首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Endothelial cells of the microvasculature are major target of ionizing radiation, responsible of the radiation-induced vascular early dysfunctions. Molecular signaling pathways involved in endothelial responses to ionizing radiation, despite being increasingly investigated, still need precise characterization. Small GTPase RhoA and its effector ROCK are crucial signaling molecules involved in many endothelial cellular functions. Recent studies identified implication of RhoA/ROCK in radiation-induced increase in endothelial permeability but other endothelial functions altered by radiation might also require RhoA proteins. Human microvascular endothelial cells HMEC-1, either treated with Y-27632 (inhibitor of ROCK) or invalidated for RhoA by RNA interference were exposed to 15 Gy. We showed a rapid radiation-induced activation of RhoA, leading to a deep reorganisation of actin cytoskeleton with rapid formation of stress fibers. Endothelial early apoptosis induced by ionizing radiation was not affected by Y-27632 pre-treatment or RhoA depletion. Endothelial adhesion to fibronectin and formation of focal adhesions increased in response to radiation in a RhoA/ROCK-dependent manner. Consistent with its pro-adhesive role, ionizing radiation also decreased endothelial cells migration and RhoA was required for this inhibition. These results highlight the role of RhoA GTPase in ionizing radiation-induced deregulation of essential endothelial functions linked to actin cytoskeleton.  相似文献   

2.
Blood vessel formation requires endothelial cell interactions with the extracellular matrix through cell surface receptors, and signaling events that control endothelial cell adhesion, migration, and lumen formation. Laminin-8 (alpha4beta1gamma1) is present in all basement membranes of blood vessels in fetal and adult tissues, but despite its importance in vessel formation, its role in endothelial cell adhesion and migration remains undefined. We examined adhesion and migration of HMEC-1 human microvascular endothelial cells on laminin-8 with an emphasis on the integrin-mediated signaling events, as compared with those on laminin-10/11 and fibronectin. We found that laminin-8 was less potent in HMEC-1 cell adhesion than laminin-1, laminin-10/11, and fibronectin, and mediated cell adhesion through alpha6beta1 integrin. Despite its weak cell-adhesive activity, laminin-8 was as potent as laminin-10/11 in promoting cell migration. Cells adhering to laminin-8 displayed streaks of thin actin filaments and formed lamellipodia at the leading edge of the cells, as observed with cells adhering to laminin-10/11, while cells on fibronectin showed thick actin stress fibers and large focal adhesions. Pull-down assays of GTP-loaded Rho, Rac, and Cdc42 demonstrated that Rac, but not Rho or Cdc42, was preferentially activated on laminin-8 and laminin-10/11, when compared with fibronectin. Furthermore, a dominant-negative mutant of Rac suppressed cell spreading, lamellipodial formation, and migration on laminin-8, but not on fibronectin. These results, taken together, indicate that Rac is activated during endothelial cell adhesion to laminin-8, and is pivotal for alpha6beta1 integrin-mediated cell spreading and migration on laminin-8.  相似文献   

3.
Junctional Adhesion Molecules (JAMs) have been described as major components of tight junctions in endothelial and epithelial cells. Tight junctions are crucial for the establishment and maintenance of cell polarity. During tumor development, they are remodeled, enabling neoplastic cells to escape from constraints imposed by intercellular junctions and to adopt a migratory behavior. Using a carcinoma cell line we tested whether JAM-C could affect tight junctions and migratory properties of tumor cells. We show that transfection of JAM-C improves the tight junctional barrier in tumor cells devoid of JAM-C expression. This is dependent on serine 281 in the cytoplasmic tail of JAM-C because serine mutation into alanine abolishes the specific localization of JAM-C in tight junctions and establishment of cell polarity. More importantly, the same mutation stimulates integrin-mediated cell migration and adhesion via the modulation of beta1 and beta3 integrin activation. These results highlight an unexpected function for JAM-C in controlling epithelial cell conversion from a static, polarized state to a pro-migratory phenotype.  相似文献   

4.
The Rho GTPase RhoB has been shown to affect cell migration, but how it does this is not clear. Here we show that cells depleted of RhoB by RNAi are rounded and have defects in Rac-mediated spreading and lamellipodium extension, although they have active membrane ruffling around the periphery. Depletion of the exchange factor GEF-H1 induces a similar phenotype. RhoB-depleted cells migrate faster, but less persistently in a chemotactic gradient, and frequently round up during migration. RhoB-depleted cells have similar numbers of focal adhesions to control cells during spreading and migration, but show more diffuse and patchy contact with the substratum. They have lower levels of surface β1 integrin, and β1 integrin activity is reduced in actin-rich protrusions. We propose that RhoB contributes to directional cell migration by regulating β1 integrin surface levels and activity, thereby stabilizing lamellipodial protrusions.  相似文献   

5.
Coagulation factor IX is thought to circulate in the blood as an inactive zymogen before being activated in the coagulation process. The effect of coagulation factor IX on cells is poorly understood. This study aimed to evaluate the effects of intact coagulation factor IX and its cleavage fragments on cell behavior. A431 cells (derived from human squamous cell carcinoma), Pro5 cells (derived from mouse embryonic endothelial cells), Cos7 cells, and human umbilical vein endothelial cells were utilized in this study. The effects of coagulation factor IX and its cleavage fragments on cell behavior were investigated in several types of experiments, including wound‐healing assays and modified Boyden chamber assays. The effect of coagulation factor IX depended on its processing; full‐length coagulation factor IX suppressed cell migration, increased adhesion to matrix, and enhanced intercellular adhesion. In contrast, activated coagulation factor IX enhanced cell migration, suppressed adhesion to matrix, and inhibited intercellular adhesion. An activation peptide that is removed during the coagulation process was found to be responsible for the activity of full‐length coagulation factor IX, and the activity of activated coagulation factor IX was localized to an EGF domain of the coagulation factor IX light chain. Full‐length coagulation factor IX has a sedative effect on cells, which is counteracted by activated coagulation factor IX in vitro. Thus, coagulation factor IX may play roles before, during, and after the coagulation process.  相似文献   

6.
Junctional adhesion molecule-A (JAM-A) is an adhesive protein expressed in endothelial cells, epithelial cells, platelets, and some leukocytes. JAM-A localizes to the tight junctions between contacting endothelial and epithelial cells, where it contributes to cell-cell adhesion and to the control of paracellular permeability. JAM-A also regulates cell motility, even though the quantitative biophysical features have not been characterized. In this study, we evaluated the role of JAM-A in the regulation of cell motility using JAM-A-expressing and JAM-A-deficient murine endothelial cells. We report that, in the absence of shear stress, JAM-A absence increases cell motility by increasing directional persistence but not cell speed. In addition, in the presence of shear stress, JAM-A absence increases protrusion extension in the direction of flow and increased downstream cellular displacement (while, conversely, decreasing upstream displacement). All these effects of JAM-A absence are mitigated by the microtubule-stabilizing compound taxol. A motility- and microtubule-related function, integrin-mediated adhesiveness, was only slightly reduced in JAM-A-deficient cells compared with JAM-A-expressing cells. However, overexpression of JAM-A in the JAM-A-deficient cells increased integrin adhesiveness to the same levels as those observed in taxol-treated JAM-A-deficient cells. Taken together, these data indicate that JAM-A regulates cell motility by cooperating with microtubule-stabilizing pathways.  相似文献   

7.
CDK5 and its activator, p35, are expressed in mouse corneal epithelium and can be coimmunoprecipited from corneal epithelial cell lysates. Immunostaining shows CDK5 and p35 in all layers of the corneal epithelium, especially along the basal side of the basal cells. Stable transfection of corneal epithelial cells with CDK5, which increases CDK5 kinase activity by approximately 33%, also increases the number of cells adhering to fibronectin and the strength of adhesion. CDK5 kinase activity seems to be required for this effect, because the kinase inactive mutation, CDK5-T33, either reduces adhesion or has no significant effect, depending on the level of expression. Using an in vitro scrape wound in confluent cultures of stably transfected cells to examine the effect of CDK5 on cell migration, we show that reoccupation of the wound area is significantly decreased by CDK5 and increased by CDK5-T33. These findings indicate that CDK5 may be an important regulator of adhesion and migration of corneal epithelial cells.  相似文献   

8.
Prostaglandin E2 (PGE2) promotes angiogenesis by in part inducing endothelial cell survival and migration. The present study examined the role of mTOR and its two complexes, mTORC1 and mTORC2, in PGE2-mediated endothelial cell responses. We used small interfering RNA (siRNA) to raptor or rictor to block mTORC1 or mTORC2, respectively. We observed that down-regulation of mTORC2 but not mTORC1 reduced baseline and PGE2-induced endothelial cell survival and migration. At the molecular level, we found that knockdown of mTORC2 inhibited PGE2-mediated Rac and Akt activation two important signaling intermediaries in endothelial cell migration and survival, respectively. In addition, inhibition of mTORC2 by prolonged exposure of endothelial cells to rapamycin also prevented PGE2-mediated endothelial cell survival and migration confirming the results obtained with the siRNA approach. Taken together these results show that mTORC2 but not mTORC1 is an important signaling intermediary in PGE2-mediated endothelial cell responses.  相似文献   

9.
PTPD1 is a cytosolic nonreceptor tyrosine phosphatase and a positive regulator of the Src-epidermal growth factor transduction pathway. We show that PTPD1 localizes along actin filaments and at adhesion plaques. PTPD1 forms a stable complex via distinct molecular modules with actin, Src tyrosine kinase, and focal adhesion kinase (FAK), a scaffold protein kinase enriched at adhesion plaques. Overexpression of PTPD1 promoted cell scattering and migration, short hairpin RNA-mediated silencing of endogenous PTPD1, or expression of PTPD1 mutants lacking either catalytic activity (PTPD1(C1108S)) or the FERM domain (PTPD1(Delta1-325)) significantly reduced cell motility. PTPD1 and Src catalytic activities were both required for epidermal growth factor-induced FAK autophosphorylation at its active site and for downstream propagation of ERK1/2 signaling. Our findings demonstrate that PTPD1 is a component of a multivalent scaffold complex nucleated by FAK at specific intracellular sites. By modulating Src-FAK signaling at adhesion sites, PTPD1 promotes the cytoskeleton events that induce cell adhesion and migration.  相似文献   

10.
A dietary deficiency of vitamin A is associated with cardiovascular abnormalities in avian and murine systems. Retinoic acid (RA) is the active metabolite of vitamin A and whether it directly regulates mammalian blood vessel formation has not been determined and is investigated herein. We used mice rendered RA-deficient via targeted deletion of retinaldehyde dehydrogenase 2 (Raldh2(-/-)), the enzyme required to produce active RA in the embryo. Histological examination at E8.0-8.5, prior to cardiac function and systemic blood circulation, revealed that capillary plexi formed in Raldh2(-/-) yolk sacs and embryos, but were dilated, and not appropriately remodeled or patterned. Raldh2(-/-) endothelial cells exhibited significantly increased expression of phosphohistone 3 and decreased expression of p21 and p27, suggesting that RA is required to control endothelial cell cycle progression during early vascular development. Uncontrolled endothelial cell growth, in Raldh2(-/-) mutants, was associated with decreased endothelial cell maturation, disrupted vascular plexus remodeling and lack of later stages of vessel assembly, including mural cell differentiation. Maternally administrated RA restored endothelial cell cycle control and vascular patterning. Thus, these data indicate that RA plays a crucial role in mammalian vascular development; it is required to control endothelial cell proliferation and vascular remodeling during vasculogenesis.  相似文献   

11.
The dynamic turnover of integrin-mediated adhesions is important for cell migration. Paxillin is an adaptor protein that localizes to focal adhesions and has been implicated in cell motility. We previously reported that calpain-mediated proteolysis of talin1 and focal adhesion kinase mediates adhesion disassembly in motile cells. To determine whether calpain-mediated paxillin proteolysis regulates focal adhesion dynamics and cell motility, we mapped the preferred calpain proteolytic site in paxillin. The cleavage site is between the paxillin LD1 and LD2 motifs and generates a C-terminal fragment that is similar in size to the alternative product paxillin delta. The calpain-generated proteolytic fragment, like paxillin delta, functions as a paxillin antagonist and impairs focal adhesion disassembly and migration. We generated mutant paxillin with a point mutation (S95G) that renders it partially resistant to calpain proteolysis. Paxillin-deficient cells that express paxillin S95G display increased turnover of zyxin-containing adhesions using time-lapse microscopy and also show increased migration. Moreover, cancer-associated somatic mutations in paxillin are common in the N-terminal region between the LD1 and LD2 motifs and confer partial calpain resistance. Taken together, these findings suggest a novel role for calpain-mediated proteolysis of paxillin as a negative regulator of focal adhesion dynamics and migration that may function to limit cancer cell invasion.  相似文献   

12.
Circulating endothelial progenitor cells (EPCs) play a key role in restoring endothelial function and enhancing angiogenesis. However, the effects of low-dose aspirin on circulating EPCs are not well known. We investigated the effects of low-dose aspirin on EPC migration, adhesion, senescence, proliferation, apoptosis and endothelial nitric oxide synthase (eNOS) expression. EPC migration was detected by a modified Boyden chamber assay. EPC adhesion assay was performed by counting adherent cells on fibronectin-coated culture dishes. EPC senescence was assessed by both senescence-associated-beta-galactosidase staining and DAPI staining. EPC proliferation was analyzed by MTT assay. EPC apoptosis was evaluated by flow cytometric analysis. eNOS protein expression was measured by Western blotting analysis. Aspirin promoted EPC migratory and adhesive capacity at concentrations between 0.1 and 100micromol/L and prevented senescence at concentrations between 50 and 100micromol/L. Meanwhile, aspirin in a range of these concentrations did not affect EPC proliferation, apoptosis or eNOS expression. Our findings indicate that low-dose aspirin promotes migration and adhesion and delays the onset of senescence of EPCs.  相似文献   

13.
14.
The quinazoline-derived alpha1-adrenoceptor antagonists, doxazosin and terazosin have been recently shown to induce an anoikis effect in human prostate cancer cells and to suppress prostate tumor vascularity in clinical specimens [Keledjian and Kyprianou, 2003]. This study sought to examine the ability of doxazosin to affect the growth of human vascular endothelial cells and to modulate vascular endothelial growth factor (VEGF)-mediated angiogenesis. Human umbilical vein endothelial cells (HUVECs) were used as an in vitro model to determine the effect of doxazosin on cell growth, apoptosis, adhesion, migration, and angiogenic response of endothelial cells. The effect of doxazosin on cell viability and apoptosis induction of human endothelial cells, was evaluated on the basis of trypan blue and Hoechst 33342 staining, respectively. Doxazosin antagonized the VEGF-mediated angiogenic response of HUVEC cells, by abrogating cell adhesion to fibronectin and collagen-coated surfaces and inhibiting cell migration, via a potential downregulation of VEGF expression. Furthermore there was a significant suppression of in vitro angiogenesis by doxazosin on the basis of VEGF-mediated endothelial tube formation (P < 0.01). Fibroblast growth factor-2 (FGF-2) significantly enhanced HUVEC cell tube formation (P < 0.01) and this effect was suppressed by doxazosin. These findings provide new insight into the ability of doxazosin to suppress the growth and angiogenic response of human endothelial cells by interfering with VEGF and FGF-2 action. This evidence may have potential therapeutic significance in using this quinazoline-based compound as an antiangiogenic agent for the treatment of advanced prostate cancer.  相似文献   

15.
PEAR1 is highly expressed at bovine MDSC differentiation. However, its biological function remains unclear. Western blotting results showed that PEAR1 increased between day 0 and day 2 of cell differentiation and decreased from day 3. Moreover, scratch test showed that wound healing rate increased after PEAR1 overexpression and decreased upon its suppression. Meanwhile, we found that, upon PEAR1 induction, both the expression of the focal adhesion-associated and MyoG, and the myotube fusion rate increased. However, when PEAR1 was suppressed, opposite results were obtained. Immunoprecipitation revealed an association between PEAR1 and ITGB1. Notably, inhibition of FAK and ITGB1 repressed cell differentiation. In conclusion, our study indicated that PEAR1 is involved in the regulation of bovine MDSC migration and differentiation.  相似文献   

16.
Scribble (Scrib) is a conserved polarity protein required in Drosophila melanogaster for synaptic function, neuroblast differentiation, and epithelial polarization. It is also a tumor suppressor. In rodents, Scrib has been implicated in receptor recycling and planar polarity but not in apical/basal polarity. We now show that knockdown of Scrib disrupts adhesion between Madin-Darby canine kidney epithelial cells. As a consequence, the cells acquire a mesenchymal appearance, migrate more rapidly, and lose directionality. Although tight junction assembly is delayed, confluent monolayers remain polarized. These effects are independent of Rac activation or Scrib binding to betaPIX. Rather, Scrib depletion disrupts E-cadherin-mediated cell-cell adhesion. The changes in morphology and migration are phenocopied by E-cadherin knockdown. Adhesion is partially rescued by expression of an E-cadherin-alpha-catenin fusion protein but not by E-cadherin-green fluorescent protein. These results suggest that Scrib stabilizes the coupling between E-cadherin and the catenins and are consistent with the idea that mammalian Scrib could behave as a tumor suppressor by regulating epithelial cell adhesion and migration.  相似文献   

17.
Cell migration is an important process in such phenomena as growth, development, and wound healing. The control of cell migration is orchestrated in part by cell surface adhesion molecules. These molecules fall into two major categories: those that bind to extracellular matrix and those that bind to adjacent cells. Here, we report on the role of a cell-cell adhesion molecule, platelet-endothelial cell adhesion molecule-1, (PECAM-1), a member of the lg superfamily, in the modulation of cell migration and cell-cell adhesion. PECAM-1 is a 120-130 kDa integral membrane protein that resides on endothelial cells and localizes at sites of cell-cell contact. Since endothelial cells express PECAM-1 constitutively, we studied the effects of PECAM-1 on cell-cell adhesion and migration in a null-cell population. Specifically, we transfected NIH/3T3 cells with the full length PECAM-1 molecule (two independent clones). Transfected cells containing only the neomycin resistance gene, cells expressing a construct coding for the extracellular domain of the molecule, and cells expressing the neu oncogene were used as controls. The PECAM-1 transfectants appeared smaller and more polygonal and tended to grow in clusters. Indirect immunofluorescence of PECAM-1 transfectants showed peripheral staining at sites of cell-cell contact, while the extracellular domain transfectants and the control cells did not. In two quantitative migration assays, the full-length PECAM-1 transfectants migrated more slowly than control cells. Thus, PECAM-1 transfected into a null cell appears to localize to sites of cell-cell contact, promote cell-cell adhesion, and diminish the rate of migration. These findings suggest a role for this cell-cell adhesion molecule in the process of endothelial cell migration.  相似文献   

18.
SWAP-70, an unusual phosphatidylinositol-3-kinase-dependent protein that interacts with the RhoGTPase Rac, is highly expressed in mast cells. Cultured bone marrow mast cells (BMMC) from SWAP-70(-/-) mice are reduced in FcepsilonRI-triggered degranulation. This report describes the hitherto-unknown role of SWAP-70 in c-kit receptor signaling, a key proliferation and differentiation pathway in mast cells. Consistent with the role of Rac in cell motility and regulation of the actin cytoskeleton, mutant cells show abnormal actin rearrangements and are deficient in migration in vitro and in vivo. SWAP-70(-/-) BMMC are impaired in calcium flux, in proper translocation and activity of Akt kinase (required for mast cell activation and survival), and in translocation of Rac1 and Rac2 upon c-kit stimulation. Adhesion to fibronectin is reduced, but homotypic cell association induced through c-kit is strongly increased in SWAP-70(-/-) BMMC. Homotypic association requires extracellular Ca(2+) and depends on the integrin alpha(L)beta(2) (LFA-1). ERK is hyperactivated upon c-kit signaling in adherent and dispersed mutant cells. Together, we suggest that SWAP-70 is an important regulator of specific effector pathways in c-kit signaling, including mast cell activation, migration, and cell adhesion.  相似文献   

19.
Neuropilin-1 (NRP1) was first described as a receptor for the axon guidance molecule, Semaphorin3A, regulating the development of the nervous system. It was later shown that NRP1 is an isoform-specific receptor for vascular endothelial growth factor (VEGF), specifically VEGF(165). Much interest has been placed on the role of the various VEGF isoforms in vascular biology. Here we report that blocking NRP1 function, using a recently described antibody that inhibits VEGF(165) binding to NRP1, surprisingly reduces VEGF(121)-induced migration and sprout formation of endothelial cells. Intrigued by this observation, direct binding studies of NRP1 to various VEGF isoforms were performed. We show that VEGF(121) binds directly to NRP1; however, unlike VEGF(165), VEGF(121) is not sufficient to bridge the NRP1.VEGFR2 complex. Additionally, we show that VEGFR2 enhances VEGF(165), but not VEGF(121) binding to NRP1. We propose a new model for NRP1 interactions with various VEGF isoforms.  相似文献   

20.
Zhang T  Jiang CL 《生理学报》2011,63(3):256-260
本文旨在研究肿瘤条件培养基(tumor conditioned medium,TCM)对人脐静脉内皮细胞(human umbilical vein endothelial cell,HUVEC)增殖、黏附和迁移能力的影响.采用MTT法测定TCM作用24 h后内皮细胞的增殖水平,实验设对照组、TCM原液(TCM stoc...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号