首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cimicomorpha, which consists of 16 families representing more than 19,400 species, is the largest infraorder in Heteroptera, Insecta. We present the first molecular phylogenetic investigation of family relationships of Cimicomorpha, including 46 taxa from 12 of 16 Cimicomorphan families. Three genes, with a total of 3277 bp of sequence data (nuclear 18S rDNA: 2022 bp, 28S rDNA: 755 bp, and mitochondrial 16S rDNA: 498 bp) were analyzed. Data partitions were analyzed separately and in combination, by employing ML (maximum likelihood), MP (maximum parsimony), and Bayesian methods. As saturation was detected in substitutions of 16S rDNA, influence of data conflict in combined analyses was further explored by three methods: the incongruence length difference (ILD) test, the partitioned Bremer support (PBS), and the partition addition bootstrap alteration approach (PABA). PBS and PABA approaches suggested that 16S rDNA was not very suitable for addressing relationships at this level in Cimicomorpha. Our results also supported the nabid-cimicoid lineage for Cimicoidea proposed by Schuh and Stys [Schuh, R.T., Stys, P., 1991. Phylogenetic analysis of Cimicomorphan family relationships (Heteroptera). J. NY Entomol. Soc. 99 (3), 298-350]. Data incongruence and the utility of the three genes were briefly discussed.  相似文献   

2.
Heteroptera, the true bugs, are part of the largest clade of non-holometabolous insects, the Hemiptera, and include > 42 000 described species in about 90 families. Despite progress in resolving phylogenetic relationships between and within infraorders since the first combined morphological and molecular analysis published in 1993 (29 taxa, 669 bp, 31 morphological characters), recent hypotheses have relied entirely on molecular data. Weakly supported nodes along the backbone of Heteroptera made these published phylogenies unsuitable for investigations into the evolution of habitats and lifestyles across true bugs. Here we present the first combined morphological and molecular analyses of Heteroptera since 1993, using 135 taxa in 60 families, 4018 aligned bp of ribosomal DNA and 81 morphological characters, and various analytical approaches. The sister-group relationship of the predominantly aquatic Nepomorpha with all remaining Heteroptera is supported in all analyses, and a clade formed by Enicocephalomorpha, Dipsocoromorpha and Gerromorpha in some. All analyses recover Leptopodomorpha + (Cimicomorpha + Pentatomomorpha), mostly with high support. Parsimony- and likelihood-based ancestral state reconstructions of habitats and lifestyles on the combined likelihood phylogeny provide new insights into the evolution of true bugs. The results indicate that aquatic and semi-aquatic true bugs invaded these habitats three times independently from terrestrial habitats in contrast to a recent hypothesis. They further suggest that the most recent common ancestor of Heteroptera was predacious, and that the two large predominantly phytophagous clades (Trichophora and Miroidea) are likely to have derived independently from predatory ancestors. We conclude that by combining morphological and molecular data and employing various analytical methods our analyses have converged on a relatively well-supported hypothesis of heteropteran infraordinal relationships that now requires further testing using phylogenomic and more extensive morphological datasets.  相似文献   

3.
4.
Brochosomes, small secretory particles often found in abundance on the integument of leafhoppers, are currently considered a unique feature of the family Cicadellidae. The present work documents, for the first time, brochosomes in two other groups of Hemiptera, i.e. Psylloidea and Heteroptera. In Heteroptera the occurrence of relatively large amounts of brochosomes on various body parts is documented in several species of different families. Morphological structures of the legs and the setation are illustrated in detail and compared to those of Cicadellidae. The results are based on scanning electron microscopy (SEM) examination of museum specimens. The possible function of brochosomes within Hemiptera is briefly discussed.  相似文献   

5.
The small subunit of nuclear ribosomal RNA (SSU nrRNA), whose sedimentation is mostly 18S in eukaryotes, is considered a relatively conservative marker for resolving phylogenetic relationship at the order level or higher. Length variation in SSU nrDNA is common, and can be rather large in some groups. In studies of Hexapoda phylogeny, the SSU nrDNA has been repeatedly used as a marker. Sternorrhyncha has been rarely included. The lengths of SSU nrDNAs of sternorrhynchids, the basal group of Hemiptera identified in the previous study are 0.3-0.6 kb longer than the usual ones in Hexapoda (1.8-1.9 kb). To use the entire SSU nrDNA sequences or the length-variable parts could cause alignment trouble and therefore affect phylogenetic results, as shown in this study of Euhemiptera phylogeny. Two problems are particularly noticeable. One is that two hyper-variable regions flanking a short length-conservative region could become overlapped in the alignment. This will destroy the positional homology over a larger range. The other is that, when a base pair in a stem of the secondary structure is located near the length-variable regions (LVRs), the simultaneous positional homology of these two bases in the pair is always lost in the alignment results. In this study, the secondary structure model of Hexapoda SSU nrRNA was slightly adjusted and the LVR distributions in it were finely positioned. The noise caused by the hyper LVRs was eliminated and the simultaneous homology for the paired bases was recovered based on the secondary structure model. These corrections improved the quality of the data matrix and hence improved the resolving behavior of the algorithm used. This study provided more convincing evidence for resolving the Euhemiptera suborders phylogeny as (Archaeorrhyncha+(Clypeorrhyncha+(Coleorrhyncha+Heteroptera))). This result provided a more solid background for outgroup determination according to the phylogenetic studies inside each suborder. The problems caused by LVRs have seldom been well addressed. As phylogenetic reconstruction depends more on the data matrix itself than on the algorithm, and length variation of SSU/LSU rRNA exists more or less in any group, it is necessary to closely investigate the effect of rRNA length variation on alignment and phylogenetic reconstruction in more groups.  相似文献   

6.
Park DS  Foottit R  Maw E  Hebert PD 《PloS one》2011,6(4):e18749

Background

DNA barcoding, the analysis of sequence variation in the 5′ region of the mitochondrial cytochrome c oxidase I (COI) gene, has been shown to provide an efficient method for the identification of species in a wide range of animal taxa. In order to assess the effectiveness of barcodes in the discrimination of Heteroptera, we examined 344 species belonging to 178 genera, drawn from specimens in the Canadian National Collection of Insects.

Methodology/Principal Findings

Analysis of the COI gene revealed less than 2% intra-specific divergence in 90% of the taxa examined, while minimum interspecific distances exceeded 3% in 77% of congeneric species pairs. Instances where barcodes fail to distinguish species represented clusters of morphologically similar species, except one case of barcode identity between species in different genera. Several instances of deep intraspecific divergence were detected suggesting possible cryptic species.

Conclusions/Significance

Although this analysis encompasses 0.8% of the described global fauna, our results indicate that DNA barcodes will aid the identification of Heteroptera. This advance will be useful in pest management, regulatory and environmental applications and will also reveal species that require further taxonomic research.  相似文献   

7.
Climate fluctuations and tectonic reconfigurations associated with environmental changes play large roles in determining patterns of adaptation and diversification, but studies documenting how such drivers have shaped the evolutionary history and diversification dynamics of limnic organisms during the Mesozoic are scarce. Members of the heteropteran infraorder Nepomorpha, or aquatic bugs, are ideal for testing the effects of these determinants on their diversification pulses because most species are confined to aquatic environments during their entire life. The group has a relatively mature taxonomy and is well represented in the fossil record. We investigated the evolution of Nepomorpha based on phylogenetic analyses of morphological and molecular characters sampled from 115 taxa representing all 13 families and approximately 40% of recognized genera. Our results were largely congruent with the phylogenetic relationships inferred from morphology. A divergence dating analysis indicated that Nepomorpha began to diversify in the late Permian (approximately 263 Ma), and diversification analyses suggested that palaeoecological opportunities probably promoted lineage diversification in this group.  相似文献   

8.
9.
Lanternflies (Insecta: Hemiptera: Fulgoridae) are frequently used as examples of unusual morphological evolution, with some species (such as the peanut-headed bug, Fulgora laternaria Linnaeus) also ubiquitously cited as icons of tropical insect biodiversity. Despite that entomological notoriety, the phylogeny of this charismatic planthopper family has never before been studied. Presented here are the results of a phylogenetic investigation of Fulgoridae based on DNA nucleotide sequence data from five genetic loci (18S rDNA, 28S rDNA, histone 3, wingless, and cytochrome oxidase I). The resulting topologies are used to test the higher classification of Fulgoridae, which is based primarily on characters associated with the curious head morphology of many included species. Analyses include a taxonomic sample of 69 fulgorid species representing 46 (of 110) genera, 10 (of 11) tribes, and all 8 currently recognized subfamilies. Results of this study: (1) demonstrate the need for a revised classification of Fulgoridae, particularly at the higher taxonomic levels; (2) suggest that the genus Zanna is excluded from a monophyletic Fulgoridae; (3) indicate that there have been multiple losses of the extended head process across fulgorid evolution, with what appears to be convergence (in shape and/or loss) in distantly related lineages; and (4) suggest two alternative biogeographic hypotheses to explain the distribution of extant Fulgoridae, with either an Old World origin and a single subsequent colonization of the New World, or a contemporaneous diversification of Old and New World lineages.  相似文献   

10.
The order Rodentia contains half of all extant mammal species, and from an evolutionary standpoint, there are persistent controversies surrounding the monophyly of the order, divergence dates for major lineages, and relationships among families. Exons of growth hormone receptor (GHR) and breast cancer susceptibility (BRCA1) genes were sequenced for a wide diversity of rodents and other mammals and combined with sequences of the mitochondrial 12S rRNA gene and previously published sequences of von Willebrand factor (vWF). Rodents exhibit rates of amino acid replacement twice those observed for nonrodents, and this rapid rate of evolution influences estimates of divergence dates. Based on GHR sequences, monophyly is supported, with the estimated divergence between hystricognaths and most sciurognaths dating to about 75 MYA. Most estimated dates of divergence are consistent with the fossil record, including a date of 23 MYA for Mus-Rattus divergence. These dates are considerably later than those derived from some other molecular studies. Among combined and separate analyses of the various gene sequences, moderate to strong support was found for several clades. GHR appears to have greater resolving power than do 12S or vWF. Despite its complete unresponsiveness to growth hormone, Cavia (and other hystricognaths) exhibits a conservative rate of change in the intracellular domain of GHR.  相似文献   

11.
The higher‐level phylogeny of Pentatomomorpha, the second largest infraorder of true bugs (Hemiptera: Heteroptera), which includes many important agriculture and forestry pests, has been debated for decades. To investigate the phylogeny and evolutionary history of Pentatomomorpha, we assembled new mitochondrial genomes for 46 species through next‐generation sequencing of pooled genomic DNA. Based on a much broader taxon sampling than available previously, Bayesian analyses using a site‐heterogeneous mixture model (CAT+GTR) resolved the higher‐level phylogeny of Pentatomomorpha as (Aradoidea + (Pentatomoidea + (Coreoidea + (Lygaeoidea + Pyrrhocoroidea)))). There was a transition from trnT/trnP to trnP/trnT in the common ancestor of Pyrrhocoroidea, which indicates that this gene rearrangement could be an autapomorphy for Pyrrhocoroidea. Divergence time analyses estimated that Pentatomomorpha originated c. 242 Ma in the Middle Triassic, and most of the recognized superfamilies originated during the Middle Jurassic to Early Cretaceous. The diversification of families within Pentatomomorpha largely coincided with the radiation of angiosperms during the Early Cretaceous.  相似文献   

12.
Pentatomomorpha is the second suborder in size only to Cimicomorpha in Heteroptera. However, the phylogenetic relationships among members of the suborder are not well established. Sequences from partial nuclear ribosomal 18S gene and mitochondrial COX1 gene were analyzed separately and in combination to generate a preliminary molecular phylogeny of Pentatomomorpha based on 40 species representing 17 putative families. Analyses of the combined sequence data provided a better-resolved and more robust hypothesis of Pentatomomorpha phylogeny than did separate analyses of the individual genes. The phylogenies were mostly congruent with morphological studies. Results strongly supported the monophyly of the infraorder Pentatomomorpha, and the placement of Aradoidea as sister to Trichophora. The monophyletic Trichophora was grouped into two major lineages, one being the superfamily Pentatomoidea, and the other comprising Lygaeoidea, Coreoidea, and Pyrrhocoroidea. The analysis of the ML and ME trees of combined dataset supported the monophyletic Pentatomoidea. In all analysis the Pyrrhocoroidea was polyphyletic; the monophyletic Lygaeoidea was supported only in the analysis of ME tree, and Coreoidea was polyphyletic except in the MP tree of combined dataset. The molecular and morphylogical data both indicated that the family Coreoidae should be revised subsequently. Our phylogenetic results suggested that the COX1 segment alone might not be an optimal molecular marker for the phylogeny of Pentatomomorpha.  相似文献   

13.
A new species of lace-bug Sinaldocader ponomarenkoi sp. nov. (Tingidae: Phatnomatini) is described from the Lower Cretaceous Transbaikalian locality Baissa. The new species differs from the type species S. drakei Popov, 1989 from the Lower Cretaceous of Mongolia in the well-developed lateral carinae of pronotal disc and in the details of hemelytral venation.  相似文献   

14.
Mainly based on collections from Willershausen (Lower Saxony, North Germany), the Pliocene Heteroptera fauna of West Europe is briefly revised. The present compilation includes a checklist with taxonomic and systematic corrections ofJordan’s (1967, 1969) type materials. Naucoroid water bugs of the family Aphelocheiridae are distinguished and the extinct species of the genusAphelocheirus are redescribed. The new genusWillershausenia n.gen. (type species:Nabis strausi Jordan, 1969) is defined and transferred to the coreoid family Alydidae.   相似文献   

15.
Hemiptera is the largest order in Paraneoptera and the fifth largest in Insecta. Disputes about hemipteran phylogeny have concerned the monophyly of Auchenorrhyncha and relationships between the suborders Fulgoromorpha, Cicadomorpha, Coleorrhyncha and Heteroptera. In a phylogenomic study of Hemiptera, we add two new mitochondrial genomes of Peloridiidae (Coleorrhyncha) to those reported in GenBank, to complete the taxon sampling of all suborders. We used two types of data – amino acid sequences and nucleotides of various combinations between protein coding genes, tRNAs and rRNAs – to infer the phylogeny of Hemiptera. In total 27 taxa of Paraneoptera were sampled, 24 of them being hemipterans. Bayesian inference, maximum likelihood and maximum parsimony analyses were employed. The relationship of Cicadomorpha + Heteroptera is always stable in the results with different combinations between data types and phylogenetic methods, but our results challenge the monophyly of ‘Homoptera’ and Auchenorrhyncha. In evaluating the relative contribution of each gene, the phylograms generated by single genes CO1, ND1, ND2, ND4 and ND5, respectively, closely matched the tree yielded by the combined datasets. In light of the taxon‐sampling sensitivity of trees based on mitochondrial genomes, the results need to be tested with further data from nuclear genes.  相似文献   

16.
17.
Previous studies based on different molecular datasets have generated conflicting topologies for Ranunculeae. Here, we revisit the phylogeny of Ranunculeae by analyzing the individual matK/trnK, psbJ-petA, and internal transcribed spacer (ITS) data, the combined matK/trnK, psbJ-petA, and ITS dataset, and the combinedrbcL, trnL-F, matK/trnK, psbJ-petA, and ITS dataset. Based on the tree-based comparisons, blast searches against NCBI of the sequences, and close examination of the alignment, we found that 10 psbJ-petA sequences previously used were questionable (erroneous or problematic) and responsible for previous conflicting topologies. After omitting these questionable sequences, we provide a new phylogeny for Ranunculeae, in which Beckwithia–Cyrtorhyncha, Kumlienia, andPeltocalathos were replaced. These new replacements are supported by corresponding morphological characters. Moreover, three previously proposed intercontinental disjunct distributions within Ranunculus were also refuted. In our framework, our divergence time and biogeographic analyses indicate that divergence time estimates and the ancestral areas reconstructed for 10 of the 15 nodes in the genus-level phylogeny were influenced by elimination of the questionable sequences. The most recent common ancestor of Ranunculeae was inferred to be present in Europe and North America during the late Eocene. Clades I and II began to diversify in Europe and North America, respectively, and subsequently migrated to other continents. This study shows that it is necessary to analyze individual chloroplast DNA region datasets separately to detect questionable sequences early in the study. The combined dataset including the questionable sequences resulted in an erroneous phylogenetic tree, and the use of this tree subsequently affected age estimates and biogeographic analyses.  相似文献   

18.
19.

Background  

The true water bugs are grouped in infraorder Nepomorpha (Insecta: Hemiptera: Heteroptera) and are of great economic importance. The phylogenetic relationships within Nepomorpha and the taxonomic hierarchies of Pleoidea and Aphelocheiroidea are uncertain. Most of the previous studies were based on morphological characters without algorithmic assessment. In the latest study, the molecular markers employed in phylogenetic analyses were partial sequences of 16S rDNA and 18S rDNA with a total length about 1 kb. Up to now, no mitochondrial genome of the true water bugs has been sequenced, which is one of the largest data sets that could be compared across animal taxa. In this study we analyzed the unresolved problems in Nepomorpha using evidence from mitochondrial genomes.  相似文献   

20.
Molecular Biology Reports - The metazoan mitogenomes usually display conserved gene arrangement while thrips are known for their extensive gene rearrangement, and duplication of the control region....  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号