首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Genes coding for the fatty acid desaturases (FADS1, 2, 3) localized at the cancer genomic hotspot 11q13 locus are required for the biosynthesis of 20 carbon polyunsaturated fatty acids (PUFA) that are direct eicosanoid precursors. In several cancer cell lines, FADS2 encoded Δ6 and Δ8 desaturation is not functional.

Methodology/Principal Findings

Analyzing MCF7 cell fatty acids with detailed structural mass spectrometry, we show that in the absence of FADS2 activity, the FADS1 product Δ5-desaturase operates to produce 5,11,14–20∶3 and 5,11,14,17–20∶4. These PUFA are missing the 8–9 double bond of the eicosanoid signaling precursors arachidonic acid (5,8,11,14–20∶4) and eicosapentaenoic acid (5,8,11,14,17–20∶5). Heterologous expression of FADS2 restores Δ6 and Δ8-desaturase activity and normal eicosanoid precursor synthesis.

Conclusions/Significance

The loss of FADS2-encoded activities in cancer cells shuts down normal PUFA biosynthesis, deleting the endogenous supply of eicosanoid and downstream docosanoid precursors, and replacing them with unusual butylene-interrupted fatty acids. If recapitulated in vivo, the normal eicosanoid and docosanoid cell signaling milieu would be depleted and altered due to reduction and substitution of normal substrates with unusual substrates, with unpredictable consequences for cellular communication.  相似文献   

2.
Fatty acid desaturases play an important role in maintaining the appropriate structure and function of biological membranes. The biochemical characterization of integral membrane desaturases, particularly ω3 and ω6 desaturases, has been limited by technical difficulties relating to the acquisition of large quantities of purified proteins, and by the fact that functional activities of these proteins were only tested in an NADH-initiated reaction system. The main aim of this study was to reconstitute an NADPH-dependent reaction system in vitro and investigate the kinetic properties of Mortierella alpina ω3 and ω6 desaturases in this system. After expression and purification of the soluble catalytic domain of NADPH–cytochrome P450 reductase, the NADPH-dependent fatty acid desaturation was reconstituted for the first time in a system containing NADPH, NADPH–cytochrome P450 reductase, cytochrome b5, M. alpina ω3 and ω6 desaturase and detergent. In this system, the maximum activity of ω3 and ω6 desaturase was 213.4 ± 9.0 nmol min−1 mg−1 and 10.0 ± 0.5 nmol min−1 mg−1, respectively. The highest kcat/Km value of ω3 and ω6 desaturase was 0.41 µM−1 min−1 and 0.09 µM−1 min−1 when using linoleoyl CoA (18:2 ω6) and oleoyl CoA (18:1 ω9) as substrates, respectively. M. alpina ω3 and ω6 desaturases were capable of using NADPH as reductant when mediated by NADPH–cytochrome P450 reductase; although, their efficiency is distinguishable from NADH-dependent desaturation. These results provide insights into the mechanisms underlying ω3 and ω6 fatty acid desaturation and may facilitate the production of important fatty acids in M. alpina.  相似文献   

3.

Background

In experimental models, hypothalamic inflammation is an early and determining factor in the installation and progression of obesity. Pharmacological and gene-based approaches have proven efficient in restraining inflammation and correcting the obese phenotypes. However, the role of nutrients in the modulation of hypothalamic inflammation is unknown.

Methodology/Principal Findings

Here we show that, in a mouse model of diet-induced obesity, partial substitution of the fatty acid component of the diet by flax seed oil (rich in C18:3) or olive oil (rich in C18:1) corrects hypothalamic inflammation, hypothalamic and whole body insulin resistance, and body adiposity. In addition, upon icv injection in obese rats, both ω3 and ω9 pure fatty acids reduce spontaneous food intake and body mass gain. These effects are accompanied by the reversal of functional and molecular hypothalamic resistance to leptin/insulin and increased POMC and CART expressions. In addition, both, ω3 and ω9 fatty acids inhibit the AMPK/ACC pathway and increase CPT1 and SCD1 expression in the hypothalamus. Finally, acute hypothalamic injection of ω3 and ω9 fatty acids activate signal transduction through the recently identified GPR120 unsaturated fatty acid receptor.

Conclusions/Significance

Unsaturated fatty acids can act either as nutrients or directly in the hypothalamus, reverting diet-induced inflammation and reducing body adiposity. These data show that, in addition to pharmacological and genetic approaches, nutrients can also be attractive candidates for controlling hypothalamic inflammation in obesity.  相似文献   

4.
5.
6.
L Wang  B Zuo  D Xu  Z Ren  H Zhang  X Li  M Lei  Y Xiong 《PloS one》2012,7(7):e40250

Background

Glycogen synthase kinase 3 (GSK3α and GSK3β) are serine/threonine kinases involved in numerous cellular processes and diverse diseases including mood disorders, Alzheimer’s disease, diabetes, and cancer. However, in pigs, the information on GSK3 is very limited. Identification and characterization of pig GSK3 are not only important for pig genetic improvement, but also contribute to the understanding and development of porcine models for human disease prevention and treatment.

Methodology

Five different isoforms of GSK3β were identified in porcine different tissues, in which three isoforms are novel. These isoforms had differential expression patterns in the fetal and adult of the porcine different tissues. The mRNA expression level of GSK3β isoforms was differentially regulated during the course of the insulin treatment, suggesting that different GSK3β isoforms may have different roles in insulin signaling pathway. Moreover, GSK3β5 had a different role on regulating the glycogen synthase activity, phosphorylation and the expression of porcine GYS1 and GYS2 gene compared to other GSK3β isoforms.

Conclusions

We are the first to report five different isoforms of GSK3β identified from the porcine different tissues. Splice variants of GSK3β exhibit differential activity towards glycogen synthase. These results provide new insight into roles of the GSK3β on regulating glycogen metabolism.  相似文献   

7.
8.

Context

Plasma total cysteine (tCys) independently relates to fat mass in adults. Dietary cyst(e)ine promotes adiposity and decreases glucose tolerance in some rodent models, but alleviates insulin resistance in others.

Objective

To investigate whether the association of tCys with body fat extends to children at particular risk of obesity, and whether tCys is associated with insulin resistance and obesity-associated inflammation.

Methods

We explored the cross-sectional relations of fasting plasma tCys and related metabolites with body composition measured by dual-energy X-ray absorptiometry in 984 Hispanic children and adolescents aged 4–19 years from the Viva La Familia Study. Linear and logistic regression and dose-response curves were used to evaluate relations of tCys with obesity, insulin resistance and inflammatory markers including interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), monocyte chemoattractant protein-1 (MCP-1) and C-reactive protein (CRP).

Results

tCys, methionine and total homocysteine (tHcy) increased with age. Upper tCys quartile was independently associated with a 5-fold increased risk of obesity (95% CI 3.5–8.0, P<0.001), and 2-fold risk of insulin resistance (95% CI: 1.6-5.0, P<0.001; adjusted for body fat%). Within the overweight/obese subgroup, but not in normal-weight children, tCys accounted for 9% of the variability in body fat% (partial r = 0.30, P<0.001; adjusted for age and gender). tCys correlated positively with serum non-esterified fatty acids and leptin, partly independent of body fat, but was not associated with serum IL-6, TNF-α or MCP-1. A positive correlation with CRP disappeared after adjustment for BMI.

Conclusion

tCys is independently associated with obesity and insulin resistance in Hispanic children and adolescents, highlighting a previously underappreciated link between the sulfur amino acid metabolic pathway and obesity and cardiometabolic risk.  相似文献   

9.

Background

Asthma is a respiratory tract disorder characterized by airway hyper-reactivity and chronic inflammation. Allergic asthma is associated with the production of allergen-specific IgE and expansion of allergen-specific T-cell populations. Progression of allergic inflammation is driven by T-helper type 2 (Th2) mediators and is associated with alterations in the levels of lipid mediators.

Objectives

Responses of the respiratory system to birch allergen provocation in allergic asthmatics were investigated. Eicosanoids and other oxylipins were quantified in the bronchoalveolar lumen to provide a measure of shifts in lipid mediators associated with allergen challenge in allergic asthmatics.

Methods

Eighty-seven lipid mediators representing the cyclooxygenase (COX), lipoxygenase (LOX) and cytochrome P450 (CYP) metabolic pathways were screened via LC-MS/MS following off-line extraction of bronchoalveolar lavage fluid (BALF). Multivariate statistics using OPLS were employed to interrogate acquired oxylipin data in combination with immunological markers.

Results

Thirty-two oxylipins were quantified, with baseline asthmatics possessing a different oxylipin profile relative to healthy individuals that became more distinct following allergen provocation. The most prominent differences included 15-LOX-derived ω-3 and ω-6 oxylipins. Shared-and-Unique-Structures (SUS)-plot modeling showed a correlation (R2 = 0.7) between OPLS models for baseline asthmatics (R2Y[cum] = 0.87, Q2[cum] = 0.51) and allergen-provoked asthmatics (R2Y[cum] = 0.95, Q2[cum] = 0.73), with the majority of quantified lipid mediators and cytokines contributing equally to both groups. Unique structures for allergen provocation included leukotrienes (LTB4 and 6-trans-LTB4), CYP-derivatives of linoleic acid (epoxides/diols), and IL-10.

Conclusions

Differences in asthmatic relative to healthy profiles suggest a role for 15-LOX products of both ω-6 and ω-3 origin in allergic inflammation. Prominent differences at baseline levels indicate that non-symptomatic asthmatics are subject to an underlying inflammatory condition not observed with other traditional mediators. Results suggest that oxylipin profiling may provide a sensitive means of characterizing low-level inflammation and that even individuals with mild disease display distinct phenotypic profiles, which may have clinical ramifications for disease.  相似文献   

10.

Background

Long-term exposure to high levels of fatty acids impairs insulin secretion and exaggerates glucagon secretion. The aim of this study was to explore if the antihyperglycemic agent, Isosteviol (ISV), is able to counteract palmitate-induced α-cell dysfunction and to influence α-cell gene expression.

Methodology/Principal Findings

Long-term incubation studies with clonal α-TC1–6 cells were performed in the presence of 0.5 mM palmitate with or without ISV. We investigated effects on glucagon secretion, glucagon content, cellular triglyceride (TG) content, cell proliferation, and expression of genes involved in controlling glucagon synthesis, fatty acid metabolism, and insulin signal transduction. Furthermore, we studied effects of ISV on palmitate-induced glucagon secretion from isolated mouse islets. Culturing α-cells for 72-h with 0.5 mM palmitate in the presence of 18 mM glucose resulted in a 56% (p<0.01) increase in glucagon secretion. Concomitantly, the TG content of α-cells increased by 78% (p<0.01) and cell proliferation decreased by 19% (p<0.05). At 18 mM glucose, ISV (10−8 and 10−6 M) reduced palmitate-stimulated glucagon release by 27% (p<0.05) and 27% (p<0.05), respectively. ISV (10−6 M) also counteracted the palmitate-induced hypersecretion of glucagon in mouse islets. ISV (10−6 M) reduced α-TC1–6 cell proliferation rate by 25% (p<0.05), but ISV (10−8 and 10−6 M) had no effect on TG content in the presence of palmitate. Palmitate (0.5 mM) increased Pcsk2 (p<0.001), Irs2 (p<0.001), Fasn (p<0.001), Srebf2 (p<0.001), Acaca (p<0.01), Pax6 (p<0.05) and Gcg mRNA expression (p<0.05). ISV significantly (p<0.05) up-regulated Insr, Irs1, Irs2, Pik3r1 and Akt1 gene expression in the presence of palmitate.

Conclusions/Significance

ISV counteracts α-cell hypersecretion and apparently contributes to changes in expression of key genes resulting from long-term exposure to palmitate. ISV apparently acts as a glucagonostatic drug with potential as a new anti-diabetic drug for the treatment of type 2 diabetes.  相似文献   

11.
Wilmes P  Wexler M  Bond PL 《PloS one》2008,3(3):e1778

Background

Through identification of highly expressed proteins from a mixed culture activated sludge system this study provides functional evidence of microbial transformations important for enhanced biological phosphorus removal (EBPR).

Methodology/Principal Findings

A laboratory-scale sequencing batch reactor was successfully operated for different levels of EBPR, removing around 25, 40 and 55 mg/l P. The microbial communities were dominated by the uncultured polyphosphate-accumulating organism “Candidatus Accumulibacter phosphatis”. When EBPR failed, the sludge was dominated by tetrad-forming α-Proteobacteria. Representative and reproducible 2D gel protein separations were obtained for all sludge samples. 638 protein spots were matched across gels generated from the phosphate removing sludges. 111 of these were excised and 46 proteins were identified using recently available sludge metagenomic sequences. Many of these closely match proteins from “Candidatus Accumulibacter phosphatis” and could be directly linked to the EBPR process. They included enzymes involved in energy generation, polyhydroxyalkanoate synthesis, glycolysis, gluconeogenesis, glycogen synthesis, glyoxylate/TCA cycle, fatty acid β oxidation, fatty acid synthesis and phosphate transport. Several proteins involved in cellular stress response were detected.

Conclusions/Significance

Importantly, this study provides direct evidence linking the metabolic activities of “Accumulibacter” to the chemical transformations observed in EBPR. Finally, the results are discussed in relation to current EBPR metabolic models.  相似文献   

12.

Background

Conjugated linoleic acids (CLA), and principally c9t11 CLA, are suspected to have numerous preventive properties regarding non-infectious pathologies such as inflammatory diseases, atherosclerosis and several types of cancer. C9t11 CLA is produced in the rumen during biohydrogenation of linoleic acid, but can also be synthesized in mammalian tissues from trans-vaccenic acid (C18:1 t11) through the action of delta-9 desaturase (D9D). For several years, it is also known that c9t11 CLA can be synthesized from conjugated linolenic acids (CLnA), i.e. c9t11c13 CLnA and c9t11t13 CLnA. This study aimed at investigating to which extent and by which route c9t11 CLA can be produced from another isomer of CLA, the t11t13 CLA that is structurally very similar to c9t11t13 CLnA, in Caco-2 cells.

Methodology/Principal Findings

Caco-2 cells were incubated for 24 h with 20 µmol/l of t11t13 CLA in the absence or presence of sterculic oil used as an inhibitor of D9D. Caco-2 cells were able to convert t11t13 CLA into c9t11 CLA, and c9t11t13 CLnA was formed as an intermediate compound. In the presence of sterculic oil, the production of this intermediate was decreased by 46% and the formation of c9t11 CLA was decreased by 26%. No other metabolite was detected.

Conclusions/Significance

These results not only highlight the conversion of t11t13 CLA into c9t11 CLA but demonstrate also that this conversion involves first a desaturation step catalysed by D9D to produce c9t11t13 CLnA and then the action of another enzyme reducing the double bond on the Δ13 position.  相似文献   

13.

Background

There are increased numbers of activated lymphocytes in the lungs of chronic obstructive pulmonary disease (COPD) patients. The clinical benefits of corticosteroids in COPD patients are limited. Our hypothesis is that lymphocytes play a role in this corticosteroid insensitivity.

Objectives

To investigate the effects of the corticosteroid dexamethasone on lung lymphocyte cytokine production from patients with COPD compared to controls.

Methods

Cultured airway lymphocytes obtained by bronchoscopy from healthy non-smokers (HNS), smokers (S) and COPD patients were stimulated with phytohaemagglutinin (PHA) & phorbol myristate acetate (PMA), +/- dexamethasone. Supernatants were assayed for interleukin (IL)-2 and interferon (IFN)γ. Immunofluoresence was used to analyse changes in CD8 glucocorticoid receptor (GRα and GRβ) expression.

Results

The inhibition of PHA/PMA stimulated IFNγ production by dexamethasone was reduced in COPD patients compared to HNS (p < 0.05 at concentrations from 0.1-1 μM). There was also a significant reduction (p < 0.05) in the mean inhibitory effect at 1 μM in COPD patients (54.1%) compared to smokers (72.1%), and in smokers compared to HNS (85.5%). There was a numerically reduced effect of dexamethasone on IL-2 production that did not reach statistical significance. There was no difference in GRα and GRβ expression in follicular CD8 cells between COPD patients (50.9% and 30.4% respectively) and smokers (52.9% and 29.7% respectively).

Conclusions

IFNγ production from COPD airway lymphocytes is corticosteroid insensitive. This phenomenon may be important in the poor clinical response often observed with corticosteroids.  相似文献   

14.

Background and Aims

Serotiny is common in the genus Banksia, so any seed collection is likely to be comprised of seeds that were produced in many different years. This study aimed to determine the impact of cone age and degree of serotiny on longevity in ex situ storage.

Methods

Cones of identifiable age classes were collected from three species of Banksia. Seeds were extracted from cones and the degree of serotiny calculated. An estimate of initial viability (Ki), the time for viability to fall by one probit (σ) and the relative longevity of seeds (p50) for each species and cone age class was determined using a comparative longevity test (50 °C, 63 % relative humidity).

Key Results

The degree of serotiny ranged from moderate (7·9) for Banksia attenuata to strong (40·4) for B. hookeriana. Survival curves for all seed age classes within each species could be described by regressions with a common slope (1/σ), but with different values for Ki. The time taken for viability to fall by one probit (σ) could be described by a common value (29·1 d) for all three species.

Conclusions

Differences in seed longevity between cone age classes and species was related to variation in initial viability (Ki) rather than to differences in σ. While targeting the youngest mature seed cohort on a plant will maximize the viability of seeds collected, a wide range of age classes should be collected (but stored as separate cohorts if possible) for quality conservation/restoration seed collections where genetic diversity is important.  相似文献   

15.

Background

Chagas Disease, a WHO- and NIH-designated neglected tropical disease, is endemic in Latin America and an emerging infection in North America and Europe as a result of population moves. Although a major cause of morbidity and mortality due to heart failure, as well as inflicting a heavy economic burden in affected regions, Chagas Disease elicits scant notice from the pharmaceutical industry because of adverse economic incentives. The discovery and development of new routes to chemotherapy for Chagas Disease is a clear priority.

Methodology/Principal Findings

The similarity between the membrane sterol requirements of pathogenic fungi and those of the parasitic protozoon Trypanosoma cruzi, the causative agent of Chagas human cardiopathy, has led to repurposing anti-fungal azole inhibitors of sterol 14α-demethylase (CYP51) for the treatment of Chagas Disease. To diversify the therapeutic pipeline of anti-Chagasic drug candidates we exploited an approach that included directly probing the T. cruzi CYP51 active site with a library of synthetic small molecules. Target-based high-throughput screening reduced the library of ∼104,000 small molecules to 185 hits with estimated nanomolar KD values, while cross-validation against T. cruzi-infected skeletal myoblast cells yielded 57 active hits with EC50 <10 µM. Two pools of hits partially overlapped. The top hit inhibited T. cruzi with EC50 of 17 nM and was trypanocidal at 40 nM.

Conclusions/Significance

The hits are structurally diverse, demonstrating that CYP51 is a rather permissive enzyme target for small molecules. Cheminformatic analysis of the hits suggests that CYP51 pharmacology is similar to that of other cytochromes P450 therapeutic targets, including thromboxane synthase (CYP5), fatty acid ω-hydroxylases (CYP4), 17α-hydroxylase/17,20-lyase (CYP17) and aromatase (CYP19). Surprisingly, strong similarity is suggested to glutaminyl-peptide cyclotransferase, which is unrelated to CYP51 by sequence or structure. Lead compounds developed by pharmaceutical companies against these targets could also be explored for efficacy against T. cruzi.  相似文献   

16.
Shi FT  Cheung AP  Huang HF  Leung PC 《PloS one》2011,6(8):e22866

Background

We have demonstrated that growth differentiation factor 9 (GDF9) enhances activin A-induced inhibin β B-subunit mRNA levels in human granulosa-lutein (hGL) cells by regulating receptors and key intracellular components of the activin signaling pathway. However, we could not exclude its effects on follistatin (FST) and follistatin-like 3 (FSTL3), well recognized extracellular inhibitors of activin A.

Methodology

hGL cells from women undergoing in vitro fertilization (IVF) treatment were cultured with and without siRNA transfection of FST, FSTL3 or GDF9 and then treated with GDF9, activin A, FST, FSTL3 or combinations. FST, FSTL3 and inhibin β B-subunit mRNA, and FST, FSTL3 and inhibin B protein levels were assessed with real-time RT-PCR and ELISA, respectively. Data were log transformed before ANOVA followed by Tukey''s test.

Principal Findings

GDF9 suppressed basal FST and FSTL3 mRNA and protein levels in a time- and dose-dependent manner and inhibited activin A-induced FST and FSTL3 mRNA and protein expression, effects attenuated by BMPR2 extracellular domain (BMPR2 ECD), a GDF9 antagonist. After GDF9 siRNA transfection, basal and activin A-induced FST and FSTL3 mRNA and protein levels increased, but changes were reversed by adding GDF9. Reduced endogenous FST or FSTL3 expression with corresponding siRNA transfection augmented activin A-induced inhibin β B-subunit mRNA levels as well as inhibin B levels (P values all <0.05). Furthermore, the enhancing effects of GDF9 in activin A-induced inhibin β B-subunit mRNA and inhibin B production were attenuated by adding FST.

Conclusion

GDF9 decreases basal and activin A-induced FST and FSTL3 expression, and this explains, in part, its enhancing effects on activin A-induced inhibin β B-subunit mRNA expression and inhibin B production in hGL cells.  相似文献   

17.

Introduction

TNFα is a proinflammatory cytokine that plays a central role in the pathogenesis of rheumatoid arthritis (RA). We investigated the effects of certolizumab pegol, a TNFα blocker, on endothelial cell function and angiogenesis.

Methods

Human dermal microvascular endothelial cells (HMVECs) were stimulated with TNFα with or without certolizumab pegol. TNFα-induced adhesion molecule expression and angiogenic chemokine secretion were measured by cell surface ELISA and angiogenic chemokine ELISA, respectively. We also examined the effect of certolizumab pegol on TNFα-induced myeloid human promyelocytic leukemia (HL-60) cell adhesion to HMVECs, as well as blood vessels in RA synovial tissue using the Stamper-Woodruff assay. Lastly, we performed HMVEC chemotaxis, and tube formation.

Results

Certolizumab pegol significantly blocked TNFα-induced HMVEC cell surface angiogenic E-selectin, vascular cell adhesion molecule-1 and intercellular adhesion molecule-1 expression and angiogenic chemokine secretion (P < 0.05). We found that certolizumab pegol significantly inhibited TNFα-induced HL-60 cell adhesion to HMVECs (P < 0.05), and blocked HL-60 cell adhesion to RA synovial tissue vasculature (P < 0.05). TNFα also enhanced HMVEC chemotaxis compared with the negative control group (P < 0.05) and this chemotactic response was significantly reduced by certolizumab pegol (P < 0.05). Certolizumab pegol inhibited TNFα-induced HMVEC tube formation on Matrigel (P < 0.05).

Conclusion

Our data support the hypothesis that certolizumab pegol inhibits TNFα-dependent leukocyte adhesion and angiogenesis, probably via inhibition of angiogenic adhesion molecule expression and angiogenic chemokine secretion.  相似文献   

18.
Fatty acid desaturases can introduce double bonds into the hydrocarbon chains of fatty acids to produce unsaturated fatty acids. In the present study, 29 full-length desaturase genes were identified from soybean genome by a thorough annotation exercise. A comprehensive analysis was performed to characterize phylogeny, chromosomal locations, structures, conserved motifs, and expression patterns of those genes. The soybean genes were phylogenetically clustered into nine subfamilies with the Arabidopsis counterparts, FAB2, FAD2, FAD3, FAD5, FAD6, FAD7, FAD8, SLD1, and DES1. Twenty-nine desaturase genes were found to be distributed on at least 15 of the 20 soybean chromosomes. The gene structures and motif compositions were considerably conserved among the subfamilies. The majority of desaturase genes showed specific temporal and spatial expression patterns across different tissues and developmental stages based on microarray data analyses. The study may provide new insights into the origin and evolution of fatty acid biosynthesis pathways in higher plants. Additionally, the characterization of desaturases from soybean will lead to the identification of additional genes for genetic modification of plants to produce nutritionally important fatty acids.  相似文献   

19.

Background

Mutation in αA-crystallin contributes to the development of congenital cataract in humans. Heterooligomerization of αA-crystallin and αB-crystallin is essential for maintaining transparency in the eye lens. The effect of congenital cataract causing mutants of αA-crystallin on subunit exchange and interaction with αB-crystallin is unknown. In the present study, interaction of the mutants of αA-crystallin with αB-crystallin was studied both in vitro and in situ by the fluorescence resonance energy transfer (FRET) technique.

Methodology/Principal Findings

In vitro FRET technique was used to demonstrate the rates of subunit exchange of αB-wt with the following αA-crystallin mutants: R12C, R21L, R21W, R49C, R54C, and R116C. The subunit exchange rates (k values) of R21W and R116C with αB-wt decreased drastically as compared to αA-wt interacting with αB-wt. Moderately decreased k values were seen with R12C, R49C and R54C while R21L showed nearly normal k value. The interaction of αA- mutants with αB-wt was also assessed by in situ FRET. YFP-tagged αA mutants were co-expressed with CFP-tagged αB-wt in HeLa cells and the spectral signals were captured with a confocal microscope before and after acceptor laser photobleaching. The interaction of R21W and R116C with αB-wt was decreased nearly 50% as compared to αA-wt while the rest of the mutants showed slightly decreased interaction. Thus, there is good agreement between the in vitro and in situ FRET data.

Conclusions/Significance

Structural changes occurring in these mutants, as reported earlier, could be the underlying cause for the decreased interaction with αB may contribute to development of congenital cataract.  相似文献   

20.

Background

Metabolic engineering is an attractive approach in order to improve the microbial production of drugs. Triterpenes is a chemically diverse class of compounds and many among them are of interest from a human health perspective. A systematic experimental or computational survey of all feasible gene modifications to determine the genotype yielding the optimal triterpene production phenotype is a laborious and time-consuming process.

Methodology/Principal Findings

Based on the recent genome-wide sequencing of Saccharomyces cerevisiae CEN.PK 113-7D and its phenotypic differences with the S288C strain, we implemented a strategy for the construction of a β-amyrin production platform. The genes Erg8, Erg9 and HFA1 contained non-silent SNPs that were computationally analyzed to evaluate the changes that cause in the respective protein structures. Subsequently, Erg8, Erg9 and HFA1 were correlated with the increased levels of ergosterol and fatty acids in CEN.PK 113-7D and single, double, and triple gene over-expression strains were constructed.

Conclusions

The six out of seven gene over-expression constructs had a considerable impact on both ergosterol and β-amyrin production. In the case of β-amyrin formation the triple over-expression construct exhibited a nearly 500% increase over the control strain making our metabolic engineering strategy the most successful design of triterpene microbial producers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号