首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Burkholderia cepacia complex (Bcc) bacteria are opportunistic pathogens that cause multiresistant pulmonary infections in patients with cystic fibrosis (CF). In this study, we evaluated the in vitro antimicrobial efficacy of eight unsaturated fatty acids against Burkholderia cenocepacia K56-2, a CF epidemic strain. Docosahexaenoic acid (DHA) was the most active compound. Its action can be either bacteriostatic or bactericidal, depending upon the concentration used. The effect of DHA was also evaluated on two others B.?cenocepacia clinical isolates and compared with one representative member of all the 17 Bcc species. To test whether DHA could have a therapeutic potential, we assessed its efficacy using a Galleria mellonella caterpillar model of B.?cenocepacia infection. We observed that the treatment of infected larvae with a single dose of DHA (50 mM) caused an increase in the survival rate as well as a reduced bacterial load. Moreover, DHA administration markedly increases the expression profile of the gene encoding the antimicrobial peptide gallerimycin. Our results demonstrate that DHA has in vitro and in vivo antibacterial activity against Bcc microorganisms. These findings provide evidence that DHA may be a useful nutraceutical for the treatment of CF patients with lung infections caused by antibiotic multiresistant Bcc microorganisms.  相似文献   

2.
Isolates of Burkholderia cenocepacia express a putative haem-binding protein (molecular mass 97 kDa) that displays intrinsic peroxidase activity. Its role has been re-evaluated, and we now show that it is a bifunctional catalase-peroxidase, with activity against tetramethylbenzidine (TMB), o-dianisidine, pyrogallol, and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulphonic) acid (ABTS). Both peroxidase and catalase activities are optimal at pH 5.5-6.0. The gene encoding this enzyme was cloned and expressed in Escherichia coli. We have named it katG because of its similarity to other katGs, including that from Burkholderia pseudomallei. It is substantially similar to a previously described catalase-peroxidase of B. cenocepacia (katA). MS analysis indicated that the initial katG translation product may be post-translationally modified in B. cenocepacia to give rise to the mature 97-kDa catalase-peroxidase.  相似文献   

3.
Burkholderia cepacia complex (BCC) bacteria cause pulmonary infections that can evolve into fatal overwhelming septicemia in chronic granulomatous disease or cystic fibrosis patients. Burkholderia cenocepacia and Burkholderia multivorans are responsible for the majority of BCC infections in cystic fibrosis patients, but B. cenocepacia is generally associated with a poorer prognosis than B. multivorans. The present study investigated whether these pathogens could modulate the normal functions of primary human monocyte-derived dendritic cells (DCs), important phagocytic cells that act as critical orchestrators of the immune response. Effects of the bacteria on maturation of DCs were determined using flow cytometry. DCs co-incubated for 24 h with B. cenocepacia, but not B. multivorans, had reduced expression of costimulatory molecules when compared with standard BCC lipopolysaccharide-matured DCs. B. cenocepacia, but not B. multivorans, also induced necrosis in DCs after 24 h, as determined by annexin V and propidium iodide staining. DC necrosis only occurred after phagocytosis of live B. cenocepacia; DCs exposed to heat-killed bacteria, bacterial supernatant or those pre-treated with cytochalasin D then exposed to live bacteria remained viable. The ability of B. cenocepacia to interfere with normal DC maturation and induce necrosis may contribute to its pathogenicity in susceptible hosts.  相似文献   

4.
Burkholderia cepacia complex is a life-threatening group of pathogens for patients with chronic granulomatous disease (CGD), whose phagocytes are unable to produce reactive oxygen species (ROS). Unlike other CGD pathogens, B. cepacia complex is particularly virulent, characteristically causing septicemia, and is the bacterial species responsible for most fatalities in these patients. We found that a nonmucoid Burkholderia cenocepacia (a predominant species in the B. cepacia complex) isolate was readily ingested by normal human neutrophils under nonopsonic conditions and promoted apoptosis in these cells. The proapoptotic effect was not due to secreted bacterial products, but was dependent on bacterial viability. Phagocytosis was associated with a robust production of ROS, and the apoptotic neutrophils could be effectively cleared by monocyte-derived macrophages. The proapoptotic effect of B. cenocepacia was independent of ROS production because neutrophils from CGD patients were rendered apoptotic to a similar degree as control cells after challenge. More importantly, neutrophils from CGD patients, but not from normal individuals, were rendered necrotic after phagocytosis of B. cenocepacia. The extreme virulence of B. cepacia complex bacteria in CGD, but not in immunocompetent hosts, could be due to its necrotic potential in the absence of ROS.  相似文献   

5.
In cystic fibrosis (CF), infection with Burkholderia cepacia complex (Bcc) strains may cause long-term asymptomatic airway colonization, or severe lung infection leading to rapid pulmonary decline. To assess the virulence of Bcc strains, we established a lung infection model in mice with a null allele of the gene involved in X-linked chronic granulomatous disease (CGD). CGD mice, challenged intratracheally with 10(3) cells of the epidemic Burkholderia cenocepacia strain J2315, died within 3 days from sepsis after bacteria had multiplied to 3.3 x 10(8) cells. Infected mice developed neutrophil-dominated lung abscesses. Other B. cenocepacia strains and a B. cepacia strain were less virulent and one B. multivorans and one B. vietnamensis CF isolate were both avirulent. Bcc mutants, defective in exopolysaccharide synthesis or quorum sensing revealed diminished or no abscess formation and mortality. Immunofluorescence staining of Bcc-infected murine and CF lung tissues revealed colocalization of Bcc and neutrophils, suggesting Bcc persistence within neutrophils in CGD and CF. In vitro, Bcc cells were rapidly killed during aerobic neutrophil phagocytosis; however, the pathogens survived in neutrophils with blocked nicotinamide adenine dinucleotide phosphate oxidase activity and under anaerobic conditions. We conclude that the Bcc infection model in CGD mice is well suited for the assessment of Bcc virulence.  相似文献   

6.
Burkholderia pseudomallei and its host-adapted deletion clone Burkholderia mallei cause the potentially fatal human diseases melioidosis and glanders, respectively. The antibiotic resistance profile and ability to infect via aerosol of these organisms and the absence of protective vaccines have led to their classification as major biothreats and select agents. Although documented infections by these bacteria date back over 100 years, relatively little is known about their virulence and pathogenicity mechanisms. We used in silico genomic subtraction to generate their virulome, a set of 650 putative virulence-related genes shared by B. pseudomallei and B. mallei but not present in five closely related nonpathogenic Burkholderia species. Although most of these genes are clustered in putative operons, the number of targets for mutant construction and verification of reduced virulence in animal models is formidable. Therefore, Galleria mellonella (wax moth) larvae were evaluated as a surrogate host; we found that B. pseudomallei and B. mallei, but not other phylogenetically related bacteria, were highly pathogenic for this insect. More importantly, four previously characterized B. mallei mutants with reduced virulence in hamsters or mice had similarly reduced virulence in G. mellonella larvae. Site-specific inactivation of selected genes in the computationally derived virulome identified three new potential virulence genes, each of which was required for rapid and efficient killing of larvae. Thus, this approach may provide a means to quickly identify high-probability virulence genes in B. pseudomallei, B. mallei, and other pathogens.  相似文献   

7.
In this study, it was demonstrated, by using agar diffusion tests and a Transwell system, that Burkholderia multivorans NKI379 has an antagonistic effect against the growth of B. pseudomallei. Bacterial representatives were isolated from agricultural crop soil and mixed to construct a partial bacterial community structure that was based on the results of reproducible patterns following PCR-denaturing gradient gel electrophoresis analysis of total soil chromosomes. The antagonistic effect of B. multivorans on B. pseudomallei was observed in this imitate community. In a field study of agricultural crop soil, the presence of B. pseudomallei was inversely related to the presence of the antagonistic strains B. multivorans or B. cenocepacia. B. multivorans NKI379 can survive in a broader range of pH, temperatures and salt concentrations than B. pseudomallei, suggesting that B. multivorans can adapt to extreme environmental changes and therefore predominates over B. pseudomallei in natural environments.  相似文献   

8.
The antibacterial activity of photocatalytic titanium dioxide (TiO(2)) substrates is induced primarily by UV light irradiation. Recently, nitrogen- and carbon-doped TiO(2) substrates were shown to exhibit photocatalytic activities under visible-light illumination. Their antibacterial activity, however, remains to be quantified. In this study, we demonstrated that nitrogen-doped TiO(2) substrates have superior visible-light-induced bactericidal activity against Escherichia coli compared to pure TiO(2) and carbon-doped TiO(2) substrates. We also found that protein- and light-absorbing contaminants partially reduce the bactericidal activity of nitrogen-doped TiO(2) substrates due to their light-shielding effects. In the pathogen-killing experiment, a significantly higher proportion of all tested pathogens, including Shigella flexneri, Listeria monocytogenes, Vibrio parahaemolyticus, Staphylococcus aureus, Streptococcus pyogenes, and Acinetobacter baumannii, were killed by visible-light-illuminated nitrogen-doped TiO(2) substrates than by pure TiO(2) substrates. These findings suggest that nitrogen-doped TiO(2) has potential application in the development of alternative disinfectants for environmental and medical usages.  相似文献   

9.
Burkholderia pseudomallei is a Gram-negative saprophytic bacterium that causes severe sepsis with a high mortality rate in humans and a vaccine is not available. Bacteriophages are viruses of bacteria that are ubiquitous in nature. Several lysogenic phages of Burkholderia spp. have been found but information is scarce for lytic phages. Six phages, ST2, ST7, ST70, ST79, ST88 and ST96, which lyse B. pseudomallei, were isolated from soil in an endemic area. The phages belong to the Myoviridae family. The range of estimated genome sizes is 24.0-54.6 kb. Phages ST79 and ST96 lysed 71% and 67% of tested B. pseudomallei isolates and formed plaques on Burkholderia mallei but not other tested bacteria, with the exception of closely related Burkholderia thailandensis which was lysed by ST2 and ST96 only. ST79 and ST96 were observed to clear a mid-log culture by lysis within 6 h when infected at a multiplicity of infection of 0.1. As ST79 and ST96 phages effectively lysed B. pseudomallei, their potential use as a biocontrol of B. pseudomallei in the environment or alternative treatment in infected hosts could lead to benefits from phages that are available in nature.  相似文献   

10.
The species composition of a Burkholderia cepacia complex population naturally occurring in the maize rhizosphere was investigated by using both culture-dependent and culture-independent methods. B. cepacia complex isolates were recovered from maize root slurry on the two selective media Pseudomonas cepacia azelaic acid tryptamine (PCAT) and trypan blue tetracycline (TB-T) and subjected to identification by a combination of restriction fragment length polymorphism (RFLP) analysis and species-specific polymerase chain reaction (PCR) tests of the recA gene. DNA extracted directly from root slurry was examined by means of nested PCR to amplify recA gene with species-specific B. cepacia complex primers and to obtain a library of PCR amplified recA genes. Using the culture-dependent method the species Burkholderia cepacia, Burkholderia cenocepacia, Burkholderia ambifaria and Burkholderia pyrrocinia were identified, whereas using the culture-independent method also the species Burkholderia vietnamiensis was detected. The latter method also allowed us to highlight a higher diversity within the B. cenocepacia species. In fact, by using the culture-independent method the species B. cenocepacia recA lineages IIIA and IIID besides B. cenocepacia recA lineage IIIB were detected. Moreover, higher heterogeneity of recA RFLP patterns was observed among clones assigned to the species B. cenocepacia than among B. cenocepacia isolates from selective media.  相似文献   

11.
Burkholderia pseudomallei infections are fastidious to treat with conventional antibiotic therapy, often involving a combination of drugs and long-term regimes. Bacterial genetic determinants contribute to the resistance of B. pseudomallei to many classes of antibiotics. In addition, anaerobiosis and hypoxia in abscesses typical of melioidosis select for persistent populations of B. pseudomallei refractory to a broad spectrum of antibacterials. We tested the susceptibility of B. pseudomallei to the drugs hydroxyurea, spermine NONOate and DETA NONOate that release nitric oxide (NO). Our investigations indicate that B. pseudomallei are killed by NO in a concentration and time-dependent fashion. The cytoxicity of this diatomic radical against B. pseudomallei depends on both the culture medium and growth phase of the bacteria. Rapidly growing, but not stationary phase, B. pseudomallei are readily killed upon exposure to the NO donor spermine NONOate. NO also has excellent antimicrobial activity against anaerobic B. pseudomallei. In addition, persistent bacteria highly resistant to most conventional antibiotics are remarkably susceptible to NO. Sublethal concentrations of NO inhibited the enzymatic activity of [4Fe-4S]-cofactored aconitase of aerobic and anaerobic B. pseudomallei. The strong anti-B. pseudomallei activity of NO described herein merits further studies on the application of NO-based antibiotics for the treatment of melioidosis.  相似文献   

12.
Burkholderia cepacia complex is a group of bacterial pathogens that cause opportunistic infections in cystic fibrosis (CF). The most virulent of these is Burkholderia cenocepacia. Matrix metalloproteinases (MMPs) are upregulated in CF patients. The aim of this work was to examine the role of MMPs in the pathogenesis of B. cepacia complex, which has not been explored to date. Real-time PCR analysis showed that B. cenocepacia infection upregulated MMP-2 and MMP-9 genes in the CF lung cell line CFBE41o- within 1 h, whereas MMP-2, -7, and -9 genes were upregulated in the non-CF lung cell line 16HBE14o-. Conditioned media from both cell lines showed increased MMP-9 activation following B. cenocepacia infection. Conditioned media from B. cenocepacia-infected cells significantly reduced the rate of wound healing in confluent lung epithelia (P < 0.05), in contrast to conditioned media from Pseudomonas aeruginosa-infected cells, which showed predominant MMP-2 activation. Treatment of control conditioned media from both cell lines with the MMP activator 4-aminophenylmercuric acetate (APMA) also resulted in clear activation of MMP-9 and to a much lesser extent MMP-2. APMA treatment of control media also delayed the repair of wound healing in confluent epithelial cells. Furthermore, specific inhibition of MMP-9 in medium from cells exposed to B. cenocepacia completely reversed the delay in wound repair. These data suggest that MMP-9 plays a role in the reduced epithelial repair observed in response to B. cenocepacia infection and that its activation following B. cenocepacia infection contributes to the pathogenesis of this virulent pathogen.  相似文献   

13.
Recently we identified a bacterial factor (BimA) required for actin-based motility of Burkholderia pseudomallei. Here we report that Burkholderia mallei and Burkholderia thailandensis are capable of actin-based motility in J774.2 cells and that BimA homologs of these bacteria can restore the actin-based motility defect of a B. pseudomallei bimA mutant. While the BimA homologs differ in their amino-terminal sequence, they interact directly with actin in vitro and vary in their ability to bind Arp3.  相似文献   

14.
Metalloproteinases are abundant enzymes in crotalidae and viperidae snake venoms. Snake venom metalloproteinases (SVMPs) comprise a family of zinc-dependent enzymes, which display many different biological activities. A 23.1 kDa protein was isolated from Agkistrodon halys (pallas, Chinese viper) snake venom. The toxin is a single chain polypeptide with a molecular weight of 23146.61 and an N-terminal sequence (MIQVLLVTICLAVFPYQGSSIILES) relatively similar to that of other metalloprotein-like proteases isolated from the snake venoms of the Viperidae family. The antibacterial effect of Agkistrodon halys metalloproteinase (AHM) on Burkholderia pseudomallei (strains TES and KHW), Escherichia coli, Enterobacter aerogenes, Proteus vulgaris, Proteus mirabilis, Pseudomonas aeruginosa (Gram-negative bacteria) and Staphylococcus aureus (Gram-positive bacterium) was studied at a concentration 120 microM. Interestingly, we found that the metalloproteinase exhibited antibacterial properties and was more active against S. aureus, P. vulgaris, P. mirabilis and multi-drug resistant B. pseudomallei (strain KHW) bacteria. AHM variants with high bacteriostatic activity (MIC 1.875-60 microM) also tended to be less cytotoxic against U-937 human monocytic cells up to 1 mM concentrations. These results suggest that this metalloprotein exerts its antimicrobial effect by altering membrane packing and inhibiting mechanosensitive targets.  相似文献   

15.
The cultivation temperature of Burkholderia pseudomallei has been shown to determine both the direction of morphological dissociation and the prophage induction rate. Inheriting plasmid replicons was found to depend on the temperature conditions during the growth of these bacteria. No influence of B. pseudomallei plasmids pPM1 and pCM2 on the lysogenic state of the bacterial cell and the formation of different B. pseudomallei variants was noted.  相似文献   

16.
Much effort has been devoted to the development of mouse monoclonal antibodies that react specifically with Burkholderia mallei and Burkholderia pseudomallei for diagnostic and/or therapeutic purposes. Our present study focused on the screening of a phage-displayed nonimmune human single-chain Fv (scFv) antibody library against heat-killed B. mallei and B. pseudomallei for the generation of human scFv antibodies specific to the two pathogenic species of bacteria. Using two different panning procedures, we obtained seven different scFv phage antibodies that interacted with the heat-killed whole bacterial cells of B. mallei and B. pseudomallei. Our results demonstrate that panning of a human scFv antibody library against heat-killed whole bacterial cells may provide a valuable strategy for developing human monoclonal antibodies against the highly pathogenic bacteria.  相似文献   

17.
We have previously shown differences in virulence between species of the Burkholderia cepacia complex using the alfalfa infection model and the rat agar bead chronic infection model. Burkholderia cenocepacia strains were more virulent in these two infection models than Burkholderia multivorans and Burkholderia stabilis strains. In order to identify genes that may account for the increased virulence of B. cenocepacia, suppression-subtractive hybridization was performed between B. cenocepacia K56-2 and B. multivorans C5393 and between B. cenocepacia K56-2 and B. stabilis LMG14294. Genes identified included DNA modification/phage-related/insertion sequences and genes involved in cell membrane/surface structures, resistance, transport, metabolism, regulation, secretion systems, as well as genes of unknown function. Several of these genes were present in the ET12 lineage of B. cenocepacia but not in other members of the B. cepacia complex. Virulence studies in a chronic lung infection model determined that the hypothetical YfjI protein, which is unique to the ET12 clone, contributes to lung pathology. Other genes specific to B. cenocepacia and/or the ET12 lineage were shown to play a role in biofilm formation and swarming or swimming motility.  相似文献   

18.
Burkholderia pseudomallei and Burkholderia thailandensis express similar O-antigens (O-PS II) in which their 6-deoxy-alpha-L-talopyranosyl (L-6dTalp) residues are variably substituted with O-acetyl groups at the O-2 or O-4 positions. In previous studies we demonstrated that the protective monoclonal antibody, Pp-PS-W, reacted with O-PS II expressed by wild-type B. pseudomallei strains but not by a B. pseudomallei wbiA null mutant. In the present study we demonstrate that WbiA activity is required for the acetylation of the L-6dTalp residues at the O-2 position and that structural modification of O-PS II molecules at this site is critical for recognition by Pp-PS-W.  相似文献   

19.
Burkholderia pseudomallei and Burkholderia mallei are category B select agents and must be studied under BSL3 containment in the United States. They are typically resistant to multiple antibiotics, and the antibiotics used to treat B. pseudomallei or B. mallei infections may not be used as selective agents with the corresponding Burkholderia species. Here, we investigated alanine racemase deficient mutants of B. pseudomallei and B. mallei for development of non-antibiotic-based genetic selection methods and for attenuation of virulence. The genome of B. pseudomallei K96243 has two annotated alanine racemase genes (bpsl2179 and bpss0711), and B. mallei ATCC 23344 has one (bma1575). Each of these genes encodes a functional enzyme that can complement the alanine racemase deficiency of Escherichia coli strain ALA1. Herein, we show that B. pseudomallei with in-frame deletions in both bpsl2179 and bpss0711, or B. mallei with an in-frame deletion in bma1575, requires exogenous D-alanine for growth. Introduction of bpsl2179 on a multicopy plasmid into alanine racemase deficient variants of either Burkholderia species eliminated the requirement for D-alanine. During log phase growth without D-alanine, the viable counts of alanine racemase deficient mutants of B. pseudomallei and B. mallei decreased within 2 hours by about 1000-fold and 10-fold, respectively, and no viable bacteria were present at 24 hours. We constructed several genetic tools with bpsl2179 as a selectable genetic marker, and we used them without any antibiotic selection to construct an in-frame ΔflgK mutant in the alanine racemase deficient variant of B. pseudomallei K96243. In murine peritoneal macrophages, wild type B. mallei ATCC 23344 was killed much more rapidly than wild type B. pseudomallei K96243. In addition, the alanine racemase deficient mutant of B. pseudomallei K96243 exhibited attenuation versus its isogenic parental strain with respect to growth and survival in murine peritoneal macrophages.  相似文献   

20.
Melioidosis is an emerging infectious disease of humans and animals in the tropics caused by the soil bacterium Burkholderia pseudomallei. Despite high fatality rates, the ecology of B.pseudomallei remains unclear. We used a combination of field and laboratory studies to investigate B.pseudomallei colonization of native and exotic grasses in northern Australia. Multivariable and spatial analyses were performed to determine significant predictors for B.pseudomallei occurrence in plants and soil collected longitudinally from field sites. In plant inoculation experiments, the impact of B.pseudomallei upon these grasses was studied and the bacterial load semi-quantified. Fluorescence in situ hybridization and confocal laser scanning microscopy were performed to localize the bacteria in plants. Burkholderia pseudomallei was found to inhabit not only the rhizosphere and roots but also aerial parts of specific grasses. This raises questions about the potential spread of B.pseudomallei by grazing animals whose droppings were found to be positive for these bacteria. In particular, B.pseudomallei readily colonized exotic grasses introduced to Australia for pasture. The ongoing spread of these introduced grasses creates new habitats suitable for B.pseudomallei survival and may be an important factor in the evolving epidemiology of melioidosis seen both in northern Australia and elsewhere globally.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号