首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Melanized microorganisms are often found in environments with very high background radiation levels such as in nuclear reactor cooling pools and the destroyed reactor in Chernobyl. These findings and the laboratory observations of the resistance of melanized fungi to ionizing radiation suggest a role for this pigment in radioprotection. We hypothesized that the radioprotective properties of melanin in microorganisms result from a combination of physical shielding and quenching of cytotoxic free radicals. We have investigated the radioprotective properties of melanin by subjecting the human pathogenic fungi Cryptococcus neoformans and Histoplasma capsulatum in their melanized and non-melanized forms to sublethal and lethal doses of radiation of up to 8 kGy. The contribution of chemical composition, free radical presence, spatial arrangement, and Compton scattering to the radioprotective properties of melanin was investigated by high-performance liquid chromatography, electron spin resonance, transmission electron microscopy, and autoradiographic techniques. Melanin protected fungi against ionizing radiation and its radioprotective properties were a function of its chemical composition, free radical quenching, and spherical spatial arrangement.  相似文献   

2.
Melanin is a recognized virulence factor in Cryptococcus neoformans; several pathogenetic mechanisms have been suggested. We studied melanin as an antifungal resistance factor. The growth of laccase-active strains of C. neoformans and C. albidus in L-DOPA resulted in the production of black pigment. The formal minimal inhibitory concentrations (MICs) of amphotericin B and fluconazole were not changed by melanization. However, when we examined those wells which contained inhibited cells, we found live cells only in wells containing melanized C. neoformans. In contrast, melanization did not protect C. albidus from killing by amphotericin B. In an amphotericin B time-kill study of C. neoformans, significantly more melanized cells than non-melanized survived for the first few hours. Fluorescence microscopy and flow cytometry analyses showed that fewer melanized cells were stained with the fluorescent dye MitoRed. Incubation of MitoRed (the model) or amphotericin B with melanin extracted from C. neoformans decreased the free concentrations of these substances. Fluconazole, in contrast, was not removed from solution by melanin. This suggests that neoformans cryptococcal melanin deposited amphotericin B in the cell wall binds, reducing its effective concentrations.  相似文献   

3.
Melanin is chemically and by physical characteristics very similar to lignin, a major constituent of wood, and therefore ligninolytic enzymes of white-rot fungi were tested for their ability to selectively degrade melanin. Melanin degradation was studied both in liquid suspensions of melanin and on melaninised paper samples. Liquid suspension samples were tested for changes in their chemical composition (appearance and relative representation of functional groups and chemical bonds) with FTIR spectrometry. Changes in colour of melaninised paper samples were investigated with a colorimeter. Effectiveness of the treatment (bleaching) was determined as a change in lightness (ΔL). Melanin was oxidised in the liquid suspensions, and the intensity of modification varied depending on the procedure employed. The most pronounced changes in melanin were observed in laccase-1-hydroxybenzotriazole (HBT) treatment at heightened air pressure. The most prominent discoloration of the melaninised paper samples (and no visually detectable damage to the integrity of the paper) was, like in the case of the liquid suspensions, observed after laccase-HBT treatment.  相似文献   

4.
Redox buffering by melanin and Fe(II) in Cryptococcus neoformans.   总被引:3,自引:0,他引:3       下载免费PDF全文
Melanin is a fungal extracellular redox buffer which, in principle, can neutralize antimicrobial oxidants generated by immunologic effector cells, but its source of reducing equivalents is not known. We wondered whether Fe(II) generated by the external ferric reductase of fungi might have the physiologic function of reducing fungal melanin and thereby promoting pathogenesis. We observed that exposure of a melanin film electrode to reductants decreased the open-circuit potential (OCP) and reduced the area of a cyclic voltammetric reduction wave whereas exposure to oxidants produced the opposite effects. Exposure to 10, 100, 1,000 or 10,000 microM Fe(II) decreased the OCP of melanin by 0.015, 0.038, 0.100, and 0.120 V, respectively, relative to a silver-silver chloride standard, and decreased the area of the cyclic voltammetric reduction wave by 27, 35, 50, and 83%, respectively. Moreover, exposure to Fe(II) increased the buffering capacity by 44%, while exposure to millimolar dithionite did not increase the buffering capacity. The ratio of the amount of bound iron to the amount of the incremental increase in the following oxidation wave was approximately 1.0, suggesting that bound iron participates in buffering. Light absorption by melanin suspensions was decreased 14% by treatment with Fe(II), consistent with reduction of melanin. Light absorption by suspensions of melanized Cryptococcus neoformans was decreased 1.3% by treatment with Fe(II) (P < 0.05). Cultures of C. neoformans generated between 2 and 160 microM Fe(II) in culture supernatant, depending upon the strain and the conditions [the higher values were achieved by a constitutive ferric reductase mutant in high concentrations of Fe(III)]. We infer that Fe(II) can reduce melanin under physiologic conditions; moreover, it binds to melanin and cooperatively increases redox buffering. The data support a model for physiologic redox cycling of fungal melanin, whereby electrons exported by the yeast to form extracellular Fe(II) maintain the reducing capacity of the extracellular redox buffer.  相似文献   

5.
Previously we have shown that growth of melanized fungi is stimulated by low levels of gamma radiation. The goal of this study was to examine the effects of visible light, UV light, and gamma radiation on the energy level (ATP concentration) in melanized Cryptococcus neoformans cells. Melanized C. neoformans cells as well as non-melanized controls were subjected to visible, UV or gamma radiation, and ATP was quantified by measuring the amount of light emitted by the ATP-dependent reaction of luciferase with luciferin. We found that all three forms of radiation led to a reduction in the ATP levels in melanized C. neoformans cells. This points to a universal melanin-related mechanism underlying observation of ATP decrease in irradiated melanized cells. In contrast, in non-melanized cells visible light led to increase in ATP levels; gamma radiation did not cause any changes while UV exposure resulted in some ATP decrease, however, much less pronounced than in melanized cells.  相似文献   

6.
Fungal melanin staining is a problem on many cultural objects, ranging from the French Palaeolithic cave at Lascaux to books and papers in museum collections. Melanin, because it is insoluble and resistant to bleaching, may leave behind undesirable stains long after the fungal infestation has been controlled. Research into removal of melanin stains from paper and other sensitive substrates using industrial biomimetic oxidizing systems has shown considerable success. We studied relative concentration of the bleaching reagents and the reaction kinetics both in liquid suspensions of melanin and on melanized paper samples. Liquid suspension samples were tested for changes in their chemical composition (appearance and relative representation of functional groups and chemical bonds) with FTIR spectrometry. Changes in color of melanized paper samples were investigated with a CIE L*a*b system, where the effectiveness of the treatment (bleaching) was determined as a change in lightness (ΔL). Melanin was oxidized in the liquid suspensions, and the intensity of modification depended on the procedure employed. Bleaching of melanin with the biomimetic copper–pyridine complex proved to be far superior to the effect of white-rot fungal oxidizing enzymes, previously reported on by this group.  相似文献   

7.
8.
Zhong J  Frases S  Wang H  Casadevall A  Stark RE 《Biochemistry》2008,47(16):4701-4710
Melanins serve a variety of protective functions in plants and animals, but in fungi such as Cryptococcus neoformans they are also associated with virulence. A recently developed solid-state nuclear magnetic resonance (NMR) strategy, based on the incorporation of site-specific (13)C-enriched precursors into melanin, followed by spectroscopy of both powdered and solvent-swelled melanin ghosts, was used to provide new molecular-level insights into fungal melanin biosynthesis. The side chain of an l-dopa precursor was shown to cyclize and form a proposed indole structure in C. neoformans melanin, and modification of the aromatic rings revealed possible patterns of polymer chain elongation and cross-linking within the biopolymer. Mannose supplied in the growth medium was retained as a beta-pyranose moiety in the melanin ghosts even after exhaustive degradative and dialysis treatments, suggesting the possibility of tight binding or covalent incorporation of the pigment into the polysaccharide fungal cell walls. In contrast, glucose was scrambled metabolically and incorporated into both polysaccharide cell walls and aliphatic chains present in the melanin ghosts, consistent with metabolic use as a cellular nutrient as well as covalent attachment to the pigment. The prominent aliphatic groups reported previously in several fungal melanins were identified as triglyceride structures that may have one or more sites of chain unsaturation. These results establish that fungal melanin contains chemical components derived from sources other than l-dopa polymerization and suggest that covalent linkages between l-dopa-derived products and polysaccharide components may serve to attach this pigment to cell wall structures.  相似文献   

9.
There is a need for novel and effective prophylactic treatments and radioprotective materials to protect civilians and military personnel from ionizing radiation in contaminated environments. Melanin, a naturally occurring, ubiquitous pigment, has been shown to confer radioresistance, acting as a potential radioprotective agent. We have demonstrated that melanized Cryptococcus neoformans (CN) cells had improved survival post ionizing irradiation than non-melanized ones. The goal of this study was to identify morphological changes in melanized and non-melanized CN cells following irradiation with densely-ionizing deuterons and alpha particles relative to sparsely-ionizing gamma radiation. We observed significant differences between the melanized and non-melanized CN cellular ultrastructure following irradiation. Melanized CN cells were relatively resistant to mid and max-dose levels of alpha particles and deuterons irradiation. Following irradiation the capsule was stripped, but the cell wall was intact and structural integrity was maintained. At the maximum dose, cytoplasmic vacuolization, and mitochondrial swelling started to occur. In contrast, the non-melanized CN strain was sensitive to the mid-dose radiation. Non-melanized cells presented two morphologies: small condensed, and swollen, lacking structural integrity. This morphological investigation provides the first direct evidence of the radioprotective properties of melanin in CN cells subjected to high RBE and high LET ionizing radiation.  相似文献   

10.
Melanin pigments are substances produced by a broad variety of pathogenic microorganisms, including bacteria, fungi, and helminths. Microbes predominantly produce melanin pigment via tyrosinases, laccases, catecholases, and the polyketide synthase pathway. In fungi, melanin is deposited in the cell wall and cytoplasm, and melanin particles (“ghosts”) can be isolated from these fungi that have the same size and shape of the original cells. Melanin has been reported in several human pathogenic dimorphic fungi including Paracoccidioides brasiliensis, Sporothrix schenckii, Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides posadasii. Melanization appears to contribute to virulence by reducing the susceptibility of melanized fungi to host defense mechanisms and antifungal drugs.  相似文献   

11.
Melanins are a class of natural pigments associated with a wide range of biological functions, including microbial virulence, energy transduction, and protection against solar radiation. Because of their insolubility and structural heterogeneity, solid-state nuclear magnetic resonance (NMR) spectroscopy provides an unprecedented means to define the molecular architecture of these enigmatic pigments. The requirement of obligatory catecholamines for melanization of the pathogenic fungus Cryptococcus neoformans also offers unique opportunities for investigating melanin development. In the current study, pigments produced with l-dopa, methyl-l-dopa, epinephrine, and norepinephrine precursors are compared structurally using (13)C and (1)H magic-angle spinning (MAS) NMR. Striking structural differences were observed for both aromatic and aliphatic molecular constituents of the mature fungal pigment assemblies, thus making it possible to redefine the molecular prerequisites for formation of the aromatic domains of insoluble indole-based biopolymers, to rationalize their distinctive physical characteristics, and to delineate the role of cellular constituents in assembly of the melanized macromolecules with polysaccharides and fatty acyl chain-containing moieties. By achieving an augmented understanding of the mechanisms of C. neoformans melanin biosynthesis and cellular assembly, such studies can guide future drug discovery efforts related to melanin-associated virulence, resistance to tumor therapy, and production of melanin mimetics under cell-free conditions.  相似文献   

12.
Fungal melanins differ in planar stacking distances   总被引:1,自引:0,他引:1  
Melanins are notoriously difficult to study because they are amorphous, insoluble and often associated with other biological materials. Consequently, there is a dearth of structural techniques to study this enigmatic pigment. Current models of melanin structure envision the stacking of planar structures. X ray diffraction has historically been used to deduce stacking parameters. In this study we used X ray diffraction to analyze melanins derived from Cryptococcus neoformans, Aspergillus niger, Wangiella dermatitides and Coprinus comatus. Analysis of melanin in melanized C. neoformans encapsulated cells was precluded by the fortuitous finding that the capsular polysaccharide had a diffraction spectrum that was similar to that of isolated melanin. The capsular polysaccharide spectrum was dominated by a broad non-Bragg feature consistent with origin from a repeating structural motif that may arise from inter-molecular interactions and/or possibly gel organization. Hence, we isolated melanin from each fungal species and compared diffraction parameters. The results show that the inferred stacking distances of fungal melanins differ from that reported for synthetic melanin and neuromelanin, occupying intermediate position between these other melanins. These results suggest that all melanins have a fundamental diffracting unit composed of planar graphitic assemblies that can differ in stacking distance. The stacking peak appears to be a distinguishing universal feature of melanins that may be of use in characterizing these enigmatic pigments.  相似文献   

13.
The poly (ADP-ribose) polymerase is an ubiquitous nuclear protein capable of binding specifically to DNA strand breaks. It synthesizes ADP-ribose polymers proportionally to DNA breaks. The actual method of reference to determine DNA double strand breaks is pulsed-field gel electrophoresis, but this requires many cells. It thus appeared of interest to use poly (ADP-ribos) ylation to follow and estimate γ-ray-induced DNA fragmentation at the level of isolated cells after γ-irradiation in chinese hamster ovary cells (CHO-K1). The results obtained by the immunolabelling technique of ADP-ribose polymers were compared to those obtained by pulsed-field gel electrophoresis. They show that poly (ADP-ribos)ylation reflects the occurrence of radiation-induced DNA strand breaks. A clear relationship exists between the amount of ADP-ribose polymers detected and DNA double strand breaks after γ-irradiation.  相似文献   

14.
Cryptococcus neoformans melanizes in the environment and in mammalian tissues, but the process of melanization in either venue is mysterious given that this microbe produces melanin only from exogenous substrates. Understanding the process of melanization is important because melanization is believed to protect against various stresses in the environment, including UV radiation, and pigment production is associated with virulence. Melanization in C. neoformans requires the availability of diphenolic precursors. In contrast, many bacteria synthesize melanin from homogentisic acid (HGA). We report that C. neoformans strains representing all four serotypes can produce a brown pigment from HGA. The brown pigment was acid resistant and had the electron paramagnetic resonance spectrum of a stable free radical, qualities that identified it as a melanin. Melanin "ghost"-like particles obtained from pigmented C. neoformans cells were hydrophobic, fluorescent under a variety of irradiation wavelengths, negatively charged, insoluble in organic solvents and alcohols, resistant to degradation by strong acids, and vulnerable to bleaching. HGA melanization was laccase dependent and repressed by high concentrations of glucose. The ability of C. neoformans to utilize a bacterial melanin precursor compound suggests a new substrate source for melanization in the environment.  相似文献   

15.
The mitogen-activated protein kinase (MAPK) pathways control diverse cellular functions in pathogenic fungi, including sexual differentiation, stress response, and maintenance of cell wall integrity. Here we characterized a Cryptococcus neoformans gene, which is homologous to the yeast Ste50 that is known to play an important role in mating pheromone response and stress response as an adaptor protein to the Ste11 MAPK kinase kinase in Saccharomyces cerevisiae. The C. neoformans Ste50 was not involved in any of the stress responses or virulence factor production (capsule and melanin) that are controlled by the HOG and Ras/cAMP signaling pathways. However, Ste50 was required for mating in both serotype A and serotype D C. neoformans strains. The ste50Δ mutant was completely defective in cell-cell fusion and mating pheromone production. Double mutation of the STE50 gene blocked increased production of pheromone and the hyper-filamentation phenotype of cells deleted of the CRG1 gene, which encodes the RGS protein that negatively regulates pheromone responsive G-protein signaling via the MAPK pathway. Regardless of the presence of the basidiomycota-specific SH3 domains of Ste50 that are known to be required for full virulence of Ustilago maydis, Ste50 was dispensable for virulence of C. neoformans in a murine model of cryptococcosis. In conclusion, the Ste50 adaptor protein controls sexual differentiation of C. neoformans via the pheromone-responsive MAPK pathway but is not required for virulence.  相似文献   

16.
For more than 40 years fungi have been known to produce pigments known as melanins. Predominantly these have been dihydroxyphenylalanine (DOPA)-melanin and dihydroxynaphthalene (DHN)-melanin. The biochemical and genetical analysis of the biosynthesis pathways have led to the identification of the genes and corresponding enzymes of the pathways. Only recently have both these types of melanin been linked to virulence in some human pathogenic and phytopathogenic fungi. The absence of melanin in human pathogenic and phytopathogenic fungi often leads to a decrease in virulence. In phytopathogenic fungi such as Magnaporthe grisea and Colletotrichum lagenarium, besides other possible functions in pathogenicity, DHN-melanin plays an essential role in generating turgor for plant appressoria to penetrate plant leaves. While the function of melanin in human pathogenic fungi such as Cryptococcus neoformans, Wangiella dermatitidis, Sporothrix schenckii, and Aspergillus fumigatus is less well defined, its role in protecting fungal cells has clearly been shown. Specifically, the ability of both DOPA- and DHN-melanins to quench free radicals is thought to be an important factor in virulence. In addition, in several fungi the production of fungal virulence factors, such as melanin, has been linked to a cAMP-dependent signaling pathway. Many of the components involved in the signaling pathway have been identified.  相似文献   

17.
《Experimental mycology》1989,13(4):403-418
Appressoria of certain pathogenic fungi appear darkly pigmented due to a discrete cell wall layer of melanin. We have studied the function of appressorial melanin using wild-type and melanin-deficient strains of the rice blast pathogenMagnaporthe grisea and the melanin biosynthesis inhibitor tricyclazole. All appressoria exhibited a single, circular, wall-less pore against the substratum. Pores in both melanized and unmelanized appressoria were circumscribed by a ring of material, the pore ring, which might function to seal the pore-substratum interface. Experimental evidence demonstrated that appressoria adhered tightly to surfaces and that melanin did not play a major role in that adhesion. Melanin-less appressoria were consistently and uniformly plasmolyzed by low solute concentrations, whereas melanized appressoria, if formed on a solid surface, were plasmolyzed only by much higher solute concentrations. In addition, the cell wall of living or heat-killed melanized, but never unmelanized, appressoria collapsed during plasmolysis due to cytorrhysis. Melanin, having a differential permeability to water and solute, allowed sealed appressoria to establish and maintain a high internal solute concentration that created a high internal hydrostatic pressure. It is that pressure, we suggest, that empowers the pathogen to penetrate the surface of a plastic coverslip as well as the host.  相似文献   

18.
The fungus Cryptococcus neoformans is an opportunistic human pathogen that causes a life-threatening meningoencephalitis by expression of virulence factors such as melanin, a black pigment produced by the cell wall-associated enzyme laccase. In previous studies (Heung, L. J., Luberto, C., Plowden, A., Hannun, Y. A., and Del Poeta, M. (2004) J. Biol. Chem. 279, 21144-21153) we proposed that the sphingolipid enzyme inositol-phosphoryl ceramide synthase 1 (Ipc1) regulates melanin production through the generation of diacylglycerol (DAG), which was found to activate in vitro protein kinase C1 (Pkc1). Here, we investigated the molecular mechanisms by which DAG regulates Pkc1 in vivo and the effect of this regulation on laccase activity and melanin synthesis. To this end we deleted the putative DAG binding C1 domain of C. neoformans Pkc1 and found that the C1 deletion abolished the activation of Pkc1 by DAG. Deletion of the C1 domain repressed laccase activity and, consequently, melanin production. Finally, we show that these biological effects observed in the C1 deletion mutant are mediated by alteration of cell wall integrity and displacement of laccase from the cell wall. These studies define novel molecular mechanisms addressing Pkc1-laccase regulation by the sphingolipid pathway of C. neoformans, with important implications for understanding and targeting the Ipc1-Pkc1-laccase cascade as a regulator of virulence of this important human pathogen.  相似文献   

19.
Toxicological experiments with radioactive bottom sediments and extrinsic γ-irradiation have demonstrated that the growth of common elodea roots is suppressed by irradiation at doses several times lower than the established threshold dose. The effect of γ-irradiation on the growth of elodea stems has not been observed at any dose used. The data obtained show that elodea could be recommended for use as an indicator of biological effects of radiation in the range of low radiation doses.  相似文献   

20.
The potassium dodecyl sulfate precipitation method was used to quantify DNA-protein crosslinks (DPCs) in lysates of melanoma cells exposed to ultraviolet radiation. Inducing melanin production in these cells before exposure to ultraviolet radiation decreased the apparent yield of DPCs. The decrease could also be produced by addition of melanin to lysates after exposure to crosslinking conditions. Experimental models could attribute this decrease to neither quenching of scintillations from the tritium label used nor to an effect of single strand breaks of DNA. This assay appears to be inappropriate for quantification of DPCs in melanized cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号