首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The DNA/RNA-binding proteins TDP-43 and FUS are found in protein aggregates in a growing number of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and related dementia, but little is known about the neurotoxic mechanisms. We have generated Caenorhabditis elegans and zebrafish animal models expressing mutant human TDP-43 (A315T or G348C) or FUS (S57Δ or R521H) that reflect certain aspects of ALS including motor neuron degeneration, axonal deficits, and progressive paralysis. To explore the potential of our humanized transgenic C. elegans and zebrafish in identifying chemical suppressors of mutant TDP-43 and FUS neuronal toxicity, we tested three compounds with potential neuroprotective properties: lithium chloride, methylene blue and riluzole. We identified methylene blue as a potent suppressor of TDP-43 and FUS toxicity in both our models. Our results indicate that methylene blue can rescue toxic phenotypes associated with mutant TDP-43 and FUS including neuronal dysfunction and oxidative stress.  相似文献   

2.
Amyotrophic lateral sclerosis (ALS) is a fatal disease characterized by the premature loss of motor neurons. While the underlying cellular mechanisms of neuron degeneration are unknown, the cytoplasmic aggregation of several proteins is associated with sporadic and familial forms of the disease. Both wild-type and mutant forms of the RNA-binding proteins FUS and TDP-43 accumulate in cytoplasmic inclusions in the neurons of ALS patients. It is not known if these so-called proteinopathies are due to a loss of function or a gain of toxicity resulting from the formation of cytoplasmic aggregates. Here we present a model of FUS toxicity using the yeast Saccharomyces cerevisiae in which toxicity is associated with greater expression and accumulation of FUS in cytoplasmic aggregates. We find that FUS and TDP-43 have a high propensity for co-aggregation, unlike the aggregation patterns of several other aggregation-prone proteins. Moreover, the biophysical properties of FUS aggregates in yeast are distinctly different from many amyloidogenic proteins, suggesting they are not composed of amyloid.  相似文献   

3.
4.
Amyotrophic lateral sclerosis (ALS, also known as Lou Gehrig''s disease) is a debilitating and universally fatal neurodegenerative disease that devastates upper and lower motor neurons. The causes of ALS are poorly understood. A central role for RNA-binding proteins and RNA metabolism in ALS has recently emerged. The RNA-binding proteins TDP-43 and FUS are principal components of cytoplasmic inclusions found in motor neurons of ALS patients and mutations in TDP-43 and FUS are linked to familial and sporadic ALS. Pathology and genetics also connect TDP-43 and FUS with frontotemporal lobar degeneration with ubiquitin-positive inclusions (FTLD-U). It was unknown whether mechanisms of FUS aggregation and toxicity were similar or different to those of TDP-43. To address this issue, we have employed yeast models and pure protein biochemistry to define mechanisms underlying TDP-43 and FUS aggregation and toxicity, and to identify genetic modifiers relevant to human disease. We have identified prion-like domains in FUS and TDP-43 and provide evidence that these domains are required for aggregation. Our studies have defined key similarities as well as important differences between the two proteins. Collectively, our findings lead us to suggest that FUS and TDP-43, though similar RNA-binding proteins, likely aggregate and confer disease phenotypes via distinct mechanisms.Key words: TDP-43, FUS/TLS, yeast, ALS, FTLD-U, prion  相似文献   

5.
6.
An expansion of the hexanucleotide GGGGCC repeat in the first intron of C9ORF72 gene was recently linked to amyotrophic lateral sclerosis. It is not known if the mutation results in a gain of function, a loss of function or if, perhaps both mechanisms are linked to pathogenesis. We generated a genetic model of ALS to explore the biological consequences of a null mutation of the Caenorhabditis elegans C9ORF72 orthologue, F18A1.6, also called alfa-1. alfa-1 mutants displayed age-dependent motility defects leading to paralysis and the specific degeneration of GABAergic motor neurons. alfa-1 mutants showed differential susceptibility to environmental stress where osmotic stress provoked neurodegeneration. Finally, we observed that the motor defects caused by loss of alfa-1 were additive with the toxicity caused by mutant TDP-43 proteins, but not by the mutant FUS proteins. These data suggest that a loss of alfa-1/C9ORF72 expression may contribute to motor neuron degeneration in a pathway associated with other known ALS genes.  相似文献   

7.
Mutations in the fused in sarcoma/translocated in liposarcoma (FUS/TLS) gene have been associated with amyotrophic lateral sclerosis (ALS). FUS-positive neuropathology is reported in a range of neurodegenerative diseases, including ALS and fronto-temporal lobar degeneration with ubiquitin-positive pathology (FTLD-U). To examine protein aggregation and cytotoxicity, we expressed human FUS protein in yeast. Expression of either wild type or ALS-associated R524S or P525L mutant FUS in yeast cells led to formation of aggregates and cytotoxicity, with the two ALS mutants showing increased cytotoxicity. Therefore, yeast cells expressing human FUS protein recapitulate key features of FUS-positive neurodegenerative diseases. Interestingly, a significant fraction of FUS expressing yeast cells stained by propidium iodide were without detectable protein aggregates, suggesting that membrane impairment and cellular damage caused by FUS expression may occur before protein aggregates become microscopically detectable and that aggregate formation might protect cells from FUS-mediated cytotoxicity. The N-terminus of FUS, containing the QGSY and G rich regions, is sufficient for the formation of aggregates but not cytotoxicity. The C-terminal domain, which contains a cluster of mutations, did not show aggregation or cytotoxicity. Similar to TDP-43 when expressed in yeast, FUS protein has the intrinsic property of forming aggregates in the absence of other human proteins. On the other hand, the aggregates formed by FUS are thioflavin T-positive and resistant to 0.5% sarkosyl, unlike TDP-43 when expressed in yeast cells. Furthermore, TDP-43 and FUS display distinct domain requirements in aggregate formation and cytotoxicity.  相似文献   

8.
Understanding the role of TDP-43 and FUS/TLS in ALS and beyond   总被引:1,自引:0,他引:1  
Dominant mutations in two DNA/RNA binding proteins, TDP-43 and FUS/TLS, are causes of inherited Amyotrophic Lateral Sclerosis (ALS). TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as central in ALS. TDP-43 has binding sites within a third of all mouse and human mRNAs in brain and this binding influences the levels and splicing patterns of at least 20% of those mRNAs. Disease modeling in rodents of the first known cause of inherited ALS-mutation in the ubiquitously expressed superoxide dismutase (SOD1)-has yielded non-cell autonomous fatal motor neuron disease caused by one or more toxic properties acquired by the mutant proteins. In contrast, initial disease modeling for TDP-43 and FUS/TLS has produced highly varied phenotypes. It remains unsettled whether TDP-43 and FUS/TLS mutants provoke disease from a loss of function or gain of toxicity or both. TDP-43 or FUS/TLS misaccumulation seems central not just to ALS (where it is found in almost all instances of disease), but more broadly in neurodegenerative disease, including frontal temporal lobular dementia (FTLD-U) and many examples of Alzheimer's or Huntington's disease.  相似文献   

9.
The RNA-binding proteins TDP-43 and Fused in Sarcoma (FUS) play central roles in neurodegeneration associated with amyotrophic lateral sclerosis and frontotemporal lobar degeneration. Both proteins are components of messenger ribonucleoprotein (mRNP) granules and show cytoplasmic mislocalization in affected tissues. Recently, ataxin-2 was identified as a potent modifier of TDP-43 toxicity in an RNA-dependent manner. This study investigated to clarify how ataxin-2 modifies the TDP-43 and FUS pathological pathway. The expression of cytoplasmic TDP-43, the 35-kDa C-terminal fragment (TDP-p35f), and mutant FUS recruited ataxin-2 to mRNP granules, whereas increased ataxin-2 inhibited the mRNP granule formation of the 35-kDa C-terminal fragment and mutant FUS. A subcellular compartment analysis showed that the overexpressed ataxin-2 increased the cytoplasmic concentrations of both proteins, whereas it decreased their nuclear distributions. These data indicate that increased ataxin-2 impairs the assembly of TDP-43 and FUS into mRNP granules, leading to an aberrant distribution of RNA-binding proteins. Consequently, these sequences may exacerbate the impairment of the RNA-quality control system mediated by amyotrophic lateral sclerosis/frontotemporal lobar degeneration-associated RNA-binding proteins, which forms the core of the degenerative cascade.  相似文献   

10.
Sun Z  Diaz Z  Fang X  Hart MP  Chesi A  Shorter J  Gitler AD 《PLoS biology》2011,9(4):e1000614
TDP-43 and FUS are RNA-binding proteins that form cytoplasmic inclusions in some forms of amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD). Moreover, mutations in TDP-43 and FUS are linked to ALS and FTLD. However, it is unknown whether TDP-43 and FUS aggregate and cause toxicity by similar mechanisms. Here, we exploit a yeast model and purified FUS to elucidate mechanisms of FUS aggregation and toxicity. Like TDP-43, FUS must aggregate in the cytoplasm and bind RNA to confer toxicity in yeast. These cytoplasmic FUS aggregates partition to stress granule compartments just as they do in ALS patients. Importantly, in isolation, FUS spontaneously forms pore-like oligomers and filamentous structures reminiscent of FUS inclusions in ALS patients. FUS aggregation and toxicity requires a prion-like domain, but unlike TDP-43, additional determinants within a RGG domain are critical for FUS aggregation and toxicity. In further distinction to TDP-43, ALS-linked FUS mutations do not promote aggregation. Finally, genome-wide screens uncovered stress granule assembly and RNA metabolism genes that modify FUS toxicity but not TDP-43 toxicity. Our findings suggest that TDP-43 and FUS, though similar RNA-binding proteins, aggregate and confer disease phenotypes via distinct mechanisms. These differences will likely have important therapeutic implications.  相似文献   

11.
TDP-43 and FUS are DNA/RNA binding proteins associated with neuronal inclusions in amyotrophic lateral sclerosis (ALS) patients. Other neurodegenerative diseases are also characterized by neuronal protein aggregates, e.g. Huntington's disease, associated with polyglutamine (polyQ) expansions in the protein huntingtin. Here we discuss our recent paper establishing similarities between aggregates of TDP-43 that have short glutamine and asparagine (Q/N)-rich modules and are soluble in detergents, with those of polyQ and PIN4C that have large Q/N-rich domains and are detergent-insoluble. We also present new, similar data for FUS. Together, we show that like overexpression of polyQ or PIN4C, overexpression of FUS or TDP-43 causes inhibition of the ubiquitin proteasome system (UPS) and toxicity, both of which are mitigated by overexpression of the Hsp40 chaperone Sis1. Also, in all cases toxicity is enhanced by the [PIN+] prion. In addition, we show that the Sis1 mammalian homolog DNAJBI reduces toxicity arising from overexpressed FUS and TDP-43 respectively in human embryonic kidney cells and primary rodent neurons. The common properties of these proteins suggest that heterologous aggregates may enhance the toxicity of a variety of disease-related aggregating proteins, and further that chaperones and the UPS may be key therapeutic targets for diseases characterized by protein inclusions.  相似文献   

12.
Mislocalization, aberrant processing and aggregation of TAR DNA-binding protein 43 (TDP-43) is found in the neurons affected by two related diseases, amyotrophic lateral sclerosis (ALS) and frontotemporal lobe dementia (FTLD). These TDP-43 abnormalities are seen when TDP-43 is mutated, such as in familial ALS, but also in FTLD, caused by null mutations in the progranulin gene. They are also found in many patients with sporadic ALS and FTLD, conditions in which only wild type TDP-43 is present. The common pathological hallmarks and symptomatic cross over between the two diseases suggest that TDP-43 and progranulin may be mechanistically linked. In this study we aimed to address this link by establishing whether overexpression of mutant TDP-43 or knock-down of progranulin in zebrafish embryos results in motor neuron phenotypes and whether human progranulin is neuroprotective against such phenotypes. Mutant TDP-43 (A315T mutation) induced a motor axonopathy characterized by short axonal outgrowth and aberrant branching, similar, but more severe, than that induced by mutant SOD1. Knockdown of the two zebrafish progranulin genes, grna and grnb, produced a substantial decrease in axonal length, with knockdown of grna alone producing a greater decrease in axonal length than grnb. Progranulin overexpression rescued the axonopathy induced by progranulin knockdown. Interestingly, progranulin also rescued the mutant TDP-43 induced axonopathy, whilst it failed to affect the mutant SOD1-induced phenotype. TDP-43 was found to be nuclear in all conditions described. The findings described here demonstrate that progranulin is neuroprotective in vivo and may have therapeutic potential for at least some forms of motor neuron degeneration.  相似文献   

13.
Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that preferentially targets motor neurons. It was recently found that dominant mutations in two related RNA-binding proteins, TDP-43 (43-kDa TAR DNA-binding domain protein) and FUS/TLS (fused in sarcoma/translated in liposarcoma) cause a subset of ALS. The convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations are suggestive of a functional relationship; however, whether or not TDP-43 and FUS/TLS operate in common biochemical pathways is not known. Here we show that TDP-43 and FUS/TLS directly interact to form a complex at endogenous expression levels in mammalian cells. Binding was mediated by an unstructured TDP-43 C-terminal domain and occurred within the context of a 300–400-kDa complex that also contained C-terminal cleavage products of TDP-43 linked to neuropathology. TDP-43 C-terminal fragments were excluded from large molecular mass TDP-43 ribonucleoprotein complexes but retained FUS/TLS binding activity. The functional significance of TDP-43-FUS/TLS complexes was established by showing that RNAi silencing of either TDP-43 or FUS/TLS reduced the expression of histone deacetylase (HDAC) 6 mRNA. TDP-43 and FUS/TLS associated with HDAC6 mRNA in intact cells and in vitro, and competition experiments suggested that the proteins occupy overlapping binding sites. The combined findings demonstrate that TDP-43 and FUS/TLS form a functional complex in intact cells and suggest that convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations may reflect their participation in common biochemical processes.  相似文献   

14.
TAR DNA-binding protein (TDP-43) and fused in sarcoma (FUS) are two highly conserved ribonucleoproteins. Pathogenic mutations of the TDP-43 or the FUS gene are all linked to amyotrophic lateral sclerosis (ALS) that is characterized by progressive degeneration of motor neurons. To better understand the correlation of ALS disease genes with the selectivity of chronic motor neuron degeneration, we examined the longitudinal expression of the TDP-43 and the FUS genes in C57BL6 mice and in Sprague-Dawley rats. TDP-43 and FUS were robustly and ubiquitously expressed in the postnatal mice and rats, but were markedly decreased in the adult rodents. In adulthood, TDP-43 and FUS proteins were even undetectable in peripheral organs including skeletal muscles, liver, and kidney, but were constantly expressed at substantial levels in the central nervous system. Motor neurons expressed the TDP-43 and the FUS genes at robust levels throughout rodent''s lifetime. Moreover, TDP-43 and FUS were accumulated in the cytoplasm of motor neurons in aged animals. Our findings suggest that TDP-43 and FUS play an important role in development and that constant and robust expression of the genes in motor neurons may render the neurons vulnerable to pathogenic mutation of the TDP-43 or the FUS gene. To faithfully model the pathology of TDP-43- or FUS gene mutations in rodents, we must replicate the expression patterns of the TDP-43 and the FUS gene in animals.  相似文献   

15.
The RNA-binding proteins TDP-43 and FUS form abnormal cytoplasmic aggregates in affected tissues of patients with amyotrophic lateral sclerosis and frontotemporal lobar dementia. TDP-43 and FUS localize mainly in the nucleus where they regulate pre-mRNA splicing, but they are also involved in mRNA transport, stability, and translation. To better investigate their cytoplasmic activities, we applied an RNA immunoprecipitation and chip analysis to define the mRNAs associated to TDP-43 and FUS in the cytoplasmic ribonucleoprotein complexes from motoneuronal NSC-34 cells. We found that they bind different sets of mRNAs although converging on common cellular pathways. Bioinformatics analyses identified the (UG)(n) consensus motif in 80% of 3'-UTR sequences of TDP-43 targets, whereas for FUS the binding motif was less evident. By in vitro assays we validated binding to selected target 3'-UTRs, including Vegfa and Grn for TDP-43, and Vps54, Nvl, and Taf15 for FUS. We showed that TDP-43 has a destabilizing activity on Vegfa and Grn mRNAs and may ultimately affect progranulin protein content, whereas FUS does not affect mRNA stability/translation of its targets. We also demonstrated that three different point mutations in TDP-43 did not change the binding affinity for Vegfa and Grn mRNAs or their protein level. Our data indicate that TDP-43 and FUS recognize distinct sets of mRNAs and differently regulate their fate in the cytoplasm of motoneuron-like cells, therefore suggesting complementary roles in neuronal RNA metabolism and neurodegeneration.  相似文献   

16.
TDP-43 and α-synuclein are two disease proteins involved in a wide range of neurodegenerative diseases. While TDP-43 proteinopathy is considered a pathologic hallmark of sporadic amyotrophic lateral sclerosis and frontotemporal lobe degeneration, α-synuclein is a major component of Lewy body characteristic of Parkinson's disease. Intriguingly, TDP-43 proteinopathy also coexists with Lewy body and with synucleinopathy in certain disease conditions. Here we reported the effects of TDP-43 on α-synuclein neurotoxicity in transgenic mice. Overexpression of mutant TDP-43 (M337V substitution) in mice caused early death in transgenic founders, but overexpression of normal TDP-43 only induced a moderate loss of cortical neurons in the transgenic mice at advanced ages. Interestingly, concomitant overexpression of normal TDP-43 and mutant α-synuclein caused a more severe loss of dopaminergic neurons in the double transgenic mice as compared to single-gene transgenic mice. TDP-43 potentiated α-synuclein toxicity to dopaminergic neurons in living animals. Our finding provides in vivo evidence suggesting that disease proteins such as TDP-43 and α-synuclein may play a synergistic role in disease induction in neurodegenerative diseases.  相似文献   

17.
18.
TAR DNA-binding protein 43 (TDP-43) is associated with a spectrum of neurodegenerative diseases. Although TDP-43 resembles heterogeneous nuclear ribonucleoproteins, its RNA targets and physiological protein partners remain unknown. Here we identify RNA targets of TDP-43 from cortical neurons by RNA immunoprecipitation followed by deep sequencing (RIP-seq). The canonical TDP-43 binding site (TG)(n) is 55.1-fold enriched, and moreover, a variant with adenine in the middle, (TG)(n)TA(TG)(m), is highly abundant among reads in our TDP-43 RIP-seq library. TDP-43 RNA targets can be divided into three different groups: those primarily binding in introns, in exons, and across both introns and exons. TDP-43 RNA targets are particularly enriched for Gene Ontology terms related to synaptic function, RNA metabolism, and neuronal development. Furthermore, TDP-43 binds to a number of RNAs encoding for proteins implicated in neurodegeneration, including TDP-43 itself, FUS/TLS, progranulin, Tau, and ataxin 1 and -2. We also identify 25 proteins that co-purify with TDP-43 from rodent brain nuclear extracts. Prominent among them are nuclear proteins involved in pre-mRNA splicing and RNA stability and transport. Also notable are two neuron-enriched proteins, methyl CpG-binding protein 2 and polypyrimidine tract-binding protein 2 (PTBP2). A PTBP2 consensus RNA binding motif is enriched in the TDP-43 RIP-seq library, suggesting that PTBP2 may co-regulate TDP-43 RNA targets. This work thus reveals the protein and RNA components of the TDP-43-containing ribonucleoprotein complexes and provides a framework for understanding how dysregulation of TDP-43 in RNA metabolism contributes to neurodegeneration.  相似文献   

19.
Nutrient availability influences an organism's life history with profound effects on metabolism and lifespan. The association between a healthy lifespan and metabolism is incompletely understood, but a central factor is glucose metabolism. Although glucose is an important cellular energy source, glucose restriction is associated with extended lifespan in simple animals and a reduced incidence of age-dependent pathologies in humans. We report here that glucose enrichment delays mutant polyglutamine, TDP-43, FUS, and amyloid-β toxicity in Caenorhabditis elegans models of neurodegeneration by reducing protein misfolding. Dysregulated metabolism is common to neurodegeneration and we show that glucose enrichment is broadly protective against proteotoxicity.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号