首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
Adaptive radiations are of particular interest owing to what they reveal about the ecological and evolutionary regulation of biodiversity. This applies to localized island radiations such as Darwin''s finches, and also to rapid radiations occurring on a global scale. Here we analyse the macroevolution and macroecology of Pheidole, a famously hyperdiverse and ecologically dominant ant genus. We generate and analyse four novel datasets: (i) a robust global phylogeny including 285 Pheidole species, (ii) a global database on regional Pheidole richness in 365 political areas summarizing over 97 000 individual records from more than 6500 studies, (iii) a global database of Pheidole richness from 3796 local communities and (iv) a database of Pheidole body sizes across species. Analysis of the potential climate drivers of richness revealed that the patterns are statistically very similar across different biogeographic regions, with both regional and local richness associated with the same coefficients of temperature and precipitation. This similarity occurs even though phylogenetic analysis shows that Pheidole reached dominance in communities through serial localized radiations into different biomes within different continents and islands. Pheidole body size distributions have likewise converged across geographical regions. We propose these cases of convergence indicate that the global radiation of Pheidole is structured by deterministic factors regulating diversification and diversity.  相似文献   

4.
5.
6.
An organism's morphology is constrained by its evolutionary history and the need to meet a variety of potentially competing functions. The ant genus Pheidole is the most species‐rich ant genus and almost every species has a dimorphic worker caste (a few are trimorphic). This separation of workers into two developmentally distinct subcastes (smaller minors and larger majors with distinctively large heads) may partially release individuals from functional constraints on morphology, making Pheidole an ideal genus for addressing questions on the evolution of morphology in relation to ecological specialization. Major workers can perform a variety of tasks, although they are usually specialized for defence, as well as food retrieval and processing. Pheidole species vary in their diet, although many species gather seeds. The major workers mill the seeds using large jaws powered by mandible closer muscles that occupy a large proportion of the head cavity. In the present study, we examined the relationship between seed‐harvesting and morphology in Pheidole, hypothesizing that majors of seed‐harvesting species would have larger heads relative to non‐seed‐harvesters to accommodate the powerful mandibular muscles needed to mill seeds. By taking a phylogenetically controlled comparative approach, we found that majors of seed‐associated Pheidole did not have larger heads (width and length) than majors of non‐seed‐harvesting species. However, the head length of minors (and to a lesser extent head width) was smaller in seed‐harvesters. Additionally, we found the difference in head size between majors and minors was greater in seed‐harvesting species. These morphological differences in diet, however, were not related to changes in the rate of evolution in either seed‐harvesting or non‐seed‐harvesting lineages. These findings suggest that the morphologies of worker subcastes can evolve independently of each other, allowing colonies with polymorphic workers to specialize on new resources or tasks in ways not possible in monomorphic species.  相似文献   

7.
Spatial distribution of ant workers and, notably their aggregation/segregation behaviour, is a key-element of the colony social organization contributing to the efficiency of task performance and division of labour. In polymorphic species, specialized worker castes notably differ in their intrinsic aggregation behaviour. In this context, knowing the preponderant role of minors in brood care, we investigate how a stimulus such as brood can influence the spatial patterns of Pheidole pallidula worker castes. In a homogeneous area without brood, it was shown that minors display only a low level of aggregation while majors form large clusters in the central area. Here we find out that these aggregation patterns of both minors and majors can be deeply influenced by the presence of brood. For minors, it nucleates or enhances the formation of a large stable cluster. Such high sensitivity of minors to brood stimuli fits well with their role as main brood tenders in the colony. For majors, interattraction between individuals still remains the prevailing aggregation factor while brood strongly influences the localisation of their cluster. We discuss how the balance between interattraction and sensitivity to environmental stimuli determines the mobility of each worker castes and, consequently, the availability of minors and majors to participate in everyday colony tasks. Moreover, we will evoke the functional value of majors’ cluster location close to the brood, namely with respect to social regulation of the colony caste ratio. Received 30 May 2005; revised 11 January 2006; accepted 13 January 2006.  相似文献   

8.
9.
10.
Nutritional provisioning is a critical component of life history strategies, and of particular interest in social insect colonies because of the role that division of labor plays in resource allocation. To explore the mechanisms that underlie colony nutritional strategies, I examined three populations of the ant Pheidole morrisi across a gradient of overwinter food scarcity over two seasons. P. morrisi colonies were found to employ amixed strategy of fat storage with regard to a longer overwinter period: members of both worker castes increase their percent-fat in a graded manner, while the proportion of a specialized subcaste of majors known as “repletes”, also increased within the colony. Geographic variation in other colony traits such as mean colony size, mean worker size, and minor/major caste ratio were also found, although not always in a manner clearly relating to fat storage. These results indicate that colony demography responds to seasonal fluctuations in food availability through behavioral alterations (increased fat stores and recruitment of replete workers) rather than physical alterations (changes in lean body sizes or caste ratio). The findings illustrate the dynamic role division of labor plays in the success of insect colonies confronting environmental variability. Received 9 May 2006; revised 19 July 2006; accepted 24 July 2006.  相似文献   

11.
Serotonin, a biogenic amine known to be a neuromodulator of insect behavior, has recently been associated with age-related patterns of task performance in the ant Pheidole dentata. We identified worker age- and subcaste-related patterns of serotonergic activity within the optic lobes of the P. dentata brain to further examine its relationship to polyethism. We found strong immunoreactivity in the optic lobes of the brains of both minor and major workers. Serotonergic cell bodies in the optic lobes increased significantly in number as major and minor workers matured. Old major workers had greater numbers of serotonergic cell bodies than minors of a similar age. This age-related increase in serotonergic immunoreactivity, as well as the presence of diffuse serotonin networks in the mushroom bodies, antennal lobes, and central complex, occurs concomitantly with an increase in the size of worker task repertoires. Our results suggest that serotonin is associated with the development of the visual system, enabling the detection of task-related stimuli outside the nest, thus playing a significant role in worker behavioral development and colony-wide division of labor.  相似文献   

12.
Populations of the desert seed-harvesting ant Pheidole xerophylla are often characterized by high nest density leading to competitive interactions between foragers from different nests. We investigated the inter-nest aggression, spatial distribution and genetic structure of a P. xerophylla population of the Mojave Desert in Southern California. Inter-nest aggression was quantified by standardized staged encounters in a neutral arena. Genetic relatedness within nests and relatedness between nests were calculated using allelic frequencies at four microsatellite-DNA loci. We found a bimodal distribution of inter-colony aggression levels with a first mode at low aggression levels and another mode at much higher aggression levels. Inter-colony aggression levels were largely non-transitive. No effect of geographical distance on inter-nest aggression levels was detected. Despite high amounts of variation in inter-colony relatedness ( − 0.24 to 0.37) this variable did not correlate with the level of aggression between nests. Intra-nest relatedness ranged from 0.40 to 0.75 and close inspection of worker genotypes within colonies revealed a high proportion of polygynous colonies or a mixture of polygyny and polyandry. Aggression levels among nests was found to decrease with increasing intra-nest relatedness. These results do not support the idea that aggression is modulated by a nestmate recognition mechanism based on overall genetic similarity. Instead, the absence of transitivity found in inter-colony aggression and bimodal distribution of aggression levels are compatible with a common label acceptance model of nestmate recognition and suggest that label diversity may be encoded by a limited number of loci. Received 29 March 2005; revised 8 September 2005; accepted 27 September 2005.  相似文献   

13.
Ants use their mandibles for a wide variety of tasks related to substrate manipulation, brood transport, food processing, and colony defense. Due to constraints involved in colony upkeep, ants evolved a remarkable diversity of mandibular forms, often related to specific roles such as specialized hunting and seed milling. Considering these varied functional demands, we focused on understanding how the mandible and head shape vary within and between Pheidole subcastes. Using x‐ray microtomography and 3D geometric morphometrics, we tested whether these structures are integrated and modular, and how ecological predictors influenced these features. Our results showed that mandible and head shape of majors and minor workers tend to vary from robust to slender, with some more complex changes related to the mandibular base. Additionally, we found that head and mandible shapes are characterized by a high degree of integration, but with little correlation with feeding and nesting habits. Our results suggest that a combination of structural (allometric) constraints and the behavioral flexibility conferred by subcaste dimorphism might largely buffer selective pressures that would otherwise lead to a fine‐tuning between ecological conditions and morphological adaptation.  相似文献   

14.
The placenta acts not only as a conduit of nutrient and waste exchange between mother and developing fetus, but also functions as a regulator of the intrauterine environment. Recent work has identified changes in the expression of candidate genes, often through epigenetic alteration, which alter the placenta''s function and impact fetal growth. In this study, we used the Illumina Infinium HumanMethylation27 BeadChip array to examine genome-wide DNA methylation patterns in 206 term human placentas. Semi-supervised recursively partitioned mixture modeling was implemented to identify specific patterns of placental DNA methylation that could differentially classify intrauterine growth restriction (IUGR) and small for gestational age (SGA) placentas from appropriate for gestational age (AGA) placentas, and these associations were validated in a masked testing series of samples. Our work demonstrates that patterns of DNA methylation in human placenta are reliably and significantly associated with infant growth and serve as a proof of principle that methylation status in the human term placenta can function as a marker for the intrauterine environment, and could potentially play a critical functional role in fetal development.Key words: epigenetics, DNA methylation, placenta, intrauterine growth restriction, small for gestational age, development, human  相似文献   

15.
《Epigenetics》2013,8(7):920-927
The placenta acts not only as a conduit of nutrient and waste exchange between mother and developing fetus, but also functions as a regulator of the intrauterine environment. Recent work has identified changes in the expression of candidate genes, often through epigenetic alteration, which alter the placenta's function and impact fetal growth. In this study, we used the Illumina Infinium HumanMethylation27 BeadChip array to examine genome-wide DNA methylation patterns in 206 term human placentas. Semi-supervised recursively partitioned mixture modeling was implemented to identify specific patterns of placental DNA methylation that could differentially classify intrauterine growth restriction (IUGR) and small for gestational age (SGA) placentas from appropriate for gestational age (AGA) placentas, and these associations were validated in a masked testing series of samples. Our work demonstrates that patterns of DNA methylation in human placenta are reliably and significantly associated with infant growth and serve as a proof of principle that methylation status in the human term placenta can function as a marker for the intrauterine environment, and could potentially play a critical functional role in fetal development.  相似文献   

16.
Op18 is a highly conserved major cytosolic phosphoprotein which has been implicated in signal transduction in a wide variety of cell types. Freshly isolated peripheral blood lymphocytes (PBL) constitutively express low levels of mostly unphosphorylated Op18. Following mitogenic stimulation of PBL, Op18 synthesis is induced at a time when cells are entering S-phase. In this study we have characterized Op18 phosphorylation during progression of freshly isolated PBL through the cell cycle. Transition from G0 to G1 following activation with OKT3 was associated with an increase in a phosphorylated form designated Op18c. Progression of cells through G1 into S resulted in an increase in phosphorylated Op18 forms, designated Op18a and Op18b, which paralleled new Op18 synthesis. Transition of cells into G2 + M resulted in the appearance of the more acidic phosphorylated forms Op18d and Op18e. Calphostin C, a specific inhibitor of protein kinase C, dramatically decreased all forms of phosphorylated Op18 in OKT3 treated Jurkat cells. Our results suggest that Op18 phosphorylation is mediated in part by PKC activation as well as by other kinases yielding different phosphorylated forms at specific stages of the cell cycle.  相似文献   

17.
We address the organization of workers in social insect societies. We distinguish between changes in behavioural role over the nurse to forager role sequence, which may depend on changes in physiology, and potentially more rapid changes of task within role. We investigated the association between role and nutrient status in the ant Leptothorax albipennis. Worker lipid stores were quantified using a new body size-controlled method, and were related to worker behaviour. Worker lipid stores were evenly distributed amongst colony members at the end of winter, splitting rapidly into two distinct modes (replete nurses and lean foragers) in spring. The proportion of lean foragers increased throughout spring and summer, until most colonies contained only workers of this type. Callow workers then eclosed with intermediate lipid stores. We developed a computer vision system that tracks all nest ants to extract detailed behaviour of individuals of known lipid stores. Lipid storage was negatively correlated with a worker's foraging propensity, and with measures of spatial occupation in the nest and of activity. Different colonies showed a similar quantitative correlation between lipid stores and behavioural role, suggesting that lipid stores were not only correlated with the relative organization of individuals within each nest, but may also have influenced their absolute role. We reviewed the literature and found evidence that nutrient status influences role predisposition in social insect workers. We conclude that the distribution of worker roles may be linked to the balance between foraging income and energetic consumption within the colony directly via worker nutrient status. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

18.
Because workers in colonies of eusocial Hymenoptera are more closely related to sisters than to brothers, theory predicts workers should bias investment in reproductive broods to favour reproductive females over males. However, conflict between queens and workers is predicted. Queens are equally related to daughters and sons, and should act to prevent workers from biasing investment. Previous study of the ant Pheidole desertorum showed that workers are nearly three times more closely related to reproductive females than males; however, the investment sex ratio is very near equal, consistent with substantial queen control of workers. Near-equal investment is produced by an equal frequency of colonies whose reproductive broods consist of only females (female specialists) and colonies whose reproductive broods consist of only males or whose sex ratios are extremely male biased (male specialists). Because natural selection should act on P. desertorum workers to bias investment in favour of reproductive females, why do workers in male-specialist colonies rear only (or mostly) males? We tested the hypothesis that queens prevent workers from rearing reproductive females by experimentally providing workers with immature reproductive broods of both sexes. Workers reared available reproductive females, while failing to rear available males. Worker preference for rearing reproductive females is consistent with queens preventing their occurrence in colonies of male specialists. These results provide evidence that queens and workers will act in opposition to determine the sex ratio, a fundamental prediction of queen-worker conflict theory. Copyright 2000 The Association for the Study of Animal Behaviour.  相似文献   

19.
20.
Introduced species often become ecologically dominant, displacing native species and posing a serious threat to ecosystem function and global biodiversity. Ants are among the most widespread and damaging alien species; introductions are often accompanied by population-level behavioural and genetic changes contributing to their success. We investigated the genetic structure, chemical profile and nestmate recognition in introduced populations of the invasive big-headed ant, Pheidole megacephala, in Australia. Behavioural analyses show that workers are not aggressive towards conspecifics from different nests, even at large geographical scales (up to 3000 km) and between populations encompassing a wide range of environmental conditions. By contrast, interactions with workers of other species invariably result in agonistic behaviours. Genetic analyses reveal that populations have low genetic diversity. No genetic differentiation occurs among nests of the same population; differentiation between populations, though significant, remains weak. Chemical analyses indicate that cuticular lipids are similar between colonies of a population, and that differentiation between populations is low. Altogether, these results indicate that the big-headed ant P. megacephala forms a large unicolonial population across northern/eastern Australia.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号