首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
When present in sympatry, invasive species have the potential to amplify or mitigate their ecological impacts through their trophic interactions. Their trophic niches may overlap, limiting impacts to specific trophic levels or functional groups; alternatively, they may diverge, with this niche differentiation resulting in contrasting impacts between species on the ecosystem. Here, we tested the trophic consequences for the global freshwater invaders common carp Cyprinus carpio, signal crayfish Pacifastacus leniusculus and topmouth gudgeon Pseudorasbora parva when their populations were in sympatry and under varying population biomass across six adjacent and identical ponds. Through using corrected values of δ13C and δ15N, stable isotope niche metrics revealed that when the species were analysed together across all of the ponds, the output indicated their potential to share trophic resources. This was because niche overlap was evident at the species level: P. parva shared 19.6 and 30.4 % of their isotopic niche with C. carpio and P. leniusculus respectively. At the population level, however, the invaders had no niche overlap when present in sympatry and, instead, diverged in their trophic niche space, with C. carpio occupying the highest trophic levels, followed by P. parva and then P. leniusculus. We suggest that at the population level within in each pond, niche differentiation was facilitated by each species being plastic in their resource use, allowing their co-existence in ponds that may otherwise have limited their ability to co-exist through resource limitation.  相似文献   

2.
3.
4.
1. Human activities have promoted the spread of species worldwide. Several crayfish species have been introduced into new areas, posing a threat to native crayfish and other biota. Invader success may depend on the ability to utilise a wide variety of habitats and resources. Successful invaders are generally expected to have broader niches and to be more plastic than non-invasive species.
2. Using stable isotope ratios of carbon and nitrogen we compared the niche widths of native noble crayfish and introduced signal crayfish, a successful invader of Swedish streams. The calculation of niche width took account of between-site differences in basal resource isotope signature ranges. We also assessed whether population density, prey biomass or prey diversity affected niche width.
3. At the species level, signal crayfish had twice the niche width of noble crayfish. However, individual populations of noble crayfish and signal crayfish in Swedish streams had similar niche widths. This suggests that signal crayfish has greater plasticity with respect to habitat utilisation and feeding than noble crayfish. Niche width in both species correlated positively with benthic invertebrate biomass and diversity, indicating that animal food sources are important for crayfish.
4. We find that assessing niche width in relation to invader success can be a useful tool trying to predict the impact of invasions on different scales. The findings in this study suggest that invaders and natives will have a similar impact on the stream scale whereas the invader will have a larger impact on the regional scale due to the ability to utilise a wider range of streams.  相似文献   

5.
Pteropods are a group of small marine gastropods that are highly sensitive to multiple stressors associated with climate change. Their trophic ecology is not well studied, with most research having focused primarily on the effects of ocean acidification on their fragile, aragonite shells. Stable isotopes analysis coupled with isotope‐based Bayesian niche metrics is useful for characterizing the trophic structure of biological assemblages. These approaches have not been implemented for pteropod assemblages. We used isotope‐based Bayesian niche metrics to investigate the trophic relationships of three co‐occurring pteropod species, with distinct feeding behaviors, sampled from the Southern Kerguelen Plateau area in the Indian Sector of the Southern Ocean—a biologically and economically important but poorly studied region. Two of these species were gymnosomes (shell‐less pteropods), which are traditionally regarded as specialist predators on other pteropods, and the third species was a thecosome (shelled pteropod), which are typically generalist omnivores. For each species, we aimed to understand (a) variability and overlap among isotopic niches; and (b) whether there was a relationship between body size and trophic position. Observed isotopic niche areas were broadest for gymnosomes, especially Clione limacina antarctica, whose observed isotopic niche area was wider than expected on both δ13C and δ15N value axes. We also found that trophic position significantly increased with increasing body length for Spongiobranchaea australis. We found no indication of a dietary shift toward increased trophic position with increasing body size for Clio pyramidata f. sulcata. Trophic positions ranged from 2.8 to 3.5, revealing an assemblage composed of both primary and secondary consumer behaviors. This study provides a comprehensive comparative analysis on trophodynamics in Southern Ocean pteropod species, and supports previous studies using gut content, fatty acid and stable isotope analyses. Combined, our results illustrate differences in intraspecific trophic behavior that may be attributed to differential feeding strategies at species level.  相似文献   

6.
J Grey  MC Jackson 《PloS one》2012,7(8):e42575
We used stable isotope analyses to characterise the feeding dynamics of a population of red swamp crayfish in Lake Naivasha, Kenya, after the crash of submerged macrophytes and associated macroinvertebrates, and during a natural draw-down of the lake water level. We expected a heavy reliance upon a diet of detrital matter to sustain the population as a consequence, and indeed, for the majority of the crayfish population caught from the lake, we saw a concomitant shift in isotopic values reflecting a dietary change. However, we also caught individual crayfish that had occupied the footprints of hippopotamus and effectively extended their range beyond the lake up to 40 m into the riparian zone. Isotopic analysis confirmed limited nocturnal observations that these individuals were consuming living terrestrial plants in the vicinity of the footprints. These are the first empirical data to demonstrate direct use of terrestrial resources by an aquatic crayfish species and further highlight the traits that make red swamp crayfish such opportunistic and successful invaders.  相似文献   

7.
The introduced North-American signal crayfish (Pacifastacus leniusculus) has become widespread throughout Europe where it has often replaced the native noble crayfish (Astacus astacus). The impact of this replacement on ecosystem processes in boreal lakes is still largely unknown. We compared the trophic niches of these two crayfish species in 16 small to medium sized boreal lakes in southern Finland; eight lakes with noble crayfish and eight lakes where the native crayfish populations had been lost and replaced by signal crayfish. We analysed carbon and nitrogen stable isotopes from samples of the crayfish and their putative food sources, and used stable isotope models to compare trophic niche widths of the two species of crayfish and to quantify the food sources used by them. At species level the signal crayfish exhibited a substantially larger trophic niche than that of the noble crayfish, but within-lake populations of the species did not differ in their niche widths. The isotopic niches of the two species strongly overlapped, and while the estimated proportions of food resources (profundal and littoral macroinvertebrates, terrestrial leaf detritus and macrophytes) used by crayfish varied considerably among individual populations, they did not differ consistently between the species. Our results suggest that, contrary to often expressed concerns, replacement of lost noble crayfish populations by the signal crayfish may not greatly alter the littoral food web structure in boreal lakes.  相似文献   

8.
In invasion ecology, niche width has been recognized as a crucial factor for the outcome of an invasion. A common characteristic of successful invaders seems to be a broad niche width, and their impact on native communities may increase with increasing niche size. Overall, successful invader predators are predicted to shift their niche width by broadening it from native to invaded conditions. The scarcity of ecological studies examining invasive species in their native ranges prevents researchers from knowing if the prevalence of generalist invaders represents conservatism of broad native-range niches or instead niche shifts as a result of different processes acting in the invaded areas. Here we reviewed literature on trophic niche of the predatory invader American bullfrog (Lithobates catesbeianus) in both native and invaded ranges. We used statistical and graphic tools to analyse possible shifts in dietary niche width and the effect of introduced crayfish on the feeding strategy of L. catesbeianus. Globally, our results indicate that food sources used by the species differed in native and invaded sites, with a narrower trophic niche width in invaded areas. However, this pattern was disrupted by the occurrence of introduced crayfish that represents the major driver of the observed niche-width variation. Our data shed light on possible complications in interpreting and predicting patterns of biological invasions due to the interaction among species from different trophic levels that apparently disrupt general patterns that are likely bound to be idiosyncratic and complex.  相似文献   

9.
Annual killifish of the genus Nothobranchius often co-occur in temporary savannah pools. Their space- and time-limited environment does not allow for any substantial habitat or temporal segregation. Coexisting species are therefore predicted to have well separated trophic niches to avoid intense food competition. Although in a previous “snapshot” study using stomach content analysis (SCA), the trophic niches of three sympatric species (N. furzeri, N. orthonotus, and N. pienaari) were found to vary among species, the difference was relatively weak and inconsistent across different sites. Here, we used the time-integrative capacity of stable isotope analysis to test whether the trophic niches of sympatric Mozambican Nothobranchius are more distinct over a long-term period. Analysis of carbon and nitrogen stable isotopes separated the trophic niche and trophic position of N. pienaari but failed to find any difference between N. furzeri/N. kadleci and N. orthonotus. No segregation was found at the sites with low prey diversity. In contrast, SCA identified N. orthonotus as the species with the most distinct trophic niche. We discuss the effect of prey diversity and different sensitivities of stomach content and stable isotope analysis in general and conclude that the trophic niches of the three sympatric Nothobranchius species are well separated.  相似文献   

10.
11.
Quantifying diet is essential for understanding the functional role of species with regard to energy processing, transfer, and storage within ecosystems. Recently, variance structure in the stable isotope composition of consumer tissues has been touted as a robust tool for quantifying trophic niche width, a task that has previously proven difficult due to bias in direct dietary analyses and difficulties in integrating diet composition over time. We used carbon and nitrogen stable isotope analyses to examine trophic niche width of two sympatric aquatic snakes, banded watersnakes Nerodia fasciata and black swamp snakes Seminatrix pygaea inhabiting an isolated wetland where seasonal migrations of amphibian prey cause dramatic shifts in resource availability. Specifically, we characterized snake and prey isotope compositions through time, space, and ontogeny and examined isotope values in relation to prey availability and snake diets assessed by gut content analysis. We determined that prey cluster into functional groups based on similarity of isotopic composition and seasonal availability. Isotope variance structure indicated that the trophic niche width of the banded watersnake was broader (more generalist) than that of the black swamp snake. Banded watersnakes also exhibited seasonal variation in isotope composition, suggesting seasonal diet shifts that track amphibian prey availability. Conversely, black swamp snakes exhibited little seasonal variation but displayed strong ontogenetic shifts in carbon and nitrogen isotope composition that closely paralleled ontogenetic shifts in their primary prey, paedomorphic mole salamanders Ambystoma talpoideum. Although niche dimensions are often treated as static, our results demonstrate that seasonal shifts in niche dimensions can lead to changes in niche overlap between sympatric species. Such short‐term fluctuations in niche overlap can influence competitive interactions and consequently the composition and dynamics of communities and ecosystems.  相似文献   

12.
13.
Impacts of invasive species may manifest most strongly if these organisms are highly distinct functionally from the native species they often replace. Yet, should we expect functional differences between native and invasive species of generalist organisms like freshwater crayfish? Some existing evidence has pointed to native and invasive crayfish species as ecologically equivalent. We contribute to this literature by comparing the trophic niches of the globally invasive crayfishes Pacifastacus leniusculus and Procambarus clarkii, by applying carbon and nitrogen stable isotope analyses to replicated allopatric (alone) and sympatric (together) lake populations in western Washington State, USA, where P. clarkii has been recently introduced and P. leniusculus is presumed native. Our study corrected for potential inherent differences in lake food webs as a consequence of lake abiotic or biotic characteristics using random effects in linear mixed effects models. We found that although overall trophic niche size or area of these species was not significantly different, P. leniusculus was significantly higher in trophic position than P. clarkii when also accounting for the effects of body size, sex, and lakes as random effects. This pattern of increased trophic position of P. leniusculus over P. clarkii was conserved over time in one sympatric lake for which we had data over multiple years. Cumulatively, our findings point to trophic differences between the globally cosmopolitan crayfishes P. leniusculus and P. clarkii, particularly when accounting for the ways that ecosystem context can affect food web structure of communities and the trophic resources available to these consumers.  相似文献   

14.
Ecological opportunity is frequently proposed as the sole ingredient for adaptive radiation into novel niches. An additional trigger may be genome‐wide hybridization resulting from “hybrid swarm.” However, these hypotheses have been difficult to test due to the rarity of comparable control environments lacking adaptive radiations. Here I exploit such a pattern in microendemic radiations of Caribbean pupfishes. I show that a sympatric three species radiation on San Salvador Island, Bahamas diversified 1445 times faster than neighboring islands in jaw length due to the evolution of a novel scale‐eating adaptive zone from a generalist ancestral niche. I then sampled 22 generalist populations on seven neighboring islands and measured morphological diversity, stomach content diversity, dietary isotopic diversity, genetic diversity, lake/island areas, macroalgae richness, and Caribbean‐wide patterns of gene flow. None of these standard metrics of ecological opportunity or gene flow were associated with adaptive radiation, except for slight increases in macroalgae richness. Thus, exceptional trophic diversification is highly localized despite myriad generalist populations in comparable environmental and genetic backgrounds. This study provides a strong counterexample to the ecological and hybrid swarm theories of adaptive radiation and suggests that diversification of novel specialists on a sparse fitness landscape is constrained by more than ecological opportunity and gene flow.  相似文献   

15.
Shifting prey availability can lead to altered species interactions, indicated by variation in the dietary niche breadth and position of species within an assemblage. On the Newfoundland coast, annual inshore spawning migration of the dominant forage fish, Capelin Mallotus villosus, provides an excellent opportunity to investigate the influence of varying prey availability on dietary niche breadth and position among species. During June–August 2017, we investigated species‐ and assemblage‐level dietary responses to shifting Capelin availability of three Capelin‐eating, sympatrically breeding auk species, the Atlantic Puffin Fratercula arctica, Razorbill Alca torda and Common Murre Uria aalge. The diet of Leach's Storm Petrels Oceanodroma leucorhoa, which breed alongside the three auk species but are not known to rely on Capelin, was also examined to determine dietary shifts throughout breeding that were unrelated to Capelin availability. We quantified stable isotope ratios (δ15N, δ13C) in seabird blood components (plasma, cellular component) collected both before and after spawning Capelin arrived in the study area and compared isotopic niche breadth within a Bayesian framework. At the species level, auk trophic position increased and isotopic niche breadth narrowed after Capelin arrived, suggesting a more Capelin‐based diet. Simultaneously, trophic diversity of the auk assemblage, reflecting the extent of spacing among niches of species, decreased after spawning Capelin arrived inshore. Contrastingly, increased trophic position but broader isotopic niche breadth during higher relative to lower Capelin availability for Leach's Storm Petrel confirm that this species is probably not affected by the inshore arrival of Capelin, but instead that isotopic changes may be more related to a shift in breeding stage to chick‐rearing. Overall, our findings reiterate the importance of Capelin as a prey resource for breeding auks in coastal Newfoundland, but that the degree of reliance on Capelin varies among species, possibly allowing coexistence of these ecologically similar species. The findings highlight potential changing species interactions, such as increased competition, under declines in Capelin biomass.  相似文献   

16.
Trophic niche overlap in native and alien fish species can lead to competitive interactions whereby non‐native fishes outcompete indigenous individuals and eventually affect the viability of natural populations. The species Erythroculter mongolicus and Erythroculter ilishaeformis (belonging to the Culterinae), which are two commercially important fish species in the backwater bay of the Pengxi River in the Three Gorges Reservoir (TGR), were threatened by competition from the non‐native Coilia ectenes (lake anchovy). The latter is an alien species introduced into the lower reaches of the Yangtze River in China and now widespread in the TGR. The trophic consequences of non‐native lake anchovy invasion for E. mongolicus and E. ilishaeformis were assessed using stable isotope analysis (δ13C and δ15N) and associated metrics including the isotopic niche, measured as the standard ellipse area. The trophic niche of native E. mongolicus had little overlap (<15%) with the alien fish species and was significantly reduced in size after invasion by lake anchovy. This suggests that E. mongolicus shifted to a more specialized diet after invasion by lake anchovy. In contrast, the trophic niche overlap of native fish E. ilishaeformis with the alien fish species was larger (>50%) and the niche was obviously increased, implying that fish in this species exploited a wider dietary base to maintain their energetic requirements. Thus, marked changes for the native E. mongolicus and E. ilishaeformis were detected as the trophic consequences of invasion of non‐native lake anchovy.  相似文献   

17.
It is often hypothesized that two species competing for the same resource cannot stably coexist unless they partition their resources in space and time. More recently stable isotope analyses have complemented traditional, observation‐based niche research by conceptualizing many of the characteristics of communities, for example, trophic niche width and the partitioning of resources. Here we quantify resource partitioning of sympatric small mammal species in an African ecosystem by analysing stable isotope ratios of hair collected from a South African forest‐grassland vegetation mosaic, and combine this with known spatial and temporal behavioural data to interpret community competition and resource partitioning. We observe niche separation to different degrees across the entire community, with different species displaying either unique isotopic dietary preferences, or partitioning resources in space and/or time. δ13C values were more enriched in species that inhabited afromontane grassland compared with those that inhabited afromontane forest, a reflection of the dominant vegetation in each habitat. Contrary to expectations, arboreal rodents occupied higher trophic positions than terrestrial rodents and approaching δ15N values similar to insectivorous shrews, suggesting that arboreal rodents feed on items such as arthropods enriched in 15N. While grassland species display phenotypic plasticity in terms of dietary preferences, small mammals that occurred in forests display narrow niche preferences, suggesting these species may be particularly sensitive to habitat modifications. Our results illustrate that the use of stable isotopes can be used in conjunction with spatial and temporal behavioural knowledge to elucidate resource partitioning in small African mammal communities.  相似文献   

18.
Invasive crayfish are spreading rapidly across Europe, where they are replacing the native crayfish species and impacting negatively on some other biota. Freshwater crayfish and many benthic fishes share similar habitat and food requirements and hence potentially compete for resources. In this study, we investigated impacts of the introduced signal crayfish (Pacifastacus leniusculus) on fish in stony littoral habitats of two large boreal lakes. We compared the littoral fish community composition and the densities of two common benthic fish species between sites with and without crayfish. To evaluate whether signal crayfish share the same food resources as benthic littoral fish or change their feeding habits, we used mixing models and trophic niche estimates based on analyses of stable isotopes of carbon and nitrogen. Both the community composition of littoral fish and the densities of benthic fish species were similar at sites with and without signal crayfish. Even though stable isotope signatures indicated strong dietary overlap between crayfish and benthic fish, the use of food sources and trophic niche widths of fish were not noticeably different between crayfish sites and non-crayfish sites. Our results suggest that, at current densities, the non-native signal crayfish does not have significant impacts on benthic fish in the stony littoral habitats of large boreal lakes.  相似文献   

19.
Neotropical bat communities are among the most diverse mammal communities in the world, and a better understanding of these assemblages may permit inferences about how so many species coexist. While broad trophic guilds (e.g., frugivore, insectivore) of bats are recognized, details of diet and similarities among species remain largely unknown. We used stable isotope ratios of carbon (δ13C) and nitrogen (δ15N) to characterize the community structure of a diverse Neotropical bat fauna from Belize to test predictions of niche theory and the competitive exclusion principle. We predicted that (1) interspecific variation in isotopic overlap would be greater within guilds than between guilds, and (2) no two sympatric populations would have isotopic niches that overlap completely, unless there is variation along some other axis (e.g., temporal, spatial). We additionally tested body size as an explanatory metric of potential overlap and predicted that larger‐bodied animals would have greater niche breadths. Results suggest that while guild‐level characterizations of communities are at least somewhat informative, there are multiple examples of intra‐ and inter‐guild species pairs with significantly overlapping isotopic niches, suggesting that, counter to predictions, they may compete for resources. Understanding the trophic structure of animal communities is fundamental to conservation and management of endangered species and ecosystems and important for evolutionary studies, and stable isotope analyses can provide key insights as well as informing hypotheses of the diet of species that are not well known. Abstract in Spanish is available with online material.  相似文献   

20.

Small nearshore fishes are an important part of lacustrine and functional diversity and link pelagic and benthic habitats by serving as prey for larger nearshore and offshore fishes. However, the trophic complexity of these small nearshore fishes is often unrecognized and detailed studies of their role in food webs are lacking. Here, we examined niche space patterns of small nearshore fish species using Bayesian analyses of carbon and nitrogen stable isotope data in nine freshwater lakes that are among the largest lakes in Minnesota. We found considerable variability in niche areas within species and high variability in niche overlap across species. At the assemblage level, niche overlap (average diet overlap of all species pairs at a lake) decreased as whole-lake species richness increased, possibly indicating a greater degree of resource specialization in more speciose lakes. Overall fish niche space was weakly but significantly related to niche space of their invertebrate prey. Although nearshore benthic resources contributed to fish diets in all lakes, all fish species also had non-negligible and variable contributions from pelagic zooplankton. This inter- and intraspecific variability in trophic niche space likely contributes to the multi-level trophic complexity, functional diversity, and potentially food web resilience to ecosystem changes.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号