首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Human placental mesenchymal stem cells (hPMSCs), for the treatment of fulminant hepatic failure, have been widely studied. Only a few studies have investigated the effect of the subtype CD200+hPMSCs on regeneration of human hepatocytes. CD200+hPMSCs can down-regulate activity of several immunocytes and suppress TNF-α secretion from macrophages via the CD200-CD200R axis. We have investigated the influence of CD200-positive human placenta chorionic mesenchymal stem cells (CD200+hPCMSCs) on metabolism, proliferation and apoptosis of human hepatocytes in vitro. CD200+hPCMSCs promote urea synthesis, albumin secretion and hepatocytes proliferation at co-culture ratios of 1:1 and 3:1. Additionally, CD200+hPCMSCs inhibit hepatocyte apoptosis via up-regulation of an anti-apoptotic protein, Bcl-xL. Thus, CD200+hPCMSCs can provide supportive benefit for the regeneration of human hepatocytes and also have immunosuppressive properties. Therefore, CD200+hPCMSCs may be an ideal candidate for stem cell-based therapy in hepatic failure.  相似文献   

2.
3.
Tumour necrosis factor (TNF) is considered to be the initiator protein of particle disease leading to aseptic loosening of endoprostheses. The aim of the present study was to investigate the TNF response of the macrophage-like cells (MLC) to the periprosthetic particles typically found during revision surgery. For this purpose, particles of polyethylene (PE), pure titanium (Ti), chromium (Cr), cobalt (Co), alumina ceramic (Al2O3) and zirconium dioxide (ZrO2) were used. Additionally, the therapeutic effect of non-steroidal and steroidal drugs, biphosphonates and pentoxyfylline on PE particles was investigated with the aim of differentiating drugs with, from those without, a positive effect on aseptic loosening. METHOD: In an established macrophage model (Rader et al. 1999), THP1 cells (human monocytic cell line) were differentiated over a period of five days in the presence of vitamin D3 and GM-CSF in macrophage-like cells (MLC). To obtain a TNF profile of the different materials, 10(6) MLC were incubated with each of a range of different particle concentrations. For drug testing purposes 80 x 10(8) PE particles, which evoked a maximum TNF response, were applied together with increasing drug concentrations in the same manner. The supernatant was then investigated for TNF secretion using ELISA. RESULTS: It was found that the greatest TNF response was provoked by Co and PE particles, and was 25 and 23 times as high, respectively, in comparison with control. The smallest TNF secretion was seen with Al2O3 (4 x control) and ZrO2 (5 x control). At the recommended dose, non-steroidal anti-inflammatory drugs (NSAIDs) produced no decrease in TNF secretion. The biphosphonates, etidronate and ibendronate significantly reduced the TNF response of the PE-stimulated macrophages (by 1/7 and 1/5, respectively). Therapeutic doses of pentoxyfylline also led to a decrease of 1/5 in maximum TNF release. CONCLUSION: Ceramic articulating surfaces are superior to metal/metal or PE/PE matings in terms of the biological effects of their wear particles. At therapeutic doses, NSAIDs have no beneficial effect on the process of aseptic loosening. Certain biphosphonates and pentoxyfylline have a positive effect on aseptic loosening.  相似文献   

4.
5.
Proteinase-activated receptor 2 (PAR2) is cleaved and activated by trypsin or mast cell tryptase, and may play an important role in inflammation. We have investigated the potential of PAR2 agonists to modulate TNF-alpha secretion from human astrocytoma cell line CCF-STTG1. We found that CCF-STTG1 expresses PAR2 by RT-PCR and Western blot analysis. Agonists such as trypsin, the peptide SLIGKV-NH(2) (corresponding to the PAR2 tethered ligand), or mast cell tryptase directly signal to CCF-STTG1 to stimulate secretion of TNF-alpha but do not stimulate in the presence of soybean trypsin inhibitor (SBTI) or VKGILS-NH(2) (reverse peptide). The secretion of TNF-alpha by trypsin was significantly blocked by pretreatment with either 50 microM PD98059 or 1 microM SB203580. Furthermore, trypsin stimulated the activation of extracellular signal-regulated kinase (ERK) and p38 MAP kinase homologue in CCF-STTG1 without any detectable activation of c-Jun N-terminal kinase (JNK). These results show that trypsin may induce TNF-alpha secretion following activation of ERK and p38 via PAR2 in CCF-STTG1.  相似文献   

6.
The presence within bone marrow of a population of mesenchymal stem cells (MSCs) able to differentiate into a number of different mesenchymal tissues, including bone and cartilage, was first suggested by Friedenstein nearly 40 years ago. Since then MSCs have been demonstrated in a variety of fetal and adult tissues, including bone marrow, fetal blood and liver, cord blood, amniotic fluid and, in some circumstances, in adult peripheral blood. MSCs from all of these sources can be extensively expanded in vitro and when cultured under specific permissive conditions retain their ability to differentiate into multiple lineages including bone, cartilage, fat, muscle, nerve, glial and stromal cells. There has been great interest in these cells both because of their value as a model for studying the molecular basis of differentiation and because of their therapeutic potential for tissue repair and immune modulation. However, MSCs are a rare population in these tissues. Here we tried to identify cells with MSC-like potency in human placenta. We isolated adherent cells from trypsin-digested term placentas and examined these cells for morphology, surface markers, and differentiation potential and found that they expressed several stem cell markers. They also showed endothelial and neurogenic differentiation potentials under appropriate conditions. We suggest that placenta-derived cells have multilineage differentiation potential similar to MSCs in terms of morphology and cell-surface antigen expression. The placenta may prove to be a useful source of MSCs.  相似文献   

7.
The ornithine-containing lipids (OL)-induced cytokine production pattern in macrophage-like J774.1 and RAW 264.7 cells was different from that in the peritoneal macrophages previously reported. OLs, as well as lipopolysaccharide (LPS) of Escherichia coli, strongly induced tumor necrosis factor (TNF) alpha but not interleukin (IL)-1beta in J774.1 cells. In the RAW cells, IL-1beta, TNF-alpha and prostaglandin E(2) were strongly induced by the OLs and LPS. OL- and serine-glycine-containing lipid (SGL)-induced TNF-alpha production in J774.1 and RAW 264.7 cells required serum. However, in CD14-deficient LR-9 cells, TNF-alpha was not induced by the OLs in the presence or absence of serum. OLs and a SGL almost completely inhibited the binding of (125)I-LPS to J774.1 cells. These results suggested that OLs and SGL activate macrophages via the CD14-dependent pathway.  相似文献   

8.
Therapeutic administration of mesenchymal stem cells (MSCs) by systemic delivery utilizes the innate ability of the cells to home to damaged tissues, but it can be an inefficient process due to a limited knowledge of cellular cues that regulate migration and homing. Our lab recently discovered that a potent pro-inflammatory cytokine, macrophage migration inhibitory factor (MIF), inhibits MSC migration. Because MIF may act on multiple cellular targets, an activating antibody (CD74Ab) was employed in this study to examine the effect of one MIF receptor, CD74 (major histocompatibility complex class II-associated invariant chain), on MSC motility. CD74 activation inhibits in a dose-dependent manner up to 90% of in vitro migration of MSCs at 40 μg/ml CD74Ab (p?<?0.001), with consistent effects observed among three MSC donor preparations. A blocking peptide from the C-terminus of CD74 eliminates the effect of CD74Ab on MSCs. This suggests that MIF may act on MSCs, at least in part, through CD74. Late-passage MSCs exhibit less chemokinesis than those at passage 2. However, MSCs remain responsive to CD74 activation during ex vivo expansion: MSC migration is inhibited ~2-fold in the presence of 5 µg/ml CD74Ab at passage 9 vs. ~3-fold at passage 2 (p?<?0.001). Consistent with this result, there were no significant differences in CD74 expression at all tested passages or after CD74Ab exposure. Targeting CD74 to regulate migration and homing potentially may be a useful strategy to improve the efficacy of a variety of MSC therapies, including those that require ex vivo expansion.  相似文献   

9.
Che N  Li X  Zhou S  Liu R  Shi D  Lu L  Sun L 《Cellular immunology》2012,274(1-2):46-53
Mesenchymal stem cells (MSCs) may be obtained from umbilical cord as an abundant and noninvasive source. However, the immunomodulatory properties of umbilical cord-MSCs (UC-MSCs) were poorly studied. In this study, we aimed to investigate the effects of UC-MSCs on B-cell proliferation and differentiation. UC-MSCs were found to suppress the proliferation of B cells isolated from murine spleen. Moreover, UC-MSCs markedly suppressed B-cell differentiation as shown by the decreased number of CD138+cells and reduced levels of IgM and IgG production in coculture. As revealed by transwell experiments, soluble factors produced by UC-MSCs might be involved in mediating B-cell suppression. The Blimp-1 mRNA expression was suppressed whereas the PAX-5 mRNA expression was induced in coculture. Finally, UC-MSCs modified the phosphorylation pattern of Akt and p38 pathways, which were involved in B-cell proliferation and differentiation. These results may further support the potential therapeutic use of UC-MSCs in treating autoimmune disorders.  相似文献   

10.
Isolation murine mesenchymal stem cells by positive selection   总被引:2,自引:0,他引:2  
Isolation and purification of mesenchymal stem cells (MSCs) from mouse via plastic adherent cultures is arduous because of the unwanted growth of hematopoietic cells and non-MSCs. In this work, homogenous populations of CD34+ MSCs from mouse bone marrow were isolated via positive selection. For this purpose, C57Bl/6 mice were killed and bone marrow cells were aspirated before incubation with magnetic bead conjugated to anti-CD34 antibody. A sample of positively selected CD34+ cells were prepared for flow cytometry to examine the expression of CD34 antigen and others were subcultured in a 25-cm2 culture flask. To investigate the mesenchymal nature, the plastic adherent cultivated cells were induced to differentiate along osteoblastic and adipogenic lineages. Furthermore, the expression of some surface markers was investigated by flow cytometry. According to the result, purified populations of fibroblast-like CD34+ cells were achieved in the first passage (1 wk after culture initiation). The cells expressed CD34, CD44, Sca-1, and Vcam-1 antigens (markers) but not CD11b and CD45. They were capable of differentiating into osteocytes and adipocytes. This study indicated that our protocol can result in the efficient isolation of homogenous populations of MSCs from C57BL/6 mouse bone marrow. We have shown that murine bone marrow-derived CD34+ cells with plastic adherent properties and capability of differentiating into skeletal lineages in vitro are MSCs.  相似文献   

11.
Wei H  Tan G  Manasi  Qiu S  Kong G  Yong P  Koh C  Ooi TH  Lim SY  Wong P  Gan SU  Shim W 《Stem cell research》2012,9(2):87-100
Cardiomyocytes (CMs) and mesenchymal stem cells (MSCs) are important cell types for cardiac repair post myocardial infarction. Here we proved that both CMs and MSCs can be simultaneously generated from human induced pluripotent stem cells (hiPSCs) via a pro-mesoderm differentiation strategy. Two hiPSC lines, hiPSC (1) and hiPSC (2) were generated from human dermal fibroblasts using OCT-4, SOX-2, KLF-4, c-Myc via retroviral-based reprogramming. H9 human embryonic stem cells (hESCs) served as control. CMs and MSCs were co-generated from hiPSCs and hESCs via embryoid body-dependent cardiac differentiation protocol involving a serum-free and insulin-depleted medium containing a p38 MAPK inhibitor, SB 203580. Comparing to bone marrow and umbilical cord blood-derived MSCs, hiPSC-derived MSCs (iMSCs) expressed common MSC markers and were capable of adipogenesis, osteogenesis and chondrogenesis. Moreover, iMSCs continuously proliferated for more than 32 population doublings without cellular senescence and showed superior pro-angiogenic and wound healing properties. In summary, we generated a large number of homogenous MSCs in conjunction with CMs in a low-cost and efficient one step manner. Functionally competent CMs and MSCs co-generated from hiPSCs may be useful for autologous cardiac repair.  相似文献   

12.
Mesenchymal stem cells (MSC) fail to induce allogeneic responses in mixed lymphocyte reaction assays. Because MSC express HLA class I molecules, here we investigated whether they could be recognized as allogeneic targets by cytolytic T lymphocytes (CTL). With this aim, CTL precursor (CTLp) frequencies were measured following stimulation of T cells with either allogeneic mononuclear cells (MNC) or MSC originated from the same human bone marrow donor. Lysis of MSC was measured at day 10 of culture in standard chromium release assays. In addition, allogeneic PHA blast T cells or B-EBV lymphoblastoid cell lines (LCLs) generated from the same donor were used as positive controls of lysis. Our results showed that when allogeneic MNC were used to stimulate T cells, a high CTLp frequency was detected towards MSC targets. However, when MSC were used as stimulators, CTLp frequencies were markedly altered whatever the targets used, i.e.: MSC, PHA blast T cells or EBV-B LCLs. Moreover, when graded concentrations of MSC were added together with MNC upon stimulation of alloreactive T cells, we observed a dose-dependent decrease in CTLp frequencies towards MSC targets. This inhibition of MSC lysis was partially overcome by adding exogenous rh-IL-2 from the beginning of cultures. In addition, this suppressive effect was totally reproduced when, instead of MSC, supernatant harvested from MSC cultures was added to allogeneic MNC, upon stimulation of alloreactive T cells. In conclusion, our results demonstrate that MSC which can be recognized as targets by pre-activated alloreactive CTLs, may be able to suppress differentiation of CTL precursors into CTL effectors through secretion of suppressive factors.  相似文献   

13.
Endothelial-like cells derived from human CD14 positive monocytes   总被引:30,自引:0,他引:30  
In the present study, we show that endothelial-like cells (ELCs) can develop from human CD14-positive mononuclear cells (CD14 cells) in the presence of angiogenic growth factors. The CD14 cells became loosely adherent within 24 h of culture and subsequently underwent a distinct process of morphological transformation to caudated or oval cells with eccentric nuclei. After 1 week in culture the cells showed a clear expression of endothelial cell markers, including von Willebrand factor (vWF), CD144 (VE-cadherin), CD105 (endoglin), acetylated low-density lipoprotein (AC-LDL)-receptor, CD36 (thrombospondin receptor), FLT-1, which is vascular endothelial cell growth factor (VEGF) receptor-1, and, to a weaker extent, KDR (VEGF receptor-2). Furthermore, in these cells structures resembling Weibel-Palade bodies at different storage stages were identified by electron microscopy, and upon culturing on three-dimensional fibrin gels the cells build network-like structures. In addition, cell proliferation and vWF expression was stimulated by VEGF, and the endothelial cell adhesion molecules CD54 (ICAM-1), and CD106 (VCAM-1) became transiently inducible by tumor necrosis factor-alpha (TNF-alpha). In contrast, the dendritic markers CD1a, and CD83 were not expressed to any significant extent. The expression of CD68, CD80 (B7-1), CD86 (B7-2), HLA-DR and CD36 may also suggest that ELCs might be related to macrophages, sinus lining or microvascular endothelial cells. Taken together, our observations indicate that ELCs can differentiate from cells of the monocytic lineage, suggesting a closer relationship between the monocyte/macrophage- and the endothelial cell systems than previously supposed.  相似文献   

14.
Abstract Identification of mesenchymal stem cells (MSCs) derived from alternative sources has provided an exciting prospect for intensive investigation. This work focused on characterizing a new source of MSCs from stromal cells from human eye conjunctiva. In this study, after conjunctiva biopsies and culture of stromal segment of this tissue, fibroblast-like (SH2+, SH3+, CD29+, CD44+, CD166+, CD13+) human stromal cells, which can be differentiated toward the osteogenic, adipogenic, chondrogenic, and neurogenic lineages, were obtained. These cells expressed Oct-4, Nanog, Rex-1 genes, and some lineage-specific markers like cardiac actin and Keratin. Taken together, the results indicate that conjunctiva stromal-derived cells are a new source of multipotent MSCs and despite originating from an adult source, they express undifferentiated stem cell markers.  相似文献   

15.
In this work we describe the establishment of mesenchymal stem cells (MSCs) derived from embryonic stem cells (ESCs) and the role of bFGF in adipocyte differentiation. The totipotency of ESCs and MSCs was assessed by immunofluorescence staining and RT-PCR of totipotency factors. MSCs were successfully used to induce osteoblasts, chondrocytes and adipocytes. MSCs that differentiated into adipocytes were stimulated with and without bFGF. The OD/DNA (optical density/content of total DNA) and expression levels of the specific adipocyte genes PPARγ2 (peroxisome proliferator activated receptor γ2) and C/EBPs were higher in bFGF cells. Embryonic bodies had a higher adipocyte level compared with cells cultured in plates. These findings indicate that bFGF promotes adipocyte differentiation. MSCs may be useful cells for seeding in tissue engineering and have enormous therapeutic potential for adipose tissue engineering.  相似文献   

16.
17.
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in regenerative medicine. However, due to the disadvantages with primary MSCs, such as limited cell proliferative capacity and rarity in the tissues leading to limited MSCs, gradual loss of differentiation during in vitro expansion reducing the efficacy of MSC application, and variation among donors increasing the uncertainty of MSC efficacy, the clinical application of MSCs has been greatly hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can circumvent these problems associated with primary MSCs. Due to the infinite self-renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs are emerging as an attractive alternative for regenerative medicine. This review summarizes the progress on derivation of MSCs from human pluripotent stem cells, disease modelling and drug screening using hPSC-MSCs, and various applications of hPSC-MSCs in regenerative medicine. In the end, the challenges and concerns with hPSC-MSC applications are also discussed.  相似文献   

18.
19.
Midazolam, a benzodiazepine derivative, is widely used for sedation and surgery. However, previous studies have demonstrated that Midazolam is associated with increased risks of congenital malformations, such as dwarfism, when used during early pregnancy. Recent studies have also demonstrated that Midazolam suppresses osteogenesis of mesenchymal stem cells (MSCs). Given that hypertrophic chondrocytes can differentiate into osteoblast and osteocytes and contribute to endochondral bone formation, the effect of Midazolam on chondrogenesis remains unclear. In this study, we applied a human MSC line, the KP cell, to serve as an in vitro model to study the effect of Midazolam on chondrogenesis. We first successfully established an in vitro chondrogenic model in a micromass culture or a 2D high‐density culture performed with TGF‐β‐driven chondrogenic induction medium. Treatment of the Midazolam dose‐dependently inhibited chondrogenesis, examined using Alcian blue‐stained glycosaminoglycans and the expression of chondrogenic markers, such as SOX9 and type II collagen. Inhibition of Midazolam by peripheral benzodiazepine receptor (PBR) antagonist PK11195 or small interfering RNA rescued the inhibitory effects of Midazolam on chondrogenesis. In addition, Midazolam suppressed transforming growth factor‐β‐induced Smad3 phosphorylation, and this inhibitory effect could be rescued using PBR antagonist PK11195. This study provides a possible explanation for Midazolam‐induced congenital malformations of the musculoskeletal system through PBR.  相似文献   

20.
Mesenchymal stem cells (MSCs) are a promising cell population for cell-based bone repair due to their proliferative potential, ability to differentiate into bone-forming osteoblasts, and their secretion of potent trophic factors that stimulate angiogenesis and neovascularization. To promote bone healing, autogenous or allogeneic MSCs are transplanted into bone defects after differentiation to varying degrees down the osteogenic lineage. However, the contribution of the stage of osteogenic differentiation upon angiogenic factor secretion is unclear. We hypothesized that the proangiogenic potential of MSCs was dependent upon their stage of osteogenic differentiation. After 7 days of culture, we observed the greatest osteogenic differentiation of MSCs when cells were cultured with dexamethasone (OM+). Conversely, VEGF protein secretion and upregulation of angiogenic genes were greatest in MSCs cultured in growth media (GM). Using conditioned media from MSCs in each culture condition, GM-conditioned media maximized proliferation and enhanced chemotactic migration and tubule formation of endothelial colony forming cells (ECFCs). The addition of a neutralizing VEGF(165/121) antibody to conditioned media attenuated ECFC proliferation and chemotactic migration. ECFCs seeded on microcarrier beads and co-cultured with MSCs previously cultured in GM in a fibrin gel exhibited superior sprouting compared to MSCs previously cultured in OM+. These results confirm that MSCs induced farther down the osteogenic lineage possess reduced proangiogenic potential, thereby providing important findings for consideration when using MSCs for bone repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号