiency in vivo, we bred the CETP transgene (CETPTg) into the PLTP0 background. Using an in vivo assay to measure the transfer of [(3)H]PC from VLDL into HDL or an in vitro assay that determined [(3)H]PC transfer from vesicles into HDL, we could detect no phospholipid transfer activity in either PLTP0 or CETPTg/PLTP0 mice. On a chow diet, HDL-PL, HDL-CE, and HDL-apolipoprotein AI in CETPTg/PLTP0 mice were significantly lower than in PLTP0 mice (45 +/- 7 versus 79 +/- 9 mg/dl; 9 +/- 2 versus 16 +/- 5 mg/dl; and 51 +/- 6 versus 100 +/- 9, arbitrary units, respectively). Similar results were obtained on a high fat, high cholesterol diet. These results indicate 1) that there is no redundancy in function of PLTP and CETP in vivo and 2) that the combination of the CETP transgene with PLTP deficiency results in an additive lowering of HDL levels, suggesting that the phenotype of a human PLTP deficiency state would include reduced HDL levels.  相似文献   

6.
Plasma lipid transfer proteins   总被引:3,自引:0,他引:3  
PURPOSE OF REVIEW: Plasma cholesteryl ester transfer protein and phospholipid transfer protein are involved in lipoprotein metabolism. Conceivably, manipulation of either transfer protein could impact atherosclerosis and other lipid-driven diseases. RECENT FINDINGS: Cholesteryl ester transfer protein mediates direct HDL cholesteryl ester delivery to the liver cells; adipose tissue-specific overexpression of cholesteryl ester transfer protein in mice reduces the plasma HDL cholesterol concentration and adipocyte size; cholesteryl ester transfer protein TaqIB polymorphism is associated with HDL cholesterol plasma levels and the risk of coronary heart disease. In apolipoprotein B transgenic mice, phospholipid transfer protein deficiency enhances reactive oxygen species-dependent degradation of newly synthesized apolipoprotein B via a post-endoplasmic reticulum process, as well as improving the antiinflammatory properties of HDL in mice. Activity of this transfer protein in cerebrospinal fluid of patients with Alzheimer's disease is profoundly decreased and exogenous phospholipid transfer protein induces apolipoprotein E secretion by primary human astrocytes in vitro. SUMMARY: Understanding the relationship between lipid transfer proteins and lipoprotein metabolism is expected to be an important frontier in the search for a therapy for atherosclerosis.  相似文献   

7.
Scavenger receptor class B type I (SR-BI) has been identified as a functional HDL binding protein that can mediate the selective uptake of cholesteryl ester (CE) from HDL. To quantify the in vivo role of SR-BI in the process of selective uptake, HDL was labeled with cholesteryl ether ([(3)H] CEt-HDL) and (125)I-tyramine cellobiose ([(125)I]TC-HDL) and injected into SR-BI knockout (KO) and wild-type (WT) mice. In SR-BI KO mice, the clearance of HDL-CE from the blood circulation was greatly diminished (0.043 +/- 0.004 pools/h for SR-BI KO mice vs. 0.106 +/- 0.004 pools/h for WT mice), while liver and adrenal uptake were greatly reduced. Utilization of double-labeled HDL ([(3)H]CEt and [(125)I]TC) indicated the total absence in vivo of the selective decay and liver uptake of CE from HDL in SR-BI KO mice. Parenchymal cells isolated from SR-BI KO mice showed similar association values for [(3)H]CEt and [(125)I]TC in contrast to WT cells, indicating that in parenchymal liver cells SR-BI is the only molecule exerting selective CE uptake from HDL. Thus, in vivo and in vitro, SR-BI is the sole molecule mediating the selective uptake of CE from HDL by the liver and the adrenals, making it the unique target to modulate reverse cholesterol transport.  相似文献   

8.
In vitro experiments have demonstrated that exogenous phospholipid transfer protein (PLTP), i.e. purified PLTP added to macrophage cultures, influences ABCA1-mediated cholesterol efflux from macrophages to HDL. To investigate whether PLTP produced by the macrophages (i.e., endogenous PLTP) is also part of this process, we used peritoneal macrophages derived from PLTP-knockout (KO) and wild-type (WT) mice. The macrophages were transformed to foam cells by cholesterol loading, and this resulted in the upregulation of ABCA1. Such macrophage foam cells from PLTP-KO mice released less cholesterol to lipid-free apolipoprotein A-I (apoA-I) and to HDL than did the corresponding WT foam cells. Also, when plasma from either WT or PLTP-KO mice was used as an acceptor, cholesterol efflux from PLTP-KO foam cells was less efficient than that from WT foam cells. After cAMP treatment, which upregulated the expression of ABCA1, cholesterol efflux from PLTP-KO foam cells to apoA-I increased markedly and reached a level similar to that observed in cAMP-treated WT foam cells, restoring the decreased cholesterol efflux associated with PLTP deficiency. These results indicate that endogenous PLTP produced by macrophages contributes to the optimal function of the ABCA1-mediated cholesterol efflux-promoting machinery in these cells. Whether macrophage PLTP acts at the plasma membrane or intracellularly or shuttles between these compartments needs further study.  相似文献   

9.
This study compares the roles of ABCG1 and scavenger receptor class B type I (SR-BI) singly or together in promoting net cellular cholesterol efflux to plasma HDL containing active LCAT. In transfected cells, SR-BI promoted free cholesterol efflux to HDL, but this was offset by an increased uptake of HDL cholesteryl ester (CE) into cells, resulting in no net efflux. Coexpression of SR-BI with ABCG1 inhibited the ABCG1-mediated net cholesterol efflux to HDL, apparently by promoting the reuptake of CE from medium. However, ABCG1-mediated cholesterol efflux was not altered in cholesterol-loaded, SR-BI-deficient (SR-BI(-/-)) macrophages. Briefly cultured macrophages collected from SR-BI(-/-) mice loaded with acetylated LDL in the peritoneal cavity did exhibit reduced efflux to HDL. However, this was attributable to reduced expression of ABCG1 and ABCA1, likely reflecting increased macrophage cholesterol efflux to apolipoprotein E-enriched HDL during loading in SR-BI(-/-) mice. In conclusion, cellular SR-BI does not promote net cholesterol efflux from cells to plasma HDL containing active LCAT as a result of the reuptake of HDL-CE into cells. Previous findings of increased atherosclerosis in mice transplanted with SR-BI(-/-) bone marrow probably cannot be explained by a defect in macrophage cholesterol efflux.  相似文献   

10.
Chroni A  Kan HY  Shkodrani A  Liu T  Zannis VI 《Biochemistry》2005,44(10):4108-4117
The objective of this study was to determine the effect of two amino-terminal apolipoprotein A-I (apoA-I) deletions on high-density lipoprotein (HDL) biosynthesis and lipid homeostasis. Adenovirus-mediated gene transfer showed that the apoA-I[Delta(89-99)] deletion mutant caused hypercholesterolemia, characterized by increased plasma cholesterol and phospholipids, that were distributed in the very low density/intermediate density/low-density lipoprotein (VLDL/IDL/LDL) region, and normal triglycerides. The capacity of the mutant protein to promote ATP-binding cassette transporter A1- (ABCA1-) mediated cholesterol efflux and to activate lecithin:cholesterol acyltranserase (LCAT) was approximately 70-80% of the wild-type (WT) control. The phospholipid transfer protein (PLTP) activity of plasma containing the apoA-I[Delta(89-99)] mutant was decreased to 32% of the WT control. Similar analysis showed that the apoA-I[Delta(62-78)] deletion mutant in apoA-I-deficient mice caused combined hyperlipidemia characterized by increased triglycerides, cholesterol, and phospholipids in the VLDL/IDL region. There was enrichment of the VLDL/IDL with mutant apoA-I that resulted in reduction of in vitro lipolysis. The capacity of this mutant to promote ABCA1-mediated cholesterol efflux was normal, and the capacity to activate LCAT in vitro was reduced by 53%. The WT apoA-I and the apoA-I[Delta(62-78)] mutant formed spherical HDL particles, whereas the apoA-I[Delta(89-99)] mutant formed discoidal HDL particles. We conclude that alterations in apoA-I not only may have adverse effects on HDL biosynthesis but also may promote dyslipidemia due to interference of the apoA-I mutants on the overall cholesterol and triglycerides homeostasis.  相似文献   

11.
Alagille syndrome is associated with bile duct paucity resulting in liver disease. Patients can be divided into mildly and severely icteric groups, with both groups having altered lipoproteins. The incidence of ischemic heart disease is rare in severely cholestatic children despite increased total cholesterol and decreased high density lipoprotein cholesterol (HDL-C). The present studies examine the impact of altered lipid and lipoproteins on scavenger receptor class B type I (SR-BI)- and ABCA1-mediated efflux to serum from both groups. Efflux was compared with serum from 29 patients (15 with normal plasma cholesteryl ester, 14 with low cholesteryl ester). Efflux via SR-BI and ABCA1 was studied using cell systems having either low or high expression levels of these receptors. SR-BI efflux was lower (P = 0.04) with serum from severely icteric patients (3.9 +/- 1.4%) compared with serum from mildly icteric patients (5.1 +/- 1.4%) and was positively correlated with HDL-C and its apolipoproteins. SR-BI-mediated efflux was not correlated with any particular mature HDL but was negatively correlated with small lipid-poor prebeta-1 HDL. Consistent with severely icteric patients having high prebeta-1 HDL levels, the ABCA1 efflux was significantly higher with their serum (4.8 +/- 2.2%) compared with serum from mildly icteric patients (2.0 +/- 0.6%) and was positively correlated with prebeta-1 HDL. These studies demonstrated that prebeta-1 HDL is the preferred acceptor for ABCA1 efflux, whereas many particles mediate SR-BI efflux.  相似文献   

12.
Scavenger receptor (SR)-BI catalyzes the selective uptake of cholesteryl ester (CE) from high density lipoprotein (HDL) by a two-step process that involves the following: 1) binding of HDL to the receptor and 2) diffusion of the CE molecules into the cell plasma membrane. We examined the effects of the size of discoidal HDL particles containing wild-type (WT) apoA-I on selective uptake of CE and efflux of cellular free (unesterified) cholesterol (FC) from COS-7 cells expressing SR-BI to determine the following: 1) the influence of apoA-I conformation on the lipid transfer process, and 2) the contribution of receptor binding-dependent processes to the overall efflux of cellular FC. Large (10 nm diameter) reconstituted HDL bound to SR-BI better (B(max) approximately 420 versus 220 ng of apoA-I/mg cell protein), delivered more CE, and promoted more FC efflux than small ( approximately 8 nm) particles. When normalized to the number of reconstituted HDL particles bound to the receptor, the efficiencies of either CE uptake or FC efflux with these particles were the same indicating that altering the conformation of WT apoA-I modulates binding to the receptor (step 1) but does not change the efficiency of the subsequent lipid transfer (step 2); this implies that binding induces an optimal alignment of the WT apoA-I.SR-BI complex so that the efficiency of lipid transfer is always the same. FC efflux to HDL is affected both by binding of HDL to SR-BI and by the ability of the receptor to perturb the packing of FC molecules in the cell plasma membrane.  相似文献   

13.
Lipid and cholesterol metabolism in the postprandial phase is associated with both quantitative and qualitative remodeling of HDL particle subspecies that may influence their anti-atherogenic functions in the reverse cholesterol transport pathway. We evaluated the capacity of whole plasma or isolated HDL particles to mediate cellular free cholesterol (FC) efflux, cholesteryl ester transfer protein (CETP)-mediated cholesteryl ester (CE) transfer, and selective hepatic CE uptake during the postprandial phase in subjects displaying type IIB hyperlipidemia (n = 16). Postprandial, large HDL2 displayed an enhanced capacity to mediate FC efflux via both scavenger receptor class B type I (SR-BI)-dependent (+12%; P < 0.02) and ATP binding cassette transporter G1 (ABCG1)-dependent (+31%; P < 0.008) pathways in in vitro cell systems. In addition, the capacity of whole postprandial plasma (4 h and 8 h postprandially) to mediate cellular FC efflux via the ABCA1-dependent pathway was significantly increased (+19%; P < 0.0003). Concomitantly, postprandial lipemia was associated with elevated endogenous CE transfer rates from HDL2 to apoB lipoproteins and with attenuated capacity (−17%; P < 0.02) of total HDL to deliver CE to hepatic cells. Postprandial lipemia enhanced SR-BI and ABCG1-dependent efflux to large HDL2 particles. However, postprandial lipemia is equally associated with deleterious features by enhancing formation of CE-enriched, triglyceride-rich lipoprotein particles through the action of CETP and by reducing the direct return of HDL-CE to the liver.  相似文献   

14.
Plasma cholesteryl ester transfer protein (CETP) facilitates the transfer of cholesteryl ester (CE) from high density lipoprotein (HDL) to apolipoprotein B-containing lipoproteins. Since CETP regulates the plasma levels of HDL cholesterol and the size of HDL particles, CETP is considered to be a key protein in reverse cholesterol transport, a protective system against atherosclerosis. CETP, as well as plasma phospholipid transfer protein, belongs to members of the lipid transfer/lipopolysaccharide-binding protein (LBP) gene family, which also includes the lipopolysaccharide-binding protein (LBP) and bactericidal/permeability-increasing protein. Although these four proteins possess different physiological functions, they share marked biochemical and structural similarities. The importance of plasma CETP in lipoprotein metabolism was demonstrated by the discovery of CETP-deficient subjects with a marked hyperalphalipoproteinemia (HALP). Two common mutations in the CETP gene, intron 14 splicing defect and exon 15 missense mutation (D442G), have been identified in Japanese HALP patients with CETP deficiency. The deficiency of CETP causes various abnormalities in the concentration, composition, and functions of both HDL and low density lipoprotein. Although the pathophysiological significance of CETP in terms of atherosclerosis has been controversial, the in vitro experiments showed that large CE-rich HDL particles in CETP deficiency are defective in cholesterol efflux. Epidemiological studies in Japanese-Americans and in the Omagari area where HALP subjects with the intron 14 splicing defect of CETP gene are markedly frequent, have shown an increased incidence of coronary atherosclerosis in CETP-deficient patients. The current review will focus on the recent findings on the molecular biology and pathophysiological aspects of plasma CETP, a key protein in reverse cholesterol transport.  相似文献   

15.
Transgenic mice expressing human cholesteryl ester transfer protein (HuCETPTg mice) were crossed with apolipoprotein CI-knocked out (apoCI-KO) mice. Although total cholesterol levels tended to be reduced as the result of CETP expression in HuCETPTg heterozygotes compared with C57BL6 control mice (-13%, not significant), a more pronounced decrease (-28%, p < 0.05) was observed when human CETP was expressed in an apoCI-deficient background (HuCETPTg/apoCI-KO mice). Gel permeation chromatography analysis revealed a significant, 6.1-fold rise (p < 0.05) in the cholesteryl ester content of very low density lipoproteins in HuCETPTg/apoCI-KO mice compared with control mice, whereas the 2.7-fold increase in HuCETPTg mice did not reach the significance level in these experiments. Approximately 50% decreases in the cholesteryl ester content and cholesteryl ester to triglyceride ratio of high density lipoproteins (HDL) were observed in HuCETPTg/apoCI-KO mice compared with controls (p < 0.05 in both cases), with intermediate -20% changes in HuCETPTg mice. The cholesteryl ester depletion of HDL was accompanied with a significant reduction in their mean apparent diameter (8.68 +/- 0.04 nm in HuCETPTg/apoCI-KO mice versus 8.83 +/- 0.02 nm in control mice; p < 0.05), again with intermediate values in HuCETPTg mice (8.77 +/- 0.04 nm). In vitro purified apoCI was able to inhibit cholesteryl ester exchange when added to either total plasma or reconstituted HDL-free mixtures, and coincidently, the specific activity of CETP was significantly increased in the apoCI-deficient state (173 +/- 75 pmol/microg/h in HuCETPTg/apoCI-KO mice versus 72 +/- 19 pmol/microg/h in HuCETPTg, p < 0.05). Finally, HDL from apoCI-KO mice were shown to interact more readily with purified CETP than control HDL that differ only by their apoCI content. Overall, the present observations provide direct support for a potent specific inhibition of CETP by plasma apoCI in vivo.  相似文献   

16.
Phosphatidylcholine transfer protein (PC-TP) is a cytosolic protein of unknown function that catalyzes intermembrane transfer of phosphatidylcholines in vitro. Using stably transfected CHO cells, we explored the influence of PC-TP on apolipoprotein A-I- and high density lipoprotein 3 (HDL(3))-mediated lipid efflux. In proportion to its cellular level of expression, PC-TP accelerated apolipoprotein A-I-mediated phospholipid and cholesterol efflux as pre-beta-HDL particles. PC-TP increased rates of efflux of both lipids by >2-fold but did not affect mRNA levels or the activity of ATP-binding cassette A1, a plasma membrane protein that regulates apolipoprotein A-I-mediated lipid efflux. Overexpression of PC-TP was associated with only slight increases in HDL(3)-mediated phospholipid efflux and no changes in cholesterol efflux. In scavenger receptor BI-overexpressing cells, PC-TP expression minimally influenced apolipoprotein A-I- or HDL(3)-mediated lipid efflux. PC-TP did not affect cellular phospholipid compositions, phosphatidylcholine contents, or phosphatidylcholine synthetic rates. These findings suggest that a physiological function of PC-TP is to replenish the plasma membrane with phosphatidylcholines that are removed during pre-beta-HDL particle formation due to the activity of ATP-binding cassette A1.  相似文献   

17.
A recent population-based study showed that cholesteryl ester transfer protein (CETP) gene variations, which relate to lower plasma CETP, may predict increased cardiovascular risk, in spite of higher HDL cholesterol. Among other functions, CETP activity contributes to cellular cholesterol efflux, an early step in the anti-atherogenic reverse cholesterol transport (RCT) process. We hypothesized that cellular cholesterol efflux stimulating capacity of plasma could be associated with CETP gene variation. In this study, we tested the extent to which the ability of plasma to promote cholesterol efflux from cultured human fibroblasts is associated with CETP gene variation. In 223 men, the -629C-->A CETP promoter polymorphism, plasma lipids, CETP mass, cholesteryl ester transfer (CET), lecithin:cholesterol acyltransferase (LCAT) activity and the ability of plasma to promote cholesterol efflux from human skin fibroblasts, obtained from a single normolipidemic donor, were determined. In -629CC homozygotes (n=52), cholesterol efflux, plasma CETP mass, CET and LCAT activity were higher, whereas HDL cholesterol was lower compared to -629 AA homozygotes (n=62) and -629CA+AA carriers (n=171) (P<0.05 to P<0.001). Univariate correlation analysis showed that cellular cholesterol efflux was related to CETP genotype (P=0.04), plasma CET (P<0.05), LCAT activity (P<0.001) and apo A-I (P<0.05). Multiple linear regression analysis confirmed the independent association of cellular cholesterol efflux to plasma with CETP genotype. In conclusion, an association of cellular cholesterol efflux with the -629C-->A CETP polymorphism, possibly also involving LCAT activity, could provide a mechanism explaining why CETP gene variation, which relates to lower plasma CETP, does not confer diminished cardiovascular risk.  相似文献   

18.
Hypertriglyceridemia is a common pathological condition in humans of mostly unknown etiology. Here we report induction of dyslipidemia characterized by severe hypertriglyceridemia as a result of point mutations in human apolipoprotein A-I (apoA-I). Adenovirus-mediated gene transfer in apoA-I-deficient (apoA-I(-)(/)(-)) mice showed that mice expressing an apoA-I[E110A/E111A] mutant had comparable hepatic mRNA levels with WT controls but greatly increased plasma triglyceride and elevated plasma cholesterol levels. In addition, they had decreased apoE and apoCII levels and increased apoB48 levels in very low-density lipoprotein (VLDL)/intermediate-density lipoprotein (IDL). Fast protein liquid chromatography (FPLC) analysis of plasma showed that most of cholesterol and approximately 15% of the mutant apoA-I were distributed in the VLDL and IDL regions and all the triglycerides in the VLDL region. Hypertriglyceridemia was corrected by coinfection of mice with recombinant adenoviruses expressing the mutant apoA-I and human lipoprotein lipase. Physicochemical studies indicated that the apoA-I mutation decreased the alpha-helical content, the stability, and the unfolding cooperativity of both lipid-free and lipid-bound apoA-I. In vitro functional analyses showed that reconstituted HDL (rHDL) particles containing the mutant apoA-I had 53% of scavenger receptor class B type I (SR-BI)-mediated cholesterol efflux capacity and 37% capacity to activate lecithin:cholesterol acyltransferase (LCAT) as compared to the WT control. The mutant lipid-free apoA-I had normal capacity to promote ATP-binding cassette transporter A1 (ABCA1)-dependent cholesterol efflux. The findings indicate that subtle structural alterations in apoA-I may alter the stability and functions of apoA-I and high-density lipoprotein (HDL) and may cause hypertriglyceridemia.  相似文献   

19.
Cholesterol acquired by extrahepatic tissues (from de novo synthesis or lipoproteins) is returned to the liver for excretion in a process called reverse cholesterol transport (RCT). We undertook studies to determine if RCT could be enhanced by up-regulating individual steps in the RCT pathway. Overexpression of 7alpha-hydroxylase, Scavenger receptor B1, lecithin:cholesterol acyltransferase (LCAT), or apoA-I in the liver did not stimulate cholesterol efflux from any extrahepatic tissue. In contrast, infusion of apoA-I.phospholipid complexes (rHDL) that resemble nascent HDL markedly stimulated cholesterol efflux from tissues into plasma. Cholesterol effluxed to rHDL was initially unesterified but by 24 h this cholesterol was largely esterified and had shifted to normal HDL (in mice lacking cholesteryl ester transfer protein) or to apoB containing lipoproteins (in cholesteryl ester transfer protein transgenic mice). Most of the cholesterol effluxed into plasma in response to rHDL came from the liver. However, an even greater proportion of effluxed cholesterol was cleared by the liver resulting in a transient increase in liver cholesterol concentrations. Fecal sterol excretion was not increased by rHDL. Thus, although rHDL stimulated cholesterol efflux from most tissues and increased net cholesterol movement from extrahepatic tissues to the liver, cholesterol flux through the entire RCT pathway was not increased.  相似文献   

20.
Periodontitis, a consequence of persistent bacterial infection and chronic inflammation, has been suggested to predict coronary heart disease (CHD). The aim of this study was to investigate the impact of periodontitis on HDL structure and antiatherogenic function in cholesterol efflux in vitro. HDL was isolated from 30 patients (age 43.6 +/- 6.1 years, mean +/- SD) with periodontitis before and after (3.2 +/- 1.4 months) periodontal treatment. The capacity of HDL for cholesterol efflux from macrophages (RAW 264.7), HDL composition, and key proteins of HDL metabolism were determined. After periodontal treatment, phospholipid transfer protein (PLTP) activity was 6.2% (P<0.05) lower, and serum HDL cholesterol concentration, PLTP mass, and cholesteryl ester transfer protein activity were 10.7% (P<0.001), 7.1% (P=0.078), and 19.4% (P<0.001) higher, respectively. The mean HDL2/HDL3 ratio increased from 2.16 +/- 0.87 to 3.56 +/- 0.48 (P<0.05). HDL total phospholipid mass and sphingomyelin-phosphatidylcholine ratio were 7.4% (P<0.05) and 36.8% (P<0.001) higher, respectively. The HDL-mediated cholesterol efflux tended to be higher after periodontal treatment; interestingly, this increase was significant (P<0.05) among patients whose C-reactive protein decreased (53.7% reduction, P=0.015) and who were positive by PCR for Actinobacillus actinomycetemcomitans. These results suggest that periodontitis causes similar, but milder, changes in HDL metabolism than those that occur during the acute-phase response and that periodontitis may diminish the antiatherogenic potency of HDL, thus increasing the risk for CHD.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号