首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
The goldfish optic nerve can regenerate after injury. To understand the molecular mechanism of optic nerve regrowth, we identified genes whose expression is specifically up-regulated during the early stage of optic nerve regeneration. A cDNA library constructed from goldfish retina 5 days after transection was screened by differential hybridization with cDNA probes derived from axotomized or normal retina. Of six cDNA clones isolated, one clone was identified as the Na,K-ATPase catalytic subunit alpha3 isoform by high- sequence homology. In northern hybridization, the expression level of the mRNA was significantly increased at 2 days and peaked at 5-10 days, and then gradually decreased and returned to control level by 45 days after optic nerve transection. Both in situ hybridization and immunohistochemical staining have revealed the location of this transient retinal change after optic nerve transection. The increased expression was observed only in the ganglion cell layer and optic nerve fiber layer at 5-20 days after optic nerve transection. In an explant culture system, neurite outgrowth from the retina 7 days after optic nerve transection was spontaneously promoted. A low concentration of ouabain (50-100 nm ) completely blocked the spontaneous neurite outgrowth from the lesioned retina. Together, these data indicate that up-regulation of the Na,K-ATPase alpha3 subunit is involved in the regrowth of ganglion cell axons after axotomy.  相似文献   

3.
The goldfish visual pathway displays a remarkable capacity for continued development and plasticity. The intermediate filament proteins in this pathway are unexpected and atypical, suggesting these proteins provide a structure that supports growth and plasticity. Using a goldfish retina lambda gt10 library, we have isolated a full-length cDNA clone that encodes a novel type III intermediate filament protein. The mRNA for this protein is located in retinal ganglion cells, and its level dramatically increases during optic nerve regeneration. The protein is transported into the optic nerve within the slow phase of axonal transport. We have named this protein plasticin because it was isolated from a neuronal pathway well known for its plasticity.  相似文献   

4.
The use of purified piscine plasminogen in a chromogenic solution assay enabled us to detect plasminogen activator (PA) activity in crude homogenates of goldfish optic nerve following nerve injury. In contrast, no activity was detected in the homogenates of uninjured nerve. Under conditions allowing regeneration of the optic axons (optic nerve crush), PA activity peaked 8 days after crush, and decreased to undetectable levels by 60 days. Under conditions allowing only degeneration of the axons (enucleation), the activity peaked at 8 days but decreased more rapidly. Casein zymography of samples after fractionation in SDS-PAGE showed that PA activity migrated as a doublet at Mr = 60-65 kd. Using this assay, activity was also observed in uninjured control nerves. This plasminogen-dependent activity migrated as three bands of higher molecular weight (Mr = 75, 95 and 120 kd) and was undetectable in solution assays of unfractionated extracts, suggesting complex formation with an inhibitor(s). Fibrin overlay assay of retinal explants and isolated primary cells in culture suggest that the goldfish PA is associated with the glial cells of the goldfish visual pathway.  相似文献   

5.
Fish, unlike mammals, can regenerate axons in the optic nerve following optic nerve injury. We hypothesized that using microarray analysis to compare gene expression in fish which had experienced optic nerve lesion to fish which had undergone a similar operation but without optic nerve injury would reveal genes specifically involved in responding to optic nerve injury (including repair), reducing detection of genes involved in the general stress and inflammatory responses. We discovered 120 genes were significantly (minimally two-fold with a P-value  0.05) differentially expressed (up or down) at one or more time point. Among these was ATF3, a member of the cAMP-response element binding protein family. Work by others has indicated that elevated cAMP could be important in axon regeneration. We investigated ATF3 expression further by qRT-PCR, in situ hybridization and immunohistochemistry and found ATF3 expression is significantly upregulated in the ganglion cell layer of the retina, the nerve fiber layer and the optic nerve of the injured eye. The upregulation in retina is detectable by qRT-PCR by 24 h after injury, at which time ATF-3 mRNA levels are 8-fold higher than in retinas from sham-operated fish. We conclude ATF3 may be an important mediator of optic nerve regeneration-promoting gene expression in fish, a role which merits further investigation.  相似文献   

6.
We report the cDNA sequence and predicted amino acid sequence of a novel type I keratin, designated as GK50, and show that keratin expression in the goldfish optic nerve is highly complex. The GK50 protein is one of at least three type I keratins expressed in goldfish optic nerve based on both antibody reactivity and blot-binding to the type II keratin ON3. After optic nerve crush in situ hybridization shows a localized increase in GK50 mRNA expression in the crush zone. This is in contrast to ON3 mRNA which shows a localized increase that is limited to the proximal and distal margins of the crush zone, suggesting a diversity of keratin expression in different cell types of the goldfish optic nerve.  相似文献   

7.
8.
Goldfish retinal ganglion cells (RGCs) can regrow their axons after optic nerve injury. However, the reason why goldfish RGCs can regenerate after nerve injury is largely unknown at the molecular level. To investigate regenerative properties of goldfish RGCs, we divided the RGC regeneration process into two components: (1) RGC survival, and (2) axonal elongation processes. To characterize the RGC survival signaling pathway after optic nerve injury, we investigated cell survival/death signals such as Bcl-2 family members in the goldfish retina. Amounts of phospho-Akt (p-Akt) and phospho-Bad (p-Bad) in the goldfish retina rapidly increased four- to five-fold at the protein level by 3-5 days after nerve injury. Subsequently, Bcl-2 levels increased 1.7-fold, accompanied by a slight reduction in caspase-3 activity 10-20 days after injury. Furthermore, level of insulin-like growth factor-I (IGF-I), which activates the phosphatidyl inositol-3-kinase (PI3K)/Akt system, increased 2-3 days earlier than that of p-Akt in the goldfish retina. The cellular localization of these molecular changes was limited to RGCs. IGF-I treatment significantly induced phosphorylation of Akt, and strikingly induced neurite outgrowth in the goldfish retina in vitro. On the contrary, addition of the PI3K inhibitor wortmannin, and IGF-I antibody inhibited Akt phosphorylation and neurite outgrowth in an explant culture. Thus, we demonstrated, for the first time, the signal cascade for early upregulation of IGF-I, leading to RGC survival and axonal regeneration in adult goldfish retinas through PI3K/Akt system after optic nerve injury. The present data strongly indicate that IGF-I is one of the most important molecules for controlling regeneration of RGCs after optic nerve injury.  相似文献   

9.
Pax2 is essential for the development of the urogenital system, neural tube, otic vesicle, optic cup and optic tract [Dressler, G.R., Deutsch, U., et al., 1990. PAX2, a new murine paired-box-containing gene and its expression in the developing excretory system. Development 109 (4), 787-795; Nornes, H.O., Dressler, G.R., et al., 1990. Spatially and temporally restricted expression of Pax2 during murine neurogenesis. Development 109 (4), 797-809; Eccles, M.R., Wallis, L.J., et al., 1992. Expression of the PAX2 gene in human fetal kidney and Wilms’ tumor. Cell Growth Differ 3 (5), 279-289]. Within the visual system, a loss-of-function leads to lack of choroid fissure closure (known as a coloboma), a loss of optic nerve astrocytes, and anomalous axonal pathfinding at the optic chiasm [Favor, J., Sandulache, R., et al., 1996. The mouse Pax2(1Neu) mutation is identical to a human PAX2 mutation in a family with renal-coloboma syndrome and results in developmental defects of the brain, ear, eye, and kidney. Proc. Natl. Acad. Sci. U. S. A. 93 (24), 13870-13875; Torres, M., Gomez-Pardo, E., et al., 1996. Pax2 contributes to inner ear patterning and optic nerve trajectory. Development 122 (11), 3381-3391]. This study is directed at determining the effects of ectopic Pax2 expression in the chick ventral optic cup past the normal developmental period when Pax2 is found. In ovo electroporation of Pax2 into the chick ventral optic cup results in the formation of colobomas, a condition typically associated with a loss of Pax2 expression. While the overexpression of Pax2 appears to phenocopy a loss of Pax2, the mechanism of the failure of choroid fissure closure is associated with a cell fate switch from ventral retina and retinal pigmented epithelium (RPE) to an astrocyte fate. Further, ectopic expression of Pax2 in RPE appears to have non-cell autonomous effects on adjacent RPE, creating an ectopic neural retina in place of the RPE.  相似文献   

10.
We have studied regeneration of the retina in the goldfish as a model of regenerative neurogenesis in the central nervous system. Using a transsclearal surgical approach, we excised small patches of retina that were replaced over several weeks by regeneration. Lesioned retinas from three groups of animals were studied to characterize, respectively, the qualitative changes of the retina and surrounding tissues during regeneration, the concomitant cellular proliferation, and the quantitative relationship between regenerated and intact retina. The qualitative and quantitative analyses were done on retinas prepared using standard methods for light microscopy. The planimetric density of regenerated and intact retinal neurons was computed in a group of animals in which the normal planimetric density ranged from high to low. Cell proliferation was investigated by making intraocular injections of 5-bromo-2′-deoxyuridine (BUdr) at various survival times to label proliferating cells and processing retinal sections for BUdr immunocytochemistry. The qualitative analysis showed that the surgery created a gap in the existing retina that was replaced with new retina over the subsequent weeks. The BUdr-labeling experiments demonstrated that the excised retina was replaced by regeneration of new neurons. Neuroepithiallike cells clustered on the wound margin and migrated centripetally, appositionally adding new retina to the old. The quantitative analysis showed that the planimetric density of the regenerated neurons approximated that of the intact ones.  相似文献   

11.
The early patterns of retinal degeneration were studied in the goldfish after optic nerve sectioning by l.m. and e.m. Beginning on the 2nd postsurgical day there was an initial degeneration of neurons in the ganglion cell and inner nuclear layers of the central retina. Massive ganglion cell degeneration in the whole retina (60%) as well as degeneration of neurons in inner and outer nuclear layer of the peripheral retina was evident around the 7th postsurgical day. The early degenerating cells appeared to be cones and cone bipolars.  相似文献   

12.
One to forty days after optic nerve transection, goldfish received an i.p. injection of [3H]proline (proteins), 3HNAcGluc (gangliosides) or [3H]thymidine (DNA). After 1 or 2 days of incorporation, both optic systems were analyzed by biochemical and autoradiographical procedures. In the regenerating retina an enhanced retinal mitotic activity, protein synthesis (up to 2-fold) and ganglioside synthesis (up to 1.5-fold) was found. Simultaneously, a transiently enhanced accumulation (up to 4.5-fold) of axonally transported protein- and ganglioside-bound radioactivity in the regenerating optic nerve stump occurred. These regeneration-related proliferative and metabolic changes were found to be maximal at 6-8 days post lesion, but still measurable after 40 days. Concerning the endogenous ganglioside metabolism, in the regenerating retina no obvious change in ganglioside synthesis and composition could be observed, while in the regenerating optic nerve there was an enhanced accumulation of the ganglioside GP1c. Daily i.p. application of a ganglioside mixture from bovine brain (GMix) or of the monosialoganglioside GM1, did not alter significantly the degree and time course of the above regeneration induced metabolic changes or the regain of visual acuity. Sprouting activity of goldfish retinal explants was found to strongly depend upon a conditioning lesion of the optic nerve, reaching a maximum 8 days after nerve transection. This result strictly coincided with the profile of metabolic changes observed in vivo. Again, daily i.p. or i.o. injection of exogenous gangliosides did not influence the lesion induced increase of retinal sprouting activity. However, in normal, not regenerating animals, a local i.o. injection of GMix or GM1 led to a significant enhancement of the "basal" sprouting activity, normally occurring after lesion of the retina after injection of 0.9% NaCl. This ganglioside related stimulation was maximal at low concentrations (3 micrograms/eye) and did not occur at high concentrations (> 30 micrograms/eye). Injection of the phospholipid phosphatidylcholine or phosphatidylserine had no or a slightly inhibitory effect, when compared to NaCl controls. These data suggest an involvement of gangliosides in the complex process of induction of axonal sprouting.  相似文献   

13.
Nitric oxide (NO) signaling results in both neurotoxic and neuroprotective effects in CNS and PNS neurons, respectively, after nerve lesioning. We investigated the role of NO signaling on optic nerve regeneration in the goldfish ( Carassius auratus ). NADPH diaphorase staining revealed that nitric oxide synthase (NOS) activity was up-regulated primarily in the retinal ganglion cells (RGCs) 5–40 days after axotomy. Levels of neuronal NOS (nNOS) mRNA and protein also increased in the RGCs alone during this period. This period (5–40 days) overlapped with the process of axonal elongation during regeneration of the goldfish optic nerve. Therefore, we evaluated the effect of NO signaling molecules upon neurite outgrowth from adult goldfish axotomized RGCs in culture. NO donors and dibutyryl cGMP increased neurite outgrowth dose-dependently. In contrast, a nNOS inhibitor and small interfering RNA, specific for the nNOS gene, suppressed neurite outgrowth from the injured RGCs. Intra-ocular dibutyryl cGMP promoted the axonal regeneration from injured RGCs in vivo . None of these molecules had an effect on cell death/survival in this culture system. This is the first report showing that NO-cGMP signaling pathway through nNOS activation is involved in neuroregeneration in fish CNS neurons after nerve lesioning.  相似文献   

14.
15.
We have studied regeneration of the retina in the goldfish as a model of regenerative neurogenesis in the central nervous system. Using a transscleral surgical approach, we excised small patches of retina that were replaced over several weeks by regeneration. Lesioned retinas from three groups of animals were studied to characterize, respectively, the qualitative changes of the retina and surrounding tissues during regeneration, the concomitant cellular proliferation, and the quantitative relationship between regenerated and intact retina. The qualitative and quantitative analyses were done on retinas prepared using standard methods for light microscopy. The planimetric density of regenerated and intact retinal neurons was computed in a group of animals in which the normal planimetric density ranged from high to low. Cell proliferation was investigated by making intraocular injections of 5-bromo-2'-deoxyuridine (BUdr) at various survival times to label proliferating cells and processing retinal sections for BUdr immunocytochemistry. The qualitative analysis showed that the surgery created a gap in the existing retina that was replaced with new retina over the subsequent weeks. The BUdr-labeling experiments demonstrated that the excised retina was replaced by regeneration of new neurons. Neuroepithial-like cells clustered on the wound margin and migrated centripetally, appositionally adding new retina to the old. The quantitative analysis showed that the planimetric density of the regenerated neurons approximated that of the intact ones.  相似文献   

16.
We investigated the expression of myocilin in the optic nerve head of porcine eyes by Western blotting and immunohistochemical staining. Myocilin was localized in the nucleus, centrosome, glial filament, mitochondria, and some parts of the cell membranes of the astrocytes. Myocilin was also detected at the edge-feet portion of the processes of astrocytes adjacent to the inner limiting membrane and blood vessel wall. The astrocytes are the major cell population in the optic nerve head, contributing to the architecture of the nerve axon and blood vessels. Therefore, myocilin gene mutation and change of myocilin protein are likely to affect the architecture of the optic nerve head and induce various forms of glaucomatous optic nerve damage.  相似文献   

17.
The distribution of radioactive RNA and RNA precursors in the goldfish optic tecta following intraocular injection of 3H-uridine has been studied during various stages of optic nerve regeneration. 3H-uridine was injected into the posterior chamber of the right eye 17, 30, or 60 days after both optic nerves were crushed. Fish were sacrificed at time intervals ranging from 0.5 to 21 days after injection. One day prior to sacrificing, 14C-proline was also injected into the right eye as a marker of fast axonal protein transport. Seventeen to 23 days after crushing, the approximate time of nerve reconnection, the amount of radioactive RNA appearing in the left optic tectum was increased by more than ten times control values. Approximately 30 days after crushing the nerve, when the reconnected nerve is maturing, RNA values were still elevated, but significantly decreased from the earlier stage. By 60 days after crushing the optic nerve, the amounts of RNA in the left tectum was close to normal. Evidence suggesting that, at least, some of the radioactive RNA in the tectum originated from RNA transported along optic axons rather than from RNA synthesized locally in the tectum was provided by autoradiographic experiments. Autoradiograms of paraffin sections taken from the goldfish optic tecta after the intraocular injection of 3H-uridine showed a distribution of grains in a linear pattern, suggesting a distribution over the incoming fibers during the reconnection stage of regeneration. Electron microscopic autoradiography of glutaraldehyde fixed epoxy sections confirmed that a significant number of grains (shown to be 3H-RNA) were, in fact, over regenerating optic axons. Intracranial injection of 3H-uridine, during the same stage of regeneration, on the other hand, resulted in a distribution of grains, specifically over cell perikarya. These experiments suggest that during the reconnection phase of nerve regeneration, large amounts of RNA may be carried within regenerating optic axons as they enter the optic tectum.  相似文献   

18.
19.
The distribution of radioactive RNA and RNA precursors in the goldfish optic tecta following intraocular injection of 3H-uridine has been studied during various stages of optic nerve regeneration. 3H-uridine was injected into the posterior chamber of the right eye 17, 30, or 60 days after both optic nerves were crushed. Five were sacrificed at time intervals ranging from 0.5 to 21 days after injection. One day prior to sacrificing, 14C-proline was also injected into the right eye as a marked of fast axonal protein transport. Seventeen to 23 days after crushing, the approximate time of nerve reconnection, the amount of radioactive RNA appearing in the left optic tectum was increased by more than ten times control values. Approximately 30 days after crushing the nerve, when the reconnected nerve is maturing, RNA values were still elevated, but significantly decreased from the earlier stage. By 60 days after crushing the optic nerve, the amounts of RNA in the left tectum was close to normal. Evidence suggesting that, at least, some of the radioactive RNA in the tectum originated from RNA transported along optic axons rather than from RNA synthesized locally in the tectum was provided by autoradiographic experiments. Autoradiograms of paraffin sections taken from the goldfish optic tecta after the intraocular injection of 3H-uridine showed a distribution of grains in a linear pattern, suggesting a distribution over the incoming fibers during the reconnection stage of regeneration. Electron microsocpic autoradiography of glutaraldehyde fixed epoxy sections confirmed that a significant number of grains (shown to be 3H-RNA) were, in fact, over regenerating optic axons. Intracranial injection of 3H-uridine, during the same stage of regeneration, on the other hand, resulted in a distribution of grains, specifically over cell perikaprya. These experiments suggest that during the reconnection phase of nerve regeneration, large amounts of RNA may be carried within regenerating optic axons as they enter the optic tectum.  相似文献   

20.
Pax genes play a pivotal role in development of the vertebrate visual system. Pax6 is the master control gene for eye development: ectopic expression of Pax6 in Xenopus laevis and Drosphila melanogaster leads to the formation of differentiated eyes on the legs or wings. Pax6 is involved in formation of ganglion cells of the retina, as well as cells of the lens, iris and cornea. In addition Pax6 may play a role in axon guidance in the visual system. Pax2 regulates differentiation of the optic disk through which retinal ganglion cell axons exit the eye. Furthermore, Pax2 plays a critical role in development of the optic chiasm and in the guidance of axons along the contralateral or ipsilateral tracts of the optic nerve to visual targets in the brain. During development Pax7 is expressed in neuronal cells of one of the major visual targets in the brain, the optic tectum/superior colliculus. Neurons expressing Pax7 migrate towards the pia and concentrate in the stratum griseum superficiale (SGFS), the target site for retinal axons. Together, expression of Pax2, 6 and 7 may guide axons during formation of functional retinotectal/collicular projections. Highly regulated Pax gene expression is also observed in mature animals. Moreover, evidence suggests that Pax genes are important for regeneration of the visual system. We are currently investigating Pax gene expression in species that display a range of outcomes of optic nerve regeneration. We predict that such information will provide valuable insights for the induction of successful regeneration of the optic nerve and of other regions of the central nervous system in mammals including man.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号