共查询到20条相似文献,搜索用时 0 毫秒
1.
Phosphorylation of Pkp1 by RIPK4 regulates epidermal differentiation and skin tumorigenesis 下载免费PDF全文
Philbert Lee Shangwen Jiang Yuanyuan Li Jiping Yue Xuewen Gou Shao‐Yu Chen Yingming Zhao Markus Schober Minjia Tan Xiaoyang Wu 《The EMBO journal》2017,36(13):1963-1980
Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post‐translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin‐1) by RIPK4 (receptor‐interacting serine–threonine kinase 4) during epidermal differentiation. With genome‐editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo. Phosphorylation of PKP1's N‐terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK‐PKP1 signaling as novel axis involved in skin stratification and tumorigenesis. 相似文献
2.
Kurasawa M Maeda T Oba A Yamamoto T Sasaki H 《Biochemical and biophysical research communications》2011,(4):506-511
It is well known that calcium ions (Ca2+) induce keratinocyte differentiation. Ca2+ distributes to form a vertical gradient that peaks at the stratum granulosum. It is thought that the stratum corneum (SC) forms the Ca2+ gradient since it is considered the only permeability barrier in the skin. However, the epidermal tight junction (TJ) in the granulosum has recently been suggested to restrict molecular movement to assist the SC as a secondary barrier. The objective of this study was to clarify the contribution of the TJ to Ca2+ gradient and epidermal differentiation in reconstructed human epidermis. When the epidermal TJ barrier was disrupted by sodium caprate treatment, Ca2+ flux increased and the gradient changed in ion-capture cytochemistry images. Alterations of ultrastructures and proliferation/differentiation markers revealed that both hyperproliferation and precocious differentiation occurred regionally in the epidermis. These results suggest that the TJ plays a crucial role in maintaining epidermal homeostasis by controlling the Ca2+ gradient. 相似文献
3.
Mejetta S Morey L Pascual G Kuebler B Mysliwiec MR Lee Y Shiekhattar R Di Croce L Benitah SA 《The EMBO journal》2011,30(17):3635-3646
Jarid2 is required for the genomic recruitment of the polycomb repressive complex-2 (PRC2) in embryonic stem cells. However, its specific role during late development and adult tissues remains largely uncharacterized. Here, we show that deletion of Jarid2 in mouse epidermis reduces the proliferation and potentiates the differentiation of postnatal epidermal progenitors, without affecting epidermal development. In neonatal epidermis, Jarid2 deficiency reduces H3K27 trimethylation, a chromatin repressive mark, in epidermal differentiation genes previously shown to be targets of the PRC2. However, in adult epidermis Jarid2 depletion does not affect interfollicular epidermal differentiation but results in delayed hair follicle (HF) cycling as a consequence of decreased proliferation of HF stem cells and their progeny. We conclude that Jarid2 is required for the scheduled proliferation of epidermal stem and progenitor cells necessary to maintain epidermal homeostasis. 相似文献
4.
So-Hyun Lee Ju-Hoon So Hyun-Taek Kim Jung-Hwa Choi Mi-Sun Lee Seok-Yong Choi Cheol-Hee Kim Min Jung Kim 《Biochemical and biophysical research communications》2014
Loss-of-function mutations in angiopoietin-like 3 (ANGPTL3) cause familial hypobetalipoproteinemia type 2 (FHBL2) in humans. ANGPTL3 belongs to the angiopoietin-like family, the vascular endothelial growth factor family that is structurally similar to angiopoietins and is known for a regulator of lipid and glucose metabolism, although it is unclear how mutations in ANGPTL3 lead to defect in liver development in the vertebrates. We report here that angptl3 is primarily expressed in the zebrafish developing liver and that morpholino (MO) knockdown of Angptl3 reduces the size of the developing liver, which is caused by suppression of cell proliferation, but not by enhancement of apoptosis. However, MO knockdown of Angptl3 did not alter angiogenesis in the developing liver. Additionally, disruption of zebrafish Angptl3 elicits the hypocholesterolemia phenotype that is characteristic of FHBL2 in humans. Together, our findings propose a novel role for Angptl3 in liver cell proliferation and maintenance during zebrafish embryogenesis. Finally, angptl3 morphants will serve as a good model for understanding the pathophysiology of FHBL2. 相似文献
5.
Notch signaling regulates late-stage epidermal differentiation and maintains postnatal hair cycle homeostasis 总被引:2,自引:0,他引:2
Background
Notch signaling involves ligand-receptor interactions through direct cell-cell contact. Multiple Notch receptors and ligands are expressed in the epidermis and hair follicles during embryonic development and the adult stage. Although Notch signaling plays an important role in regulating differentiation of the epidermis and hair follicles, it remains unclear how Notch signaling participates in late-stage epidermal differentiation and postnatal hair cycle homeostasis.Methodology and Principal Findings
We applied Cre/loxP system to generate conditional gene targeted mice that allow inactivation of critical components of Notch signaling pathway in the skin. Rbpj, the core component of all four Notch receptors, and Pofut1, an essential factor for ligand-receptor interactions, were inactivated in hair follicle lineages and suprabasal layer of the epidermis using the Tgfb3-Cre mouse line. Rbpj conditional inactivation resulted in granular parakeratosis and reactive epidermal hyperplasia. Pofut1 conditional inactivation led to ultrastructural abnormalities in the granular layer and altered filaggrin processing in the epidermis, suggesting a perturbation of the granular layer differentiation. Disruption of Pofut1 in hair follicle lineages resulted in aberrant telogen morphology, a decrease of bulge stem cell markers, and a concomitant increase of K14-positive keratinocytes in the isthmus of mutant hair follicles. Pofut1-deficent hair follicles displayed a delay in anagen re-entry and dysregulation of proliferation and apoptosis during the hair cycle transition. Moreover, increased DNA double stand breaks were detected in Pofut1-deficent hair follicles, and real time PCR analyses on bulge keratinocytes isolated by FACS revealed an induction of DNA damage response and a paucity of DNA repair machinery in mutant bulge keratinocytes.Significance
our data reveal a role for Notch signaling in regulating late-stage epidermal differentiation. Notch signaling is required for postnatal hair cycle homeostasis by maintaining proper proliferation and differentiation of hair follicle stem cells. 相似文献6.
7.
Kurata T Kawabata-Awai C Sakuradani E Shimizu S Okada K Wada T 《The Plant journal : for cell and molecular biology》2003,36(1):55-66
We have identified a new Arabidopsis mutant, yore-yore (yre), which has small trichomes and glossy stems. Adhesion between epidermal cells was observed in the organs of the yre shoot. The cloned YRE had high homology to plant genes involved in epicuticular wax synthesis, such as ECERIFERUM1 (CER1) and maize GLOSSY1. The phenotype of transgenic plants harboring double-stranded RNA interference (dsRNAi) YRE was quite similar to that of the yre mutant. The amount of epicuticular wax extracted from leaves and stems of yre-1 was approximately one-sixth of that from the wild type. YRE promoter::GUS and in situ hybridization revealed that YRE was specifically expressed in cells of the L1 layer of the shoot apical meristem and young leaves, stems, siliques, and lateral root primordia. Strong expression was detected in developing trichomes. The trichome structure of cer1 was normal, whereas that of the yre cer1 double mutant was heavily deformed, indicating that epicuticular wax is required for normal growth of trichomes. Double mutants of yre and trichome-morphology mutants, glabra2 (gl2) and transparent testa glabra1 (ttg1), showed that the phenotype of the trichome structure was additive, suggesting that the wax-requiring pathway is distinct from the trichome development pathway controlled by GL2 and TTG1. 相似文献
8.
9.
Yu Z Lin KK Bhandari A Spencer JA Xu X Wang N Lu Z Gill GN Roop DR Wertz P Andersen B 《Developmental biology》2006,299(1):122-136
Defective permeability barrier is an important feature of many skin diseases and causes mortality in premature infants. To investigate the control of barrier formation, we characterized the epidermally expressed Grainyhead-like epithelial transactivator (Get-1)/Grhl3, a conserved mammalian homologue of Grainyhead, which plays important roles in cuticle development in Drosophila. Get-1 interacts with the LIM-only protein LMO4, which is co-expressed in the developing mammalian epidermis. The epidermis of Get-1(-/-) mice showed a severe barrier function defect associated with impaired differentiation of the epidermis, including defects of the stratum corneum, extracellular lipid composition and cell adhesion in the granular layer. The Get-1 mutation affects multiple genes linked to terminal differentiation and barrier function, including most genes of the epidermal differentiation complex. Get-1 therefore directly or indirectly regulates a broad array of epidermal differentiation genes encoding structural proteins, lipid metabolizing enzymes and cell adhesion molecules. Although deletion of the LMO4 gene had no overt consequences for epidermal development, the epidermal terminal differentiation defect in mice deleted for both Get-1 and LMO4 is much more severe than in Get-1(-/-) mice with striking impairment of stratum corneum formation. These findings indicate that the Get-1 and LMO4 genes interact functionally to regulate epidermal terminal differentiation. 相似文献
10.
Yun K Mantani A Garel S Rubenstein J Israel MA 《Development (Cambridge, England)》2004,131(21):5441-5448
The mechanisms that determine whether a precursor cell re-enters the cell cycle or exits and differentiates are crucial in determining the types and numbers of cells that constitute a particular organ. Here, we report that Id4 is required for normal brain size, and regulates lateral expansion of the proliferative zone in the developing cortex and hippocampus. In its absence, proliferation of stem cells in the ventricular zone (VZ) is compromised. In early cortical progenitors, Id4 is required for the normal G1-S transition. By contrast, at later ages, ectopically positioned proliferating cells are found in the mantle zone of the Id4-/- cortex. These observations, together with evidence for the premature differentiation of early cortical stem cells, indicate that Id4 has a unique and complex function in regulating neural stem cell proliferation and differentiation. 相似文献
11.
12.
13.
Maganga R Giles N Adcroft K Unni A Keeney D Wood F Fear M Dharmarajan A 《Biochemical and biophysical research communications》2008,377(2):606-611
The skin provides vital protection from infection and dehydration. Maintenance of the skin is through a constant program of proliferation, differentiation and apoptosis of epidermal cells, whereby proliferating cells in the basal layer differentiating to form the keratinized, anucleated stratum corneum. The WNT signalling pathway is known to be important in the skin. WNT signalling has been shown to be important both in epidermal development and in the maintenance and cycling of hair follicles and epidermal stem cells. However, the precise role for this pathway in epidermal differentiation remains unknown.We investigated the role of the WNT signalling inhibitor sFRP4 in epidermal differentiation. sFRP4 is expressed in both normal skin and keratinocytes in culture. Expression of sFRP4 mRNA and protein increases with keratinocyte differentiation and apoptosis, whilst exposure of keratinocytes to exogenous sFRP4 promotes apoptosis and expression of the terminal differentiation marker Involucrin.These data suggest sFRP4 promotes epidermal differentiation. 相似文献
14.
Hager-Theodorides AL Outram SV Shah DK Sacedon R Shrimpton RE Vicente A Varas A Crompton T 《Journal of immunology (Baltimore, Md. : 1950)》2002,169(10):5496-5504
Bone morphogenetic protein (BMP)2 and BMP4 are involved in the development of many tissues. In this study, we show that BMP2/4 signaling is involved in thymocyte development. Our data suggest that termination of BMP2/4 signaling is necessary for differentiation of CD44(+)CD25(-)CD4(-)CD8(-) double negative (DN) cells along the T cell lineage. BMP2 and BMP4 are produced by the thymic stroma and the requisite BMP receptor molecules (BMPR-1A, BMPR-1B, BMPR-II), and signal transduction molecules (Smad-1, -5, -8, and -4) are expressed by DN thymocytes. BMP4 inhibits thymocyte proliferation, enhances thymocyte survival, and arrests thymocyte differentiation at the CD44(+)CD25(-) DN stage, before T cell lineage commitment. Neutralization of endogenous BMP2 and BMP4 by treatment with the antagonist Noggin promotes and accelerates thymocyte differentiation, increasing the expression of CD2 and the proportion of CD44(-)CD25(-) DN cells and CD4(+)CD8(+) double-positive cells. Our study suggests that the BMP2/4 pathway may function in thymic homeostasis by regulating T cell lineage commitment and differentiation. 相似文献
15.
Transforming growth factor beta regulates the inhibitory actions of epidermal growth factor during granulosa cell differentiation 总被引:1,自引:0,他引:1
The effects of transforming growth factor beta (TGF-beta) on epidermal growth factor (EGF) receptor content and EGF action were studied in cultured granulosa cells from immature diethylstilbestrol-implanted rats. During follicle-stimulating hormone (FSH)-induced differentiation in vitro, EGF receptors increased by 20-fold as measured by the binding of 125I-EGF to the intact cells. Addition of TGF-beta during the 48-h culture period amplified the stimulatory effects of FSH on EGF receptors up to 2-fold, with ED50 and maximal concentrations of 2.5 and 8 pM, respectively. Also TGF-beta alone in amounts from 1.6 to 16 pM increased EGF receptor content 4-fold. The stimulatory effects of TGF-beta were due to increased numbers of EGF receptors/cell, since the growth factor had no effect on the Kd (3-5 X 10(-11) M) of the high-affinity EGF binding site. TGF-beta action was observed within 20 h of granulosa cell culture and was maximal by 48 h of a 96-h culture. The stimulatory actions of TGF-beta in gonadotropin-induced cells were exerted through the cAMP effector system of the granulosa cell, since the growth factor also amplified the induction of EGF receptors by cholera toxin, forskolin, and 8-bromo-cAMP. The augmentation of EGF receptors by TGF-beta resulted in a parallel 2-fold increase in the inhibitory effects of EGF on FSH-induced cAMP production and luteinizing hormone receptor expression during granulosa cell development. TGF-beta did not increase granulosa cell numbers during culture although it elevated [3H]thymidine incorporation into DNA by 2-fold over that of FSH-treated cells. These results indicate that TGF-beta regulates the effects of both FSH and EGF during granulosa cell differentiation and provides evidence that ovarian function may be controlled by the combined actions of gonadotropins and multiple growth factors. 相似文献
16.
Xu Lingli Wang Chengze Li Yongzheng Wang Ying Fu Baiping Yang Guoli 《Functional & integrative genomics》2022,22(5):769-781
Functional & Integrative Genomics - The molecular mechanism of mechanical force regulating the osteogenic differentiation of periodontal ligament stem cells (PDLSCs) has not been clearly... 相似文献
17.
F M Hofman M Brock C R Taylor B Lyons 《Journal of immunology (Baltimore, Md. : 1950)》1988,141(4):1185-1190
The mechanism by which precursor and pre-B cells undergo differentiation is unclear; however, it is known that growth factors play an important role in this maturation process. The lymphokine, IL-4 has been shown to increase expression of class II Ag on B cells and induce B cell proliferation. In the murine system, IL-4 induced differentiation of precursor B cells into pre-B cells. In order to analyze growth factors on B cell development we have established an in vitro culture system for human bone marrow cells. We found that in the presence of IL-4, normal human precursor and pre-B cells can be induced to differentiate in the absence of cell proliferation with four days of culture. Furthermore, IL-4 depressed proliferation induced by supernatant from a T cell line. The differentiation was measured by an increase in both the number of cytoplasmic mu and surface IgM-positive cells. The effect of IL-4 on precursor and pre-B cell differentiation was detected as soon as 14 h of exposure to the lymphokine in the absence of an adherent feeder layer. These data suggest that IL-4 directly affects the differentiation process of normal human precursor and pre-B cells, and may antagonistically affect cell proliferation. 相似文献
18.
Insun Song Kabsun Kim Jung Ha Kim Young-Kyoung Lee Hyun-Jung Jung Hae-Ok Byun Gyesoon Yoon Nacksung Kim 《BMB reports》2014,47(8):463-468
Osteoblasts are specialized mesenchymal cells that are responsible for bone formation. In this study, we examine the role of GATA4 in osteoblast differentiation. GATA4 was abundantly expressed in preosteoblast cells and gradually down-regulated during osteoblast differentiation. Overexpression of GATA4 in osteoblastic cells inhibited alkaline phosphatase activity and nodule formation in osteogenic conditioned cell culture system. In addition, overexpression of GATA4 attenuated expression of osteogenic marker genes, including Runx2, alkaline phosphatase, bone sialoprotein, and osteocalcin, all of which are important for osteoblast differentiation and function. Overexpression of GATA4 attenuated Runx2 promoter activity, whereas silencing of GATA4 increased Runx2 induction. We found that GATA4 interacted with Dlx5 and subsequently decreased Dlx5 binding activity to Runx2 promoter region. Our data suggest that GATA4 acts as a negative regulator in osteoblast differentiation by downregulation of Runx2. [BMB Reports 2014; 47(8): 463-468] 相似文献
19.
Yan Yih Goh Mintu Pal Han Chung Chong Pengcheng Zhu Ming Jie Tan Lakshmi Punugu Chek Kun Tan Royston-Luke Huang Siu Kwan Sze Mark Boon Yang Tang Jeak Ling Ding Sander Kersten Nguan Soon Tan 《The Journal of biological chemistry》2010,285(43):32999-33009
A dynamic cell-matrix interaction is crucial for a rapid cellular response to changes in the environment. Appropriate cell behavior in response to the changing wound environment is required for efficient wound closure. However, the way in which wound keratinocytes modify the wound environment to coordinate with such cellular responses remains less studied. We demonstrated that angiopoietin-like 4 (ANGPTL4) produced by wound keratinocytes coordinates cell-matrix communication. ANGPTL4 interacts with vitronectin and fibronectin in the wound bed, delaying their proteolytic degradation by metalloproteinases. This interaction does not interfere with integrin-matrix protein recognition and directly affects cell-matrix communication by altering the availability of intact matrix proteins. These interactions stimulate integrin- focal adhesion kinase, 14-3-3, and PKC-mediated signaling pathways essential for effective wound healing. The deficiency of ANGPTL4 in mice delays wound re-epithelialization. Further analysis revealed that cell migration was impaired in the ANGPTL4-deficient keratinocytes. Altogether, the findings provide molecular insight into a novel control of wound healing via ANGPTL4-dependent regulation of cell-matrix communication. Given the known role of ANGPTL4 in glucose and lipid homeostasis, it is a prime therapeutic candidate for the treatment of diabetic wounds. It also underscores the importance of cell-matrix communication during angiogenesis and cancer metastasis. 相似文献